Description

The 5P49V60 is a programmable clock generator intended for automotive applications. Configurations may be stored in on-chip One-Time Programmable (OTP) memory or changed using \(\text{I}^2\text{C} \) interface. This is IDT’s sixth generation of programmable clock technology (VersaClock 6E).

The frequencies are generated from a single reference clock. The reference clock can come from one of the two redundant clock inputs. A glitchless manual switchover function allows one of the redundant clocks to be selected during normal operation.

Two select pins allow up to four different configurations to be programmed and accessible using processor GPIOs or bootstrapping. The different selections may be used for different operating modes (full function, partial function, partial power-down), regional standards (US, Japan, Europe) or system production margin testing. The device may be configured to use one of two \(\text{I}^2\text{C} \) addresses to allow multiple devices to be used in a system.

Features

- Flexible 1.8V, 2.5V, 3.3V power-rails
- High-performance, low phase noise PLL, < 0.5ps RMS typical phase jitter on outputs
- Four banks of internal OTP memory
 - In-system or factory programmable
 - 2 select pins accessible with processor GPIOs or bootstrapping
- \(\text{I}^2\text{C} \) serial programming interface
 - 0xD0 or 0xD4 \(\text{I}^2\text{C} \) address options allows multiple devices configured in a same system
- Reference LVCMOS output clock
- Four universal output pairs individually configurable:
 - Differential (LVPECL, LVDS or HCSL)
 - 2 single-ended (2 LVCMOS in-phase or 180 degrees out of phase)
 - I/O \(\text{V}_{\text{DD}} \)s can be mixed and matched, supporting 1.8V (LVDS and LVCMOS), 2.5V, or 3.3V
- Output frequency ranges:
 - LVCMOS clock outputs: 1MHz to 200MHz
 - LVDS, LVPECL, HCSL differential clock outputs: 1MHz to 350MHz
- Redundant clock inputs with manual switchover
- Programmable output enable or power-down mode
- 4 x 4 mm 24-VFQFPN wettable flank package
- AEC-Q100 qualified
- -40° to +105°C (Grade 2) temperature operation

Typical Applications

- Automotive infotainment
- Dashboard systems
- PCI Express 1.0 / 2.0 / 3.0
- Audio/Video applications
- Camera applications
- Active antennas
- In-vehicle networking

Block Diagram

[Block Diagram Image]
Contents

Description

Typical Applications

Features

Block Diagram

Pin Assignments

Pin Descriptions

Absolute Maximum Ratings

Thermal Characteristics

Recommended Operating Conditions

Electrical Characteristics

I2C Bus Characteristics

Test Loads

Jitter Performance Characteristics

PCI Express Jitter Performance and Specifications

Features and Functional Blocks

Device Startup and Power-On-Reset

Reference Clock and Selection

Manual Switchover

Internal Crystal Oscillator (XIN/REF)

Choosing Crystals

Tuning the Crystal Load Capacitor

Programmable Loop Filter

Fractional Output Dividers (FOD)

Individual Spread Spectrum Modulation

Bypass Mode

Dividers Alignment

Programmable Skew

Output Drivers

SD/OE Pin Function

I2C Operation

Typical Application Circuits

Input – Driving the XIN/REF or CLKN

Driving XIN/REF with a CMOS Driver

Driving XIN with an LVPECL Driver

Wiring the CLKN Pin to Accept Single-ended Inputs

Driving CLKN with Differential Clock

Output – Single-ended or Differential Clock Terminations

LVDS Termination

LVPECL Termination

HCSL Termination

LVCMOS Termination

Package Outline Drawings

Marking Diagram

Ordering Information

Revision History

©2019 Integrated Device Technology, Inc.
Pin Assignments

Figure 1. Pin Assignments for 4 x 4 mm 24-VFQFPN Package – Top View

Pin Descriptions

Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLKin</td>
<td>Input Internal Pull-down</td>
<td>Differential clock input. Weak 100kΩ internal pull-down.</td>
</tr>
<tr>
<td>2</td>
<td>CLKinB</td>
<td>Input Internal Pull-down</td>
<td>Complementary differential clock input. Weak 100kΩ internal pull-down.</td>
</tr>
<tr>
<td>3</td>
<td>XOUT</td>
<td>Output</td>
<td>Crystal oscillator interface output.</td>
</tr>
<tr>
<td>4</td>
<td>XIN/REF</td>
<td>Input</td>
<td>Crystal oscillator interface input, or single-ended LVCMOS clock input. Ensure that the input voltage is 1.2V maximum. Refer to the section Driving XIN/REF with a CMOS Driver.</td>
</tr>
<tr>
<td>5</td>
<td>VDDA</td>
<td>Power</td>
<td>Analog functions power supply pin. Connect to 1.8V to 3.3V. VDDA and VDDD should have the same voltage applied.</td>
</tr>
<tr>
<td>6</td>
<td>CLKSEL</td>
<td>Input Internal Pull-down</td>
<td>Input clock select. Selects the active input reference source in manual switchover mode. (0 = \text{XIN/REF, XOUT}) (default). (1 = \text{CLKIN, CLKinB}). See Table 19 for more details.</td>
</tr>
<tr>
<td>7</td>
<td>SD/OE</td>
<td>Input Internal Pull-down</td>
<td>Enables/disables the outputs (OE) or powers down the chip (SD).</td>
</tr>
<tr>
<td>8</td>
<td>SEL1/SDA</td>
<td>Input Internal Pull-down</td>
<td>Configuration select pin, or (I^2C) SDA input as selected by OUT0_SEL_I2CB. Weak internal pull-down resistor.</td>
</tr>
<tr>
<td>9</td>
<td>SEL0/SCL</td>
<td>Input Internal Pull-down</td>
<td>Configuration select pin, or (I^2C) SCL input as selected by OUT0_SEL_I2CB. Weak internal pull-down resistor.</td>
</tr>
</tbody>
</table>
Table 1. Pin Descriptions (Cont.)

