Introduction

This application note describes how to overdrive the crystal interface by an LVCMOS driver or by one side of a differential driver.

Overdriving the Crystal Interface

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/nS. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 1 shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance.

In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways: R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and changing R2 to 50Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. Figure 2 shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

Figure 1. Example of the Interface Diagram for a High Speed 3.3V LVCMOS Driver

![Interface Diagram for a High Speed 3.3V LVCMOS Driver](image)

Zo = Ro + Rs

LVCMOS Driver

Figure 2. Example of the Interface Diagram for an LVPECL Driver

![Interface Diagram for an LVPECL Driver](image)