Introduction

Choosing a crystal with the correct characteristics is one of the most critical steps in using a Voltage Controlled Crystal Oscillator (VCXO).

VCXO Crystal Selection

The crystal parameters affect the tuning range and accuracy of a VCXO. Below are the key variables and an example of using the crystal parameters to calculate the tuning range of the VCXO.

Figure 1. VCXO Oscillator Circuit

![VCXO Oscillator Circuit Diagram](image)

where
- $V_c =$ Control voltage used to tune frequency
- $C_v =$ Varactor capacitance, varies due to the change in voltage control
- $C_{L1}/C_{L2} =$ Load tuning capacitance used for fine tuning or centering nominal frequency
- $C_{S1}/C_{S2} =$ Stray Capacitance caused by pads, vias, and other board parasitics

Crystal Parameters Example

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_N</td>
<td>Frequency</td>
<td></td>
<td>25</td>
<td>±20 ppm</td>
<td>±20 ppm</td>
<td>MHz</td>
</tr>
<tr>
<td>f_T</td>
<td>Frequency Tolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td>f_S</td>
<td>Frequency Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>Operating Temperature Range</td>
<td></td>
<td>-40</td>
<td>65</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>C_L</td>
<td>Load Capacitance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C_O</td>
<td>Shunt Capacitance</td>
<td></td>
<td>Note 1</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C_O/C_1</td>
<td>Pullability Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{L_{30VLT}}$</td>
<td>3rd Overtone F_L</td>
<td></td>
<td>200</td>
<td>220</td>
<td>240</td>
<td>ppm</td>
</tr>
<tr>
<td>$F_{L_{30VLT_spurs}}$</td>
<td>3rd Overtone F_L Spurs</td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td>ESR</td>
<td>Equivalent Series Resistance</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Drive Level</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Aging @ 25 °C</td>
<td></td>
<td></td>
<td>±3 per year</td>
<td></td>
<td></td>
<td>ppm</td>
</tr>
</tbody>
</table>
Varactor Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Typical</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVLOW</td>
<td>Low Varactor Capacitance</td>
<td>15.4 (note 1)</td>
<td>pF</td>
</tr>
<tr>
<td>CVHIGH</td>
<td>High Varactor Capacitance</td>
<td>29.6 (note 1)</td>
<td>pF</td>
</tr>
</tbody>
</table>

Note 1: Refer to the device datasheet for recommended CVLOW and CVHIGH.

Formulas

\[
C_{Low} = \frac{(C_{L1} + C_{S1} + C_{V_{Low}})\cdot(C_{L2} + C_{S2} + C_{V_{Low}})}{(C_{L1} + C_{S1} + C_{V_{Low}})+(C_{L2} + C_{S2} + C_{V_{Low}})}
\]

\[
C_{High} = \frac{(C_{L1} + C_{S1} + C_{V_{High}})\cdot(C_{L2} + C_{S2} + C_{V_{High}})}{(C_{L1} + C_{S1} + C_{V_{High}})+(C_{L2} + C_{S2} + C_{V_{High}})}
\]

- \(C_{Low} \) is the effective capacitance due to the low varactor capacitance, load capacitance and stray capacitance. \(C_{Low} \) determines the high frequency component on the TPR.
- \(C_{High} \) is the effective capacitance due to the high varactor capacitance, load capacitance and stray capacitance. \(C_{High} \) determines the low frequency component on the TPR.

Total Pull Range (TPR) = \[
\frac{1}{2\cdot\frac{C_0}{C_1}\cdot\left(1 + \frac{C_{Low}}{C_0}\right)} - \frac{1}{2\cdot\frac{C_0}{C_1}\cdot\left(1 + \frac{C_{High}}{C_0}\right)} \cdot 10^6
\]

Absolute Pull Range (APR) = Total Pull Range – (Frequency Tolerance + Frequency Stability + Aging)

Example Calculations

Using the tables and figures above, we can now calculate the TPR and APR of the VCXO using the example crystal parameters. For the numerical example below there were some assumptions made. First, the stray capacitance (Cs1, Cs2), which is all the excess capacitance due to board parasitic, is 4pF. Second, the expected lifetime of the project is 5 years; hence the inaccuracy due to aging is ±15ppm. Third, though many boards will not require load tuning capacitors (Cl1, Cl2), it is recommended for long-term consistent performance of the system that two tuning capacitor pads be placed into every design. Typical values for the load tuning capacitors will range from 0 to 4pF.

\[
C_{Low} = \frac{(0 + 4\text{pF} + 15.4\text{pF})\cdot(0 + 4\text{pF} + 15.4\text{pF})}{(0 + 4\text{pF} + 15.4\text{pF})+(0 + 4\text{pF} + 15.4\text{pF})} = 9.7\text{pF}
\]

\[
C_{High} = \frac{(0 + 4\text{pF} + 29.6\text{pF})\cdot(0 + 4\text{pF} + 29.6\text{pF})}{(0 + 4\text{pF} + 29.6\text{pF})+(0 + 4\text{pF} + 29.6\text{pF})} = 16.8\text{pF}
\]

\[
TPR = \frac{1}{2\cdot220\cdot\left(1 + \frac{9.7\text{pF}}{4\text{pF}}\right)} - \frac{1}{2\cdot220\cdot\left(1 + \frac{16.8\text{pF}}{4\text{pF}}\right)} \cdot 10^6 \cdot = 226.5\text{ppm}
\]

\[TPR = \pm 113.25\text{ppm}\]

\[APR = 113.25\text{ppm} - (20\text{ppm} + 20\text{ppm} + 15\text{ppm}) = \pm 58.25\text{ppm}\]

The example above will ensure a total pull range of ±113.25 ppm with an APR of ±58.25ppm. Many times, board designers may select their own crystal based on their application. If the application requires a tighter APR, a crystal with better pull-ability (C0/C1 ratio) can be used. Also, with the equations above, one can vary the frequency tolerance, temperature stability, and aging or shunt capacitance to achieve the required pull-ability.
Recommended Vendors

Some of the Voltage controlled crystal oscillators devices from IDT require a pull-able crystal. There are VCXO’s designed by IDT which do not require a pull-able crystal. The Crystal parameters for the VCXO’s are in the datasheet. Most crystal manufactures, given the crystal specifications can manufacture a reliable crystal to work with IDT VCXO’s. If there are any comments or concerns, please contact IDT.
DISCLAIMER: Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2014 Integrated Device Technology, Inc.. All rights reserved.