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>V_{DDO4}</td>
<td>Power</td>
<td>Output power supply. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT4/OUT4B.</td>
</tr>
<tr>
<td>11</td>
<td>OUT4</td>
<td>Output</td>
<td>Output clock 4. Refer to the Output Drivers section for more details.</td>
</tr>
<tr>
<td>12</td>
<td>OUT4B</td>
<td>Output</td>
<td>Complementary output clock 4. Refer to the Output Drivers section for more details.</td>
</tr>
<tr>
<td>13</td>
<td>OUT3B</td>
<td>Output</td>
<td>Complementary output clock 3. Refer to the Output Drivers section for more details.</td>
</tr>
<tr>
<td>14</td>
<td>OUT3</td>
<td>Output</td>
<td>Output clock 3. Refer to the Output Drivers section for more details.</td>
</tr>
<tr>
<td>15</td>
<td>V_{DDO3}</td>
<td>Power</td>
<td>Output power supply. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT3/OUT3B.</td>
</tr>
<tr>
<td>16</td>
<td>OUT2B</td>
<td>Output</td>
<td>Complementary output clock 2. Refer to the Output Drivers section for more details.</td>
</tr>
<tr>
<td>17</td>
<td>OUT2</td>
<td>Output</td>
<td>Output clock 2. Refer to the Output Drivers section for more details.</td>
</tr>
<tr>
<td>18</td>
<td>V_{DDO2}</td>
<td>Power</td>
<td>Output power supply. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT2/OUT2B.</td>
</tr>
<tr>
<td>19</td>
<td>OUT1B</td>
<td>Output</td>
<td>Complementary output clock 1. Refer to the Output Drivers section for more details.</td>
</tr>
<tr>
<td>20</td>
<td>OUT1</td>
<td>Output</td>
<td>Output clock 1. Refer to the Output Drivers section for more details.</td>
</tr>
<tr>
<td>21</td>
<td>V_{DDO1}</td>
<td>Power</td>
<td>Output power supply. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT1/OUT1B.</td>
</tr>
<tr>
<td>22</td>
<td>V_{DDD}</td>
<td>Power</td>
<td>Digital functions power supply pin. Connect to 1.8 to 3.3V. V_{DDA} and V_{DDD} should have the same voltage applied.</td>
</tr>
<tr>
<td>23</td>
<td>V_{DDO0}</td>
<td>Power</td>
<td>Power supply pin for OUT0_SEL_I2CB. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT0.</td>
</tr>
<tr>
<td>24</td>
<td>OUT0_SEL_I2CB</td>
<td>Input/Output</td>
<td>Internal Pull-down</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>GND</td>
<td>Connect to ground pad.</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 5P49V60 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, (V_{DDA}, V_{DDD}, V_{DDO})</td>
<td>3.465V.</td>
</tr>
<tr>
<td>XIN/REF Input</td>
<td>1.2V.</td>
</tr>
<tr>
<td>CLkin, CLkinB Input</td>
<td>(V_{DDO}), 1.2V voltage swing.</td>
</tr>
<tr>
<td>(I^2C) Loading Current</td>
<td>10mA.</td>
</tr>
<tr>
<td>Storage Temperature, (T_{STG})</td>
<td>-65°C to 150°C.</td>
</tr>
<tr>
<td>ESD Human Body Model</td>
<td>2000V.</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_{JA})</td>
<td>Theta (J_A), Junction to air thermal impedance (0mps).</td>
<td>42</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\theta_{JB})</td>
<td>Theta (J_B), Junction to board thermal impedance (0mps).</td>
<td>2.35</td>
<td>°C/W</td>
</tr>
<tr>
<td>(\theta_{JC})</td>
<td>Theta (J_C), Junction to case thermal impedance (0mps).</td>
<td>41.8</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DDOX})</td>
<td>Power supply voltage for supporting 1.8V outputs.</td>
<td>1.71</td>
<td>1.8</td>
<td>1.89</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Power supply voltage for supporting 2.5V outputs.</td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Power supply voltage for supporting 3.3V outputs.</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DDD})</td>
<td>Power supply voltage for core logic functions.</td>
<td>1.71</td>
<td></td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DDA})</td>
<td>Analog power supply voltage. Use filtered analog power supply.</td>
<td>1.71</td>
<td></td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>(T_A)</td>
<td>Operating temperature (Grade 2), ambient.</td>
<td>-40</td>
<td></td>
<td>105</td>
<td>°C</td>
</tr>
<tr>
<td>(C_L)</td>
<td>Maximum load capacitance (3.3V LVCMOS only).</td>
<td></td>
<td>15</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>(t_{PU})</td>
<td>Power-up time for all (V_{DD})s to reach minimum specified voltage (power ramps must be monotonic).</td>
<td>0.05</td>
<td></td>
<td>5</td>
<td>ms</td>
</tr>
</tbody>
</table>
Electrical Characteristics

Table 5. Current Consumption

$V_{DDA}, V_{DDD}, V_{DDO} = 3.3V \pm 5\%, 2.5V \pm 5\%, 1.8V \pm 5\%, T_A = -40^{\circ}C$ to $+105^{\circ}C$ unless stated otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DDCORE}</td>
<td>Core Supply Current</td>
<td>100MHz on all outputs, 25MHz REFCLK (3.3V)</td>
<td>32</td>
<td>42</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100MHz on all outputs, 25MHz REFCLK (2.5V)</td>
<td>32</td>
<td>42</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100MHz on all outputs, 25MHz REFCLK (1.8V)</td>
<td>31</td>
<td>42</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DDOx}</td>
<td>Output Buffer Supply Current</td>
<td>LVPECL, 350MHz, 3.3V V_{DDOx}</td>
<td>48</td>
<td>63</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVPECL, 350MHz, 2.5V V_{DDOx}</td>
<td>41</td>
<td>54</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVDS, 350MHz, 3.3V V_{DDOx}</td>
<td>26</td>
<td>32</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVDS, 350MHz, 2.5V V_{DDOx} (same setting as 3.3V)</td>
<td>25</td>
<td>30</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVDS, 350MHz, 1.8V V_{DDOx}</td>
<td>23</td>
<td>27</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCSL, 250MHz, 3.3V V_{DDOx}</td>
<td>39</td>
<td>48</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCSL, 250MHz, 2.5V V_{DDOx}</td>
<td>37</td>
<td>46</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS, 50MHz, 3.3V, V_{DDOx}</td>
<td>23</td>
<td>27</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS, 50MHz, 2.5V, V_{DDOx}</td>
<td>20</td>
<td>24</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS, 50MHz, 1.8V, V_{DDOx}</td>
<td>18</td>
<td>21</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS, 200MHz, 3.3V V_{DDOx}</td>
<td>45</td>
<td>58</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS, 200MHz, 2.5V V_{DDOx}</td>
<td>34</td>
<td>45</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVCMOS, 200MHz, 1.8V V_{DDOx}</td>
<td>24</td>
<td>33</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{DDPD}</td>
<td>Power Down Current</td>
<td>SD asserted, I^2C programming (3.3V).</td>
<td>10</td>
<td>12</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD asserted, I^2C programming (2.5V).</td>
<td>10</td>
<td>12</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD asserted, I^2C programming (1.8V).</td>
<td>10</td>
<td>12</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

1 $I_{DDCORE} = I_{DDA} + I_{DDO}$, no loads.
2 Measured into a 5" 50Ω trace with 2pF load.
3 Single CMOS driver active.
Table 6. AC Timing Characteristics

V_{DDA}, V_{DDD}, V_{DDO0} = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, T_A = -40°C to +105°C unless stated otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{IN}</td>
<td>Input Frequency</td>
<td>Input frequency limit (crystal).</td>
<td>8</td>
<td>40</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input frequency limit (CLKIN,CLKINB).</td>
<td>1</td>
<td>350</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input frequency limit (single-ended over XIN).</td>
<td>1</td>
<td>200</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>f_{OUT}</td>
<td>Output Frequency</td>
<td>Single-ended clock output limit (LVCMOS).</td>
<td>1</td>
<td>200</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Differential clock output limit (LVPECL/LVDS/HCSL).</td>
<td>1</td>
<td>350</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>t_{DC}</td>
<td>Output Duty Cycle</td>
<td>Measured at V_D/2, all outputs except reference output, V_{DDOX} = 2.5V or 3.3V.</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measured at V_D/2, all outputs except reference output, V_{DDOX} = 1.8V.</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measured at V_D/2, reference output OUT0 (5MHz–150.1MHz) with 50% duty cycle input.</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measured at V_D/2, reference output OUT0 (150.1MHz–200MHz) with 50% duty cycle input.</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>%</td>
</tr>
<tr>
<td>t_{SKEW}</td>
<td>Output Skew</td>
<td>Skew between the same frequencies, with outputs using the same driver format and phase delay set to 0ns.</td>
<td></td>
<td>75</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{STARTUP}$</td>
<td>Startup Time</td>
<td>Measured after all V_Ds have risen above 90% of their target value. 6</td>
<td>30</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLL lock time from shutdown mode.</td>
<td></td>
<td>3</td>
<td>4</td>
<td>ms</td>
</tr>
</tbody>
</table>

