Introduction

This application note describes the requirements for a differential interface being referenced to the VIH (Input High Voltage) of an input signal.

Advantages of a Differential Interface

- It offers a wide range of input signaling standards and works with a wide range of input offset voltage.
- Greater immunity to common mode noise. Has tolerance to ground offsets or noise.
- Suitability for use with a low voltage application.
- Less power and substrate noise during signal transition. Current switching much less than single ended interface.
- Reduced EMI due to the cancellation in differential traces.

Requirements of Differential Interface

The input requirement for a differential interface is different from the requirement for a single ended interface. In a single ended interface such as LVCMOS, LVTTL, single-ended HSTL or single-ended PECL/ECL, the VOH and VOL must meet the VIH and VIL requirements of the receivers. In the differential interface, such as LVPECL, HSTL, HCSL, CML, LVDS, or SSTL, the VIH and VIL are no longer referenced. The input parameters VPP and VCMR are now the requirements. Only VSWING and the VOH of the incoming signal are required to meet both VPP and VCMR.

\[
V_{PP} < V_{SWING} < V_{PP_MAX} \\
V_{CMR_MIN} < V_{OH} < V_{CMR_MAX}
\]

- \(V_{PP}\) = Input peak-to-peak voltage requirement
- \(V_{CMR}\) = Input Common Mode Range Voltage requirement
- \(V_{SWING}\) = Driver output swing
- \(V_{OH}\) = Driver output logic high

Figure 1 shows the relationship between VSWING, VOH and VPP, VCMR. The following conditions must be met for a valid input signal: VSWING must be within the required range of the specified VPP and the VOH must be within the VCMR range.

Figure 1. Relationship between Interface Parameters
Figure 2. Typical Datasheet for VCMR and VPP

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Input Voltage</td>
<td>0.15</td>
<td>1.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Input Voltage</td>
<td>$V_{EE} + 0.5$</td>
<td>$V_{CC} - 0.85$</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Example

Figure 2 shows a typical datasheet specification for both V_{PP} and V_{CMR}. As an example, let’s use an input driver with an amplitude (V_{SWING}) of 200mV and a V_{OH} level at 2V. Will this work? First, the V_{SWING} should be verified that it is within the V_{PP} specification. Yes, 200mV falls between 0.15V and 1.3V. Second, the V_{OH} of the signal must fall within the V_{CMR} range. Assuming the V_{CC} is 3.3V and V_{EE} is 0V, the V_{CMR} range will be 0.5V and 2.45V. Again, 2V fall within the V_{CMR} range. Both of the conditions are met. This is a valid input. Though not specified, it is not recommended that the V_{IL} goes below V_{EE}. This could happen with the V_{PP} at 1.3V and the V_{IH} at $V_{EE} + 0.5$. That would put the V_{IL} at 800mV below V_{EE}.

Limitations of VCMR and VPP

This section will describe the limitation of both V_{CMR} and VPP from a circuit perspective. When V_{CMR} is referenced to V_{IH}, the analysis is purely DC. Some inputs also reference V_{CMR} to the input signals cross-point. This would be a similar except it would be an AC analysis.

Figure 3. Simplified Typical Differential Input Interface Circuit

For the following analysis, refer to Figure 3. In determining V_{PP}, both $V_{PP(min)}$ and $V_{PP(max)}$ specification must be examined. For both cases, V_{IN+} is greater than V_{IN-}, where V_{IN+} is a logic high and V_{IN-} is a logic low.

- $V_{PP(min)}$ is determined by the minimum voltage difference required to correctly operate the differential amplifier by keeping the Q1 transistor on and Q2 off.
- $V_{PP(max)}$ is determined by the maximum voltage swing allowable which will not forward bias either Q1 or Q2.

Similar to V_{PP}, both $V_{CMR(max)}$ and $V_{CMR(min)}$ must be examined.

- $V_{CMR(min)}$ is determined by the minimum V_{CD} required to keep the constant current source I_{1} function properly.
- $V_{CMR(max)}$ is determined by the minimum V_{AB} required to prevent the forward biasing of Q1.