1 Practical lower frequency is determined by loop filter settings.

2 A slew rate of 2.75V/ns or greater should be selected for output frequencies of 100MHz or higher.

3 Duty cycle is only guaranteed at maximum slew rate settings.

4 Actual PLL lock time depends on the loop configuration.

5 Includes loading the configuration bits from EPROM to PLL registers. It does not include EPROM programming/write time.

6 Power-up with temperature calibration enabled; contact IDT if shorter lock-time is required in system.
Table 7. Input Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>IN</sub></td>
<td>Input Capacitance</td>
<td>CLKIN,CLKINB,CLKSEL,SD/OE,SEL1/SDA,SELO/SCL.</td>
<td></td>
<td>3</td>
<td>7</td>
<td>pF</td>
</tr>
<tr>
<td>R<sub>PD</sub></td>
<td>Pull-down Resistor</td>
<td>CLKSEL, SD/OE, SEL1/SDA, SEL0/SCL, CLKIN, CLKINB, OUT0_SEL_I2CB.</td>
<td></td>
<td>100</td>
<td>350</td>
<td>kΩ</td>
</tr>
<tr>
<td>V<sub>IH</sub></td>
<td>Input High Voltage</td>
<td>CLKSEL, SD/OE.</td>
<td>0.7 x V<sub>D</sub></td>
<td>V<sub>D</sub> + 0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>IL</sub></td>
<td>Input Low Voltage</td>
<td>CLKSEL, SD/OE. V<sub>DDA</sub>, V<sub>D</sub>, V<sub>DDO</sub> = 3.3V and 2.5V.</td>
<td>GND - 0.3</td>
<td>0.3 x V<sub>D</sub></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>IH</sub></td>
<td>Input High Voltage</td>
<td>OUT0_SEL_I2CB.</td>
<td>0.7 x V<sub>D</sub></td>
<td>V<sub>DDO</sub> + 0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>IL</sub></td>
<td>Input Low Voltage</td>
<td>OUT0_SEL_I2CB.</td>
<td>GND - 0.3</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>T<sub>R/T</sub>F</td>
<td>Input Rise/Fall Time</td>
<td>CLKSEL, SD/OE, SEL1/SDA, SEL0/SCL.</td>
<td></td>
<td>300</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. CLKIN Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>SWING</sub></td>
<td>Input Amplitude – CLKIN, CLKINB</td>
<td>Peak to peak value, single-ended.</td>
<td>200</td>
<td>1200</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>dv/dt</td>
<td>Input Slew Rate – CLKIN, CLKINB</td>
<td>Measured differentially.</td>
<td>0.4</td>
<td>8</td>
<td>V/ns</td>
<td></td>
</tr>
<tr>
<td>I<sub>IL</sub></td>
<td>Input Leakage Low Current</td>
<td>V<sub>IN</sub> = GND.</td>
<td>-5</td>
<td>5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I<sub>IH</sub></td>
<td>Input Leakage High Current</td>
<td>V<sub>IN</sub> = 1.7V.</td>
<td>30</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC<sub>IN</sub></td>
<td>Input Duty Cycle</td>
<td>Measurement from differential waveform.</td>
<td>45</td>
<td>55</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>
Table 9. Electrical Characteristics – CMOS Outputs

\(V_{DDA}, V_{DDD}, V_{DDO0} = 3.3V \pm 5\%, 2.5V \pm 5\%, 1.8V \pm 5\%, T_A = -40^\circ C \text{ to } +105^\circ C \) unless stated otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>Output High Voltage</td>
<td>(I_{OH} = -15mA (3.3V), -12mA (2.5V), -8mA (1.8V). V_{DDA}, V_{DDD}, V_{DDO0} = 3.3V \text{ and } 2.5V. V_{DDA}, V_{DDD}, V_{DDO0} = 1.8V.)</td>
<td>(0.7 \times V_{DDO})</td>
<td>(0.5 \times V_{DDO})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output Low Voltage</td>
<td>(I_{OL} = 15mA (3.3V), 12mA (2.5V), 8mA (1.8V).)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{OUT})</td>
<td>Output Driver Impedance</td>
<td>CMOS output driver.</td>
<td>17</td>
<td></td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(T_{SR})</td>
<td>Slew Rate, SLEW[1:0] = 00</td>
<td>Single-ended 3.3V LVCMOS output clock rise and fall time, 20% to 80% of (V_{DDO}) (output load = 5pF) (V_{DDOX} = 3.3V.)</td>
<td>1.0</td>
<td>2.2</td>
<td></td>
<td>(V/\text{ns})</td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 01</td>
<td>Single-ended 2.5V LVCMOS output clock rise and fall time, 20% to 80% of (V_{DDO}) (output load = 5pF) (V_{DDOX} = 2.5V.)</td>
<td>1.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 10</td>
<td></td>
<td>1.3</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 11</td>
<td></td>
<td>1.7</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 00</td>
<td></td>
<td>0.6</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 01</td>
<td>Single-ended 1.8V LVCMOS output clock rise and fall time, 20% to 80% of (V_{DDO}) (output load = 5pF) (V_{DD} = 1.8V.)</td>
<td>0.4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 10</td>
<td></td>
<td>0.6</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 11</td>
<td></td>
<td>1.0</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 00</td>
<td></td>
<td>0.3</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 01</td>
<td></td>
<td>0.4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 10</td>
<td></td>
<td>0.6</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slew Rate, SLEW[1:0] = 11</td>
<td></td>
<td>0.8</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{OZDD})</td>
<td>Output Leakage Current (OUT1–4)</td>
<td>Tri-state outputs.</td>
<td>5</td>
<td></td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td></td>
<td>Output Leakage Current (OUT0)</td>
<td>Tri-state outputs.</td>
<td>30</td>
<td></td>
<td></td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>

Table 10. Electrical Characteristics – LVDS Outputs

\(V_{DDA}, V_{DDD}, V_{DDO0} = 3.3V \pm 5\%, 2.5V \pm 5\%, 1.8V \pm 5\%, T_A = -40^\circ C \text{ to } +105^\circ C \) unless stated otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OT}(+))</td>
<td>Differential Output Voltage for the TRUE Binary State</td>
<td>247</td>
<td>454</td>
<td></td>
<td>(mV)</td>
</tr>
<tr>
<td>(V_{OT}(-))</td>
<td>Differential Output Voltage for the FALSE Binary State</td>
<td>-454</td>
<td>-247</td>
<td></td>
<td>(mV)</td>
</tr>
<tr>
<td>(\Delta V_{OT})</td>
<td>Change in (V_{OT}) between Complimentary Output States</td>
<td>50</td>
<td></td>
<td></td>
<td>(mV)</td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Output Common Mode Voltage (Offset Voltage) at 3.3 V ±5%, 2.5V ±5%</td>
<td>1.125</td>
<td>1.25</td>
<td>1.375</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td>Output Common Mode Voltage (Offset Voltage) at 1.8V ±5%</td>
<td>0.8</td>
<td>0.875</td>
<td>0.96</td>
<td>(V)</td>
</tr>
<tr>
<td>(\Delta V_{OS})</td>
<td>Change in (V_{OS}) between Complimentary Output States</td>
<td>50</td>
<td></td>
<td></td>
<td>(mV)</td>
</tr>
<tr>
<td>(I_{OS})</td>
<td>Outputs Short Circuit Current, (V_{OUT+} \text{ or } V_{OUT:-} = 0V \text{ or } V_{DDO})</td>
<td>9</td>
<td>24</td>
<td></td>
<td>(mA)</td>
</tr>
<tr>
<td>(I_{OSD})</td>
<td>Differential Outputs Short Circuit Current, (V_{OUT+} = V_{OUT} -)</td>
<td>6</td>
<td>12</td>
<td></td>
<td>(mA)</td>
</tr>
<tr>
<td>(T_R)</td>
<td>LVDS rise time 20%–80%</td>
<td>300</td>
<td></td>
<td></td>
<td>(ps)</td>
</tr>
<tr>
<td>(T_F)</td>
<td>LVDS fall time 80%–20%</td>
<td>300</td>
<td></td>
<td></td>
<td>(ps)</td>
</tr>
</tbody>
</table>
Table 11. Electrical Characteristics – LVPECL Outputs

\[V_{DDA}, V_{DDD}, V_{DDOO} = 3.3V \pm 5\%, 2.5V \pm 5\%, T_A = -40^\circ C \text{ to } +105^\circ C \] unless stated otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>Output Voltage High, Terminated through 50Ω tied to (V_{DD} - 2V)</td>
<td>(V_{DDO} - 1.19)</td>
<td>(V_{DDO} - 0.69)</td>
<td>(V_{DDO})</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output Voltage Low, Terminated through 50Ω tied to (V_{DD} - 2V)</td>
<td>(V_{DDO} - 1.94)</td>
<td>(V_{DDO} - 1.4)</td>
<td>(V_{DDO})</td>
<td>(V)</td>
</tr>
<tr>
<td>(V_{SWING})</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td>0.55</td>
<td>0.993</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>(T_R)</td>
<td>LVPECL rise time 20%–80%</td>
<td>400</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>(T_F)</td>
<td>LVPECL fall time 80%–20%</td>
<td>400</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
</tbody>
</table>

Table 12. Electrical Characteristics – HCSL Outputs

\[V_{DDA}, V_{DDD}, V_{DDOO} = 3.3V \pm 5\%, 2.5V \pm 5\%, T_A = -40^\circ C \text{ to } +105^\circ C \] unless stated otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dV/dt)</td>
<td>Slew Rate</td>
<td>Scope averaging on 2,3.</td>
<td>1</td>
<td>4</td>
<td>(V/\text{ns})</td>
<td></td>
</tr>
<tr>
<td>(\Delta dV/dt)</td>
<td>Slew Rate Matching</td>
<td>Scope averaging on 3.</td>
<td>20</td>
<td></td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td>(V_{MAX})</td>
<td>Maximum Voltage</td>
<td>Measurement on single-ended signal using absolute value (scope averaging off).</td>
<td>1150</td>
<td></td>
<td>(\text{mV})</td>
<td></td>
</tr>
<tr>
<td>(V_{MIN})</td>
<td>Minimum Voltage</td>
<td></td>
<td>-300</td>
<td></td>
<td>(\text{mV})</td>
<td></td>
</tr>
<tr>
<td>(V_{SWING})</td>
<td>Voltage Swing</td>
<td>Scope averaging off 2,6.</td>
<td>300</td>
<td></td>
<td>(\text{mV})</td>
<td></td>
</tr>
<tr>
<td>(V_{CROSS})</td>
<td>Crossing Voltage Value</td>
<td>Scope averaging off 4,6.</td>
<td>250</td>
<td>550</td>
<td>(\text{mV})</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{CROSS})</td>
<td>Crossing Voltage Variation</td>
<td>Scope averaging off 5.</td>
<td>140</td>
<td></td>
<td>(\text{mV})</td>
<td></td>
</tr>
</tbody>
</table>

1 Guaranteed by design and characterization. Not 100% tested in production.
2 Measured from differential waveform.
3 Slew rate is measured through the \(V_{SWING} \) voltage range centered around differential 0V. This results in a ±150mV window around differential 0V.
4 \(V_{CROSS} \) is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).
5 The total variation of all \(V_{CROSS} \) measurements in any particular system. Note that this is a subset of \(V_{CROSS} \) min/max (\(V_{CROSS} \) absolute) allowed. The intent is to limit \(V_{CROSS} \) induced modulation by setting \(\Delta V_{CROSS} \) to be smaller than \(V_{CROSS} \) absolute.
6 Measured from single-ended waveform.

Table 13. Spread Spectrum Generation Specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{SSOUT})</td>
<td>Spread Frequency</td>
<td>Output frequency range for spread spectrum.</td>
<td>5</td>
<td>300</td>
<td>(MHz)</td>
<td></td>
</tr>
<tr>
<td>(f_{MOD})</td>
<td>Mod Frequency</td>
<td>Modulation frequency.</td>
<td>30 to 63</td>
<td></td>
<td>(kHz)</td>
<td></td>
</tr>
<tr>
<td>(f_{SPREAD})</td>
<td>Spread Value</td>
<td>Amount of spread value (programmable)–center spread.</td>
<td>±0.25% to ±2.5%</td>
<td></td>
<td>%(f_{OUT})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amount of spread value (programmable)–down spread.</td>
<td>-0.5% to -5%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I²C Bus Characteristics

Table 14. I²C Bus DC Characteristics

3.3V ±5% only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIH</td>
<td>Input High Level</td>
<td>For SEL1/SDA pin and SEL0/SCL pin.</td>
<td>0.7 x VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIL</td>
<td>Input Low Level</td>
<td>For SEL1/SDA pin and SEL0/SCL pin.</td>
<td>0.3 x VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHYS</td>
<td>Hysteresis of Inputs</td>
<td></td>
<td>0.05 x VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIN</td>
<td>Input Leakage Current</td>
<td></td>
<td></td>
<td>36</td>
<td>μA</td>
</tr>
<tr>
<td>VOL</td>
<td>Output Low Voltage</td>
<td>IOL = 3mA.</td>
<td></td>
<td></td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 15. I²C Bus AC Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSCLK</td>
<td>Serial Clock Frequency (SCL)</td>
<td></td>
<td>10</td>
<td></td>
<td>400 kHz</td>
</tr>
<tr>
<td>tBUF</td>
<td>Bus Free Time between Stop and Start</td>
<td></td>
<td>1.3</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>tSU:START</td>
<td>Setup Time, Start</td>
<td></td>
<td>0.6</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>tHD:START</td>
<td>Hold Time, Start</td>
<td></td>
<td>0.6</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>tSU:DATA</td>
<td>Setup Time, Data Input (SDA)</td>
<td></td>
<td>0.1</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>tHD:DATA</td>
<td>Hold Time, Data Input (SDA)</td>
<td></td>
<td>0</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>tOVD</td>
<td>Output Data Valid from Clock</td>
<td></td>
<td>0.9</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>CB</td>
<td>Capacitive Load for Each Bus Line</td>
<td></td>
<td>400</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>tR</td>
<td>Rise Time, Data and Clock (SDA, SCL)</td>
<td></td>
<td>20 + 0.1 x CB</td>
<td></td>
<td>300 ns</td>
</tr>
<tr>
<td>tF</td>
<td>Fall Time, Data and Clock (SDA, SCL)</td>
<td></td>
<td>20 + 0.1 x CB</td>
<td></td>
<td>300 ns</td>
</tr>
<tr>
<td>tHIGH</td>
<td>High Time, Clock (SCL)</td>
<td></td>
<td>0.6</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>tLOW</td>
<td>Low Time, Clock (SCL)</td>
<td></td>
<td>1.3</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>tSU:STOP</td>
<td>Setup Time, Stop</td>
<td></td>
<td>0.6</td>
<td></td>
<td>μs</td>
</tr>
</tbody>
</table>

1 A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIH(MIN) of the SCL signal) to bridge the undefined region of the falling edge of SCL.

2 I²C inputs are 5V tolerant.
Test Loads

Figure 2. LVCMOS Test Load

Device

33 Ohm

Zo = 50 Ohm

5pF

Test Point

Figure 3. HCSL Test Load

Device

33 Ohm

33 Ohm

50 Ohm

2pF

Test Points

Differential
Zo = 100 Ohm

Figure 4. LVDS Test Load

Device

2pF

2pF

100 Ohm

Test Points

Differential
Zo = 100 Ohm

Figure 5. LVPECL Test Load

Device

2pF

2pF

50 Ohm

50 Ohm

R = 50 Ohm for 3.3V LVPECL
R = 18 Ohm for 2.5V LVPECL

50 Ohm

Test Points

Differential
Zo = 100 Ohm
Jitter Performance Characteristics

Figure 6. Typical Phase Jitter Plot at 156.25MHz

Note: Measured with OUT2 = 156.25MHz on, 39.625MHz input.

Table 16. Jitter Performance ¹,²

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_CY-CY</td>
<td>Cycle to Cycle Jitter</td>
<td>LVCMOS 3.3V ±5%, -40°C–90°C.</td>
<td>5</td>
<td>30</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All differential outputs 3.3V ±5%, -40°C–90°C.</td>
<td>25</td>
<td>35</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>J_PK-PK</td>
<td>Period Jitter</td>
<td>LVCMOS 3.3V ±5%, -40°C–90°C.</td>
<td>28</td>
<td>40</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All differential outputs 3.3V ±5%, -40°C–90°C.</td>
<td>4</td>
<td>30</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>J_RMS</td>
<td>RMS Phase Jitter (12kHz–20MHz)</td>
<td>LVCMOS 3.3V ±5%, -40°C–90°C.</td>
<td>0.3</td>
<td></td>
<td>0.5</td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All differential outputs 3.3V ±5%, -40°C–90°C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Measured with 25MHz crystal input.
² Configured with OUT0 = 25MHz–LVCMOS; OUT1 = 100MHz–HCSL; OUT2 = 125MHz–LVDS; OUT3 = 156.25MHz–LVPECL.
PCI Express Jitter Performance and Specifications

Table 17. PCI Express Jitter Performance 1,2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Industry Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIe Jitter (Common Clock–CC)</td>
<td>$t_{jphPCIeG1-CC}$</td>
<td>PCIe Gen1 3</td>
<td>28.7</td>
<td></td>
<td>86</td>
<td></td>
<td>ps (p-p)</td>
</tr>
<tr>
<td></td>
<td>$t_{jphPCIeG2-CC}$</td>
<td>PCIe Gen2 Low Band 10kHz < f < 1.5MHz (PLL BW of 5–16MHz or 8–16MHz, CDR = 5MHz).</td>
<td>0.27</td>
<td></td>
<td>3</td>
<td></td>
<td>ps (rms)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCIe Gen High Band 1.5MHz < f < Nyquist (50MHz) (PLL BW of 5–16MHz or 8–16MHz, CDR = 5MHz).</td>
<td>2.56</td>
<td></td>
<td>3.1</td>
<td></td>
<td>ps (rms)</td>
</tr>
<tr>
<td></td>
<td>$t_{jphPCIeG3-CC}$</td>
<td>PCIe Gen3 (PLL BW of 2–4MHz or 2–5MHz, CDR = 10MHz).</td>
<td>0.8</td>
<td></td>
<td>1</td>
<td></td>
<td>ps (rms)</td>
</tr>
<tr>
<td></td>
<td>$t_{jphPCIeG4-CC}$</td>
<td>PCIe Gen4 (PLL BW of 2–4MHz or 2–5MHz, CDR = 10MHz).</td>
<td>0.26</td>
<td></td>
<td>0.5</td>
<td></td>
<td>ps (rms)</td>
</tr>
<tr>
<td>PCIe Jitter (IR) 4,5</td>
<td>$t_{jphPCIeG2-SRIS}$</td>
<td>PCIe Gen2 (SSC off) (PLL BW of 16MHz, CDR = 5MHz).</td>
<td>0.93</td>
<td></td>
<td>2</td>
<td></td>
<td>ps (rms)</td>
</tr>
<tr>
<td></td>
<td>$t_{jphPCIeG3-SRIS}$</td>
<td>PCIe Gen3 (SSC off) (PLL BW of 2–4MHz or 2–5MHz, CDR = 10MHz).</td>
<td>0.32</td>
<td></td>
<td>0.7</td>
<td></td>
<td>ps (rms)</td>
</tr>
</tbody>
</table>

1 Guaranteed by design and characterization, not 100% tested in production.

2 Based on PCIe Base Specification Rev 4.0 version 1.0. See http://www.pcisig.com for latest specifications.

3 Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk at 1M cycles for a BER of 1^{-12}.

4 According to the PCIe Base Specification Rev4.0 version 1.0, the jitter transfer functions and corresponding jitter limits are not defined for the IR clock architecture. Widely accepted industry limits using widely accepted industry filters are used to populate this table. There are no accepted filters or limits for IR clock architectures at PCIe Gen1 or Gen4 data rates.

5 IR (Independent Reference) is the new name for Separate Reference Independent Spread (SRIS) and Separate Reference no Spread (SRNS) PCIe clock architectures.
Features and Functional Blocks

Device Startup and Power-On-Reset

The device has an internal power-up reset (POR) circuit. All V_DD must be connected to desired supply voltage to trigger POR.

User can define specific default configurations through internal One-Time-Programmable (OTP) memory. Either customer or factory can program the default configuration. Please refer to VersaClock 6E Family Register Descriptions and Programming Guide for details or contact IDT if a specific factory-programmed default configuration is required.

Device will identify which of the 2 modes to operate in by the state of OUT0_SEL_I2CB pin at POR. Both of the modes default configurations can be programmed as stated above.

1. **Software Mode (I^2C):** OUT0_SEL_I2CB is low at POR.
 - I^2C interface will be open to users for in-system programming, overriding device default configurations at any time.

2. **Hardware Select Mode:** OUT0_SEL_I2CB is high at POR.
 - Device has been programmed to load OTP at power-up (REG0[7] = 1). The device will load internal registers according to Table 18.
 - Internal OTP memory can support up to 4 configurations, selectable by SEL0/SEL1 pins.
 - At POR, logic levels at SEL0 and SEL1 pins must be settled, resulting the selected configuration to be loaded at power up.
 - After the first 10ms of operation, the levels of the SELx pins can be changed, either to low or to the same level as V_DDD/V_DDA. The SELx pins must be driven with a digital signal of < 300ns rise/fall time and only a single pin can be changed at a time. After a pin level change, the device must not be interrupted for at least 1ms so that the new values have time to load and take effect.

Reference Clock and Selection

The device supports up to two clock inputs.
- Crystal input, can be driven by a single-ended clock.
- Clock input (CLKIN, CLKINB), a fully differential input that only accepts a reference clock. A single-ended clock can also drive it on CLKIN.

Manual Switchover

The CLKSEL pin selects the input clock between either XTAL/REF or (CLKIN, CLKINB). CLKSEL polarity can be changed by I^2C programming (Byte 0x13[1]) as shown in the table below.

0 = XIN/REF, XOUT (default); 1 = CLKIN, CLKINB.

Table 18. Power-up Behavior

<table>
<thead>
<tr>
<th>OUT0_SEL_I2CB at POR</th>
<th>SEL1</th>
<th>SEL0</th>
<th>I^2C Access</th>
<th>REG0:7</th>
<th>Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>No</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>No</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td>1</td>
<td>I^2C defaults</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

When SM[1:0] is “0x”, the redundant inputs are in manual switchover mode. In this mode, CLKSEL pin is used to switch between the primary and secondary clock sources. The PRIMSRC bit determines the primary and secondary clock source setting. During the switchover, no glitches will occur at the output of the device, although there may be frequency and phase drift, depending on the exact phase and frequency relationship between the primary and secondary clocks.
Internal Crystal Oscillator (XIN/REF)

Choosing Crystals

A crystal manufacturer will calibrate its crystals to the nominal frequency with a certain load capacitance value. When the oscillator load capacitance matches the crystal load capacitance, the oscillation frequency will be accurate. When the oscillator load capacitance is lower than the crystal load capacitance, the oscillation frequency will be higher than nominal and vice versa so for an accurate oscillation frequency you need to make sure to match the oscillator load capacitance with the crystal load capacitance.

Tuning the Crystal Load Capacitor

Cs1 and Cs2 are stray capacitances at each crystal pin and typical values are between 1pF and 3pF.

Ce1 and Ce2 are additional external capacitors, increasing the load capacitance reduces the oscillator gain so please consult the factory when adding Ce1 and/or Ce2 to avoid crystal startup issues. Ci1 and Ci2 are integrated programmable load capacitors, one at XIN and one at XOUT. Ci1 and Ci2.

The value of each capacitor is composed of a fixed capacitance amount plus a variable capacitance amount set with the XTAL[5:0] register.

Table 20. XTAL[5:0] Tuning Capacitor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bits</th>
<th>Step (pF)</th>
<th>Minimum (pF)</th>
<th>Maximum (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTAL</td>
<td>6</td>
<td>0.5</td>
<td>9</td>
<td>25</td>
</tr>
</tbody>
</table>

You can write the following equation for this capacitance:

\[Ci = 9\text{pF} + 0.5\text{pF} \times \text{XTAL}[5:0] \]

\[C_{\text{XIN}} = Ci_1 + Cs_1 + Ce_1 \]

\[C_{\text{XOUT}} = Ci_2 + Cs_2 + Ce_2 \]

The final load capacitance of the crystal:

\[C_L = C_{\text{XIN}} \times C_{\text{XOUT}} / (C_{\text{XIN}} + C_{\text{XOUT}}) \]

It is recommended to set the same value for capacitors the same at each crystal pin, meaning:

\[C_{\text{XIN}} = C_{\text{XOUT}} \]

Example 1: The crystal load capacitance is specified as 8pF and the stray capacitance at each crystal pin is Cs = 1.5pF. Assuming equal capacitance value at XIN and XOUT, the equation is as follows:

\[8\text{pF} = (9\text{pF} + 0.5\text{pF} \times \text{XTAL}[5:0] + 1.5\text{pF}) / 2 \]

So, XTAL[5:0] = 11 (decimal).

Example 2: The crystal load capacitance is specified as 12pF and the stray capacitance Cs is unknown. Footprints for external capacitors Ce are added and a worst case Cs of 5pF is used. For now we use Cs + Ce = 5pF and the right value for Ce can be determined later to make 5pF together with Cs.

\[12\text{pF} = (9\text{pF} + 0.5\text{pF} \times \text{XTAL}[5:0] + 5\text{pF}) / 2 \]

So, XTAL[5:0] = 20 (decimal).

Table 21. Recommended Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td></td>
<td></td>
<td></td>
<td>Fundamental</td>
</tr>
<tr>
<td>Frequency</td>
<td>8</td>
<td>25</td>
<td>40</td>
<td>MHz</td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td>10</td>
<td>100</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Shunt Capacitance</td>
<td></td>
<td></td>
<td>7</td>
<td>pF</td>
</tr>
<tr>
<td>Load Capacitance (C_L) at <= 25MHz</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>pF</td>
</tr>
<tr>
<td>Load Capacitance (C_L) > 25MHz to 40MHz</td>
<td>6</td>
<td>8</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Maximum Crystal Drive Level</td>
<td></td>
<td></td>
<td>100</td>
<td>μW</td>
</tr>
</tbody>
</table>
Programmable Loop Filter

Table 22. Loop Filter
The device PLL loop bandwidth range depends on the input reference frequency (Fref).

<table>
<thead>
<tr>
<th>Input Reference Frequency (MHz)</th>
<th>Loop Bandwidth Minimum (kHz)</th>
<th>Loop Bandwidth Maximum (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>126</td>
</tr>
<tr>
<td>350</td>
<td>300</td>
<td>1000</td>
</tr>
</tbody>
</table>

Fractional Output Dividers (FOD)
The device has 4 fractional output dividers (FOD). Each of the FODs are comprised of a 12-bit integer counter, and a 24-bit fractional counter. The output divider can operate in integer divide only mode for improved performance, or utilize the fractional counters to generate a clock frequency accurate to 50ppb.

FOD has the following features:

Individual Spread Spectrum Modulation
The output clock frequencies can be modulated to spread energy across a broader range of frequencies, lowering system EMI.

Each divider has individual spread ability. Spread modulation independent of output frequency, a triangle wave modulation between 30kHz and 63kHz.

Spread spectrum can be applied to any output clock, any clock frequency, and any spread amount from ±0.25% to ±2.5% center-spread and -0.5% to -5% down-spread.

Bypass Mode
Bypass mode (divide by 1) to allow the output to behave as a buffered copy from the input or another FOD.

Dividers Alignment
Each output divider block has a synchronizing pulse to provide startup alignment between outputs dividers. This allows alignment of outputs for low skew performance.

When the device is at hardware select mode, outputs will be automatically aligned at POR. The same synchronization reset is also triggered when switching between configurations with the SEL0/1 pins. This ensures that the outputs remain aligned in every configuration.

When using software mode I^2C to reprogram an output divider during operation, alignment can be lost. Alignment can be restored by manually triggering the reset through I^2C.

The outputs are aligned on the falling edges of each output by default. Rising edge alignment can also be achieved by utilizing the programmable skew feature to delay the faster clock by 180 degrees. The programmable skew feature also allows for fine tuning of the alignment.

Programmable Skew
The device has the ability to skew outputs by quadrature values. The skew on each output can be adjusted from 0 to 360 degrees. Skew is adjusted in units equal to 1/32 of the VCO period. So, for 100MHz output and a 2500MHz VCO, you can select how many 12.5ps units you want added to your skew (resulting in units of 0.45 degrees). For example, 0, 0.45, 0.90, 1.35, 1.80, and so on. The granularity of the skew adjustment is always dependent on the VCO period and the output period.

Output Drivers
The device output drivers support the following features individually:
- 2.5V or 3.3V voltage level for HCSL/LVPECL operation
- 1.8V, 2.5V or 3.3V voltage levels for CMOS/LVDS operation
- CMOS supports 4 operating modes:
 - CMOSD: OUTx and OUTxB 180 degrees out of phase
 - CMOSX2: OUTx and OUTxB phase-aligned
 - CMOS1: only OUTx pin is on
 - CMOS2: only OUTxB pin is on

When a given output is configured to at CMOSD or CMOSX2, then all previously described configuration and control apply equally to both pins.
- Independent output enable/disabled by register bits. When disabled, an output can be either in a logic 1 state or Hi-Z.

The following options are used to disable outputs:
1. Output turned off by I^2C.
2. Output turned off by SD/OE pin.
3. Output unused, which means is turned off regardless of OE pin status.
SD/OE Pin Function
SD/OE pin can be programmed as following functions:
1. OE output enable (low active).
2. OE output enable (high active).
3. Global shutdown (low active).
4. Global shutdown (high active).

Output behavior when disabled is also programmable. User will have the option to choose output driver behavior when it's off:
1. OUTx pin high, OUTxB pin low. (Controlled by SD/OE pin).
2. OUTx/OUTxB Hi-Z (Controlled by SD/OE pin).
3. OUTx pin high, OUTxB pin low. (Configured through I^2C).
4. OUTx/OUTxB Hi-Z (Configured by I^2C).

The user has the option to disable the output with either I^2C or SD/OE pin. Refer to VersaClock 6E Family Register Descriptions and Programming Guide for details.

I^2C Operation
The device acts as a slave device on the I^2C bus using one of the two I^2C addresses (0xD0 or 0xD4) to allow multiple devices to be used in the system. The interface accepts byte-oriented block write and block read operations.

Address bytes (2 bytes) specify the register address of the byte position of the first register to write or read.

Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first).

Read and write block transfers can be stopped after any complete byte transfer. During a write operation, data will not be moved into the registers until the STOP bit is received, at which point, all data received in the block write will be written simultaneously.

For full electrical I^2C compliance, use external pull-up resistors for SDATA and SCLK.

Figure 8. I^2C R/W Sequence

Current Read

<table>
<thead>
<tr>
<th>S</th>
<th>Dev Addr + R</th>
<th>A</th>
<th>Data 0</th>
<th>A</th>
<th>Data 1</th>
<th>A</th>
<th>Data n</th>
<th>Abar</th>
<th>P</th>
</tr>
</thead>
</table>

Sequential Read

<table>
<thead>
<tr>
<th>S</th>
<th>Dev Addr + W</th>
<th>A</th>
<th>Reg start Addr</th>
<th>A</th>
<th>Sr</th>
<th>Dev Addr + R</th>
<th>A</th>
<th>Data 0</th>
<th>A</th>
<th>Data 1</th>
<th>A</th>
<th>Data n</th>
<th>Abar</th>
<th>P</th>
</tr>
</thead>
</table>

Sequential Write

| S | Dev Addr + W | A | Reg start Addr | A | Data 0 | A | Data 1 | A | Data n | A | P |

from master to slave
from slave to master

S = start
Sr = repeated start
A = acknowledge
Abar = none acknowledge
P = stop
Typical Application Circuits

Figure 9. Application Circuit Example

Layout notes:
1. Separate Xout and Xin Traces by 3 x the trace width
2. Do not share crystal load capacitor ground via with other components.
3. Route power from bead through bulk capacitor pad then through 0.1uF capacitor pad then to clock chip Vdd pad.
4. Do not share ground vias. One ground pin one ground via.

NOTE: FERRITE BEAD FB1 = SIGNAL_BEAD

Layout notes:
1. Separate Xout and Xin Traces by 3 x the trace width
2. Do not share crystal load capacitor ground via with other components.
3. Route power from bead through bulk capacitor pad then through 0.1uF capacitor pad then to clock chip Vdd pad.
4. Do not share ground vias. One ground pin one ground via.

Integrated Device Technology
San Jose, CA

Manufacture Part Number

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Pkg Sz</th>
<th>DC res. Current (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair-Rite</td>
<td>250402121Y0</td>
<td>120 0402 0.5 200</td>
</tr>
<tr>
<td>muRata</td>
<td>BLM1SAG221SN1</td>
<td>120 0402 0.35 300</td>
</tr>
<tr>
<td>TDK</td>
<td>MMICL055241A</td>
<td>240 0402 0.18 200</td>
</tr>
<tr>
<td>TECSTAR</td>
<td>TB4532153121</td>
<td>120 0402 0.3 300</td>
</tr>
</tbody>
</table>

Revision history:
0.1 11/30/16 first publication

<table>
<thead>
<tr>
<th>Size</th>
<th>Document Number</th>
<th>Rev</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5P49V6965_SCH</td>
<td>0.1</td>
<td>Wednesday, November 30, 2016</td>
</tr>
</tbody>
</table>

Table of Manufacture Part Numbers:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Size</th>
<th>DC Resistance</th>
<th>Current (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair-Rite</td>
<td>250402121Y0</td>
<td>120 0402</td>
<td>0.5 200</td>
</tr>
<tr>
<td>muRata</td>
<td>BLM1SAG221SN1</td>
<td>120 0402</td>
<td>0.35 300</td>
</tr>
<tr>
<td>TDK</td>
<td>MMICL055241A</td>
<td>240 0402</td>
<td>0.18 200</td>
</tr>
<tr>
<td>TECSTAR</td>
<td>TB4532153121</td>
<td>120 0402</td>
<td>0.3 300</td>
</tr>
</tbody>
</table>

Table of Revision History:

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>11/30/16</td>
<td>First publication</td>
</tr>
</tbody>
</table>

Table of Patent Information:

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Patent Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>5P49V6965_SCH</td>
<td>San Jose, CA</td>
</tr>
</tbody>
</table>

Table of Reference Information:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>11/30/16</td>
<td>First publication</td>
</tr>
</tbody>
</table>
Input – Driving the XIN/REF or CLKIN

Driving XIN/REF with a CMOS Driver

In some cases, it is encouraged to have XIN/REF driven by a clock input for reasons like better SNR, multiple input select with device CLKIN, etc. The XIN/REF pin is able to take an input when its amplitude is between 500mV and 1.2V and the slew rate less than 0.2V/ns.

The XIN/REF input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XOUT pin can be left floating.

Figure 10. Overdriving XIN with a CMOS Driver

Table 23. Nominal Voltage Divider Values for Overdriving XIN with Single-ended Driver

<table>
<thead>
<tr>
<th>LVCMOS Driver V_{DD}</th>
<th>$R_{o} + R_{s}$</th>
<th>R_{1}</th>
<th>R_{2}</th>
<th>V_{XIN} (peak)</th>
<th>$R_{o} + R_{s} + R_{1} + R_{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>50.0</td>
<td>130</td>
<td>75</td>
<td>0.97</td>
<td>255</td>
</tr>
<tr>
<td>2.5</td>
<td>50.0</td>
<td>100</td>
<td>100</td>
<td>1.00</td>
<td>250</td>
</tr>
<tr>
<td>1.8</td>
<td>50.0</td>
<td>62</td>
<td>130</td>
<td>0.97</td>
<td>242</td>
</tr>
</tbody>
</table>

Driving XIN with an LVPECL Driver

Figure 11 shows an example of the interface diagram for a +3.3V LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XIN/REF input. It is recommended that all components in the schematics be placed in the layout; though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input. If the driver is 2.5V LVPECL, the only change necessary is to use the appropriate value of R_{3}.

Figure 11. Overdriving XIN with an LVPECL Driver
Wiring the CLKIN Pin to Accept Single-ended Inputs

CLKIN cannot take a signal larger than 1.2V pk-pk due to the 1.2V regulated input inside. However, it is internally AC coupled so it is able to accept both LVDS and LVPECL input signals.

Occasionally, it is desired to have CLKIN to take CMOS levels. Below is an example showing how this can be achieved.

This configuration has three properties:
1. Total output impedance of Ro and Rs matches the 50Ω transmission line impedance.
2. Vrx voltage is generated at the CLKIN which maintains the LVCMOS driver voltage level across the transmission line for best S/N.
3. R1–R2 voltage divider values ensure that Vrx p-p at CLKIN is less than the maximum value of 1.2V.

Figure 12. Recommended Schematic for Driving CLKIN with LVCMOS Driver

Table 24 shows resistor values that ensure the maximum drive level for the CLKIN port is not exceeded for all combinations of 5% tolerance on the driver VDD, VDDO0 and 5% resistor tolerances. The values of the resistors can be adjusted to reduce the loading for slower and weaker LVCMOS driver by increasing the impedance of the R1–R2 divider. To better assist this assessment, the total load (Ro + Rs + R1 + R2) on the driver is included in the table.

Table 24. Nominal Voltage Divider Values for Overdriving CLKIN with Single-ended Driver

<table>
<thead>
<tr>
<th>LVCMOS Diver VDD</th>
<th>Ro + Rs</th>
<th>R1</th>
<th>R2</th>
<th>Vrx (peak)</th>
<th>Ro + Rs + R1 + R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>50.0</td>
<td>130</td>
<td>75</td>
<td>0.97</td>
<td>255</td>
</tr>
<tr>
<td>2.5</td>
<td>50.0</td>
<td>100</td>
<td>100</td>
<td>1.00</td>
<td>250</td>
</tr>
<tr>
<td>1.8</td>
<td>50.0</td>
<td>62</td>
<td>130</td>
<td>0.97</td>
<td>242</td>
</tr>
</tbody>
</table>

Driving CLKIN with Differential Clock

CLKIN/CLKINB will accept DC coupled HCSL/LVPECL/LVDS signals.

Figure 13. CLKIN, CLKINB Input Driven by an HCSL Driver
Output – Single-ended or Differential Clock Terminations

LVDS Termination

For a general LVDS interface, the recommended value for the termination impedance (Z_T) is between 90Ω and 132Ω. The actual value should be selected to match the differential impedance (Z_0) of your transmission line. A typical point-to-point LVDS design uses a 100Ω parallel resistor at the receiver and a 100Ω differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. The standard termination schematic as shown in figure Standard Termination or the termination of figure Optional Termination can be used, which uses a center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF. In addition, since these outputs are LVDS compatible, the input receiver’s amplitude and common-mode input range should be verified for compatibility with the IDT LVDS output. If using a non-standard termination, it is recommended to contact IDT and confirm that the termination will function as intended. For example, the LVDS outputs cannot be AC coupled by placing capacitors between the LVDS outputs and the 100Ω shunt load. If AC coupling is required, the coupling caps must be placed between the 100Ω shunt termination and the receiver. In this manner, the termination of the LVDS output remains DC coupled.

Figure 14. Standard and Optional Terminations
LVPECL Termination

The clock layout topology shown below is a typical termination for LVPECL outputs.

The differential outputs generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion.

For $V_{DDO} = 2.5V$, the $V_{DDO} - 2V$ is very close to ground level. The R3 in 2.5V LVPECL output termination can be eliminated and the termination is shown in Figure 17, 2.5V LVPECL Output Termination.

Figure 15. 3.3V LVPECL Output Termination (1)

Figure 16. 3.3V LVPECL Output Termination (2)

Figure 17. 2.5V LVPECL Output Termination

Figure 18. 2.5V LVPECL Driver Termination (1)

Figure 19. 2.5V LVPECL Driver Termination (2)
HCSL Termination

HCSL termination scheme applies to both 3.3V and 2.5V V_{DDO}.

Figure 20. HCSL Receiver Terminated

![Diagram of HCSL Receiver Terminated](image1)

Figure 21. HCSL Source Terminated

![Diagram of HCSL Source Terminated](image2)
LVCMOS Termination

Each output pair can be configured as a standalone CMOS or dual-CMOS output driver. Example of CMOSD driver termination is shown below.

- CMOS1 – Single CMOS active on OUTx pin.
- CMOS2 – Single CMOS active on OUTxB pin.
- CMOSD – Dual CMOS outputs active on both OUTx and OUTxB pins, 180 degrees out of phase.
- CMOSX2 – Dual CMOS outputs active on both OUTx and OUTxB pins, in-phase.

Figure 22. LVCMOS Termination

Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

www.idt.com/document/psc/24-vfqfpn-package-outline-drawing-40-x-40-x-09-mm-body-05-mm-pitch-epad-26-x-26-mm-nlg24s3-wettable

Marking Diagram

- Line 1 is the truncated part number.
- “ddd” denotes dash code.
- “YWW” is the last digit of the year and week that the part was assembled.
- “***” denotes sequential lot number.
- “$” denotes mark code.

Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Package</th>
<th>Carrier Type</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>5P49V60AdddNLG2</td>
<td>4 × 4 mm, 0.5mm pitch 24-VFQFPN Wettable Flank</td>
<td>Tray</td>
<td>-40° to +105°C</td>
</tr>
<tr>
<td>5P49V60AdddNLG28</td>
<td>4 × 4 mm, 0.5mm pitch 24-VFQFPN Wettable Flank</td>
<td>Reel</td>
<td>-40° to +105°C</td>
</tr>
</tbody>
</table>

1 “ddd” denotes factory programmed configurations based on required settings. Contact factory for factory programming.
Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 8, 2019</td>
<td>Updated package outline drawings.</td>
</tr>
<tr>
<td>February 22, 2019</td>
<td>Updated marking diagram.</td>
</tr>
<tr>
<td>July 12, 2018</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.
 NOTES:
1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1994
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. INDEX AREA PIN 1 IDENTIFIER
24-VFQFPN, Package Outline Drawing

4.0 x 4.0 x 0.9 mm Body, 0.5 mm Pitch, Epad 2.6 x 2.6 mm
NLG24S3 Wettable Flank, PSC-4192-07, Rev 02, Page 2

NOTES:
1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M–1994
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. LAND PATTERN RECOMMENDATION PER IPC–7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN

Package Revision History

<table>
<thead>
<tr>
<th>Date Created</th>
<th>Rev No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 23, 2018</td>
<td>Rev 01</td>
<td>Change QFN to VFQFPN</td>
</tr>
<tr>
<td>Nov 5, 2018</td>
<td>Rev 02</td>
<td>Change EPC Code</td>
</tr>
</tbody>
</table>