DESCRIPTION:
The FCT162827T 20-bit buffers are built using advanced dual metal CMOS technology. These 20-bit bus drivers provide high-performance bus interface buffering for wide data/address paths or buses carrying parity. Two pair of NAND-ed output enable controls offer maximum control flexibility and are organized to operate the device as two 10-bit buffers or one 20-bit buffer. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The FCT162827T has balanced output drive with current limiting resistors. This offers low ground bounce, minimal undershoot, and controlled output fall times—reducing the need for external series terminating resistors. The FCT162827T is a plug-in replacement for the FCT16827T and ABT16827 for on-board interface applications.

FEATURES:
- 0.5 MICRON CMOS Technology
- High-speed, low-power CMOS replacement for ABT functions
- Typical tSK(o) (Output Skew) < 250ps
- Low input and output leakage ≤1µA (max.)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- VCC = 5V ±10%
- Balanced Output Drivers (±24mA)
- Reduced system switching noise
- Typical VOLP (Output Ground Bounce) < 0.6V at VCC = 5V, TA = 25°C
- Available in SSOP and TSSOP packages

FUNCTIONAL BLOCK DIAGRAM
PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGs(1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTERM(2)</td>
<td>Terminal Voltage with Respect to GND</td>
<td>−0.5 to 7</td>
<td>V</td>
</tr>
<tr>
<td>VTERM(3)</td>
<td>Terminal Voltage with Respect to GND</td>
<td>−0.5 to VCC+0.5</td>
<td>V</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>−65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>IOUT</td>
<td>DC Output Current</td>
<td>−60 to +120</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. All device terminals except FCT162XXX Output and I/O terminals.
3. Outputs and I/O terminals for FCT162XXX.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter(1)</th>
<th>Conditions</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Input Capacitance</td>
<td>V IN = 0V</td>
<td>3.5</td>
<td>6</td>
<td>pF</td>
</tr>
<tr>
<td>COUT</td>
<td>Output Capacitance</td>
<td>V OUT = 0V</td>
<td>3.5</td>
<td>8</td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTE:
1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

FUNCTION TABLE(1)

<table>
<thead>
<tr>
<th>Pin Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xOE_x</td>
<td>Output Enable Inputs (Active LOW)</td>
</tr>
<tr>
<td>xA_x</td>
<td>Data Inputs</td>
</tr>
<tr>
<td>xY_x</td>
<td>3-State Outputs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>xOE1</td>
<td>xOE2</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>H</td>
</tr>
</tbody>
</table>

NOTE:
1. H = HIGH voltage level
2. L = LOW voltage level
3. X = Don’t care
4. Z = High-impedance
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: $TA = -40°C$ to $+85°C$, $VCC = 5.0V \pm 10\%$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions$^{(1)}$</th>
<th>Min.</th>
<th>Typ.$^{(2)}$</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input HIGH Level</td>
<td>Guaranteed Logic HIGH Level</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input LOW Level</td>
<td>Guaranteed Logic LOW Level</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input HIGH Current (Input pins)$^{(4)}$</td>
<td>$VCC = $ Max.</td>
<td>$V_i = VCC$</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input LOW Current (Input pins)$^{(4)}$</td>
<td>$V_i = GND$</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
</tr>
<tr>
<td>I_{OZH}</td>
<td>High Impedance Output Current (3-State Output pins)$^{(4)}$</td>
<td>$VCC = $ Max.</td>
<td>$V_O = 2.7V$</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>Input Hysteresis</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Clamp Diode Voltage</td>
<td>$VCC = $ Min., $I_{IN} = -18mA$</td>
<td>—</td>
<td>—</td>
<td>-0.7</td>
<td>-1.2</td>
</tr>
<tr>
<td>I_{VH}</td>
<td>Short Circuit Current</td>
<td>$VCC = $ Max., $V_O = GND$$^{(3)}$</td>
<td>-80</td>
<td>-140</td>
<td>-250</td>
<td>mA</td>
</tr>
<tr>
<td>I_{CL}</td>
<td>Quiescent Power Supply Current</td>
<td>$VCC = $ Max</td>
<td>$V_IN = GND$ or VCC</td>
<td>—</td>
<td>5</td>
<td>500</td>
</tr>
</tbody>
</table>

OUTPUT DRIVE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions$^{(1)}$</th>
<th>Min.</th>
<th>Typ.$^{(2)}$</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OL}</td>
<td>Output LOW Current</td>
<td>$VCC = 5V$, $V_IN = V_{IH}$ or V_{IL}, $V_O = 1.5V$$^{(3)}$</td>
<td>60</td>
<td>115</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>I_{OH}</td>
<td>Output HIGH Current</td>
<td>$VCC = 5V$, $V_IN = V_{IH}$ or V_{IL}, $V_O = 1.5V$$^{(3)}$</td>
<td>-60</td>
<td>-115</td>
<td>-200</td>
<td>mA</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output HIGH Voltage</td>
<td>$VCC = $ Min.</td>
<td>$I_{OH} = -24mA$</td>
<td>2.4</td>
<td>3.3</td>
<td>—</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output LOW Voltage</td>
<td>$VCC = $ Min.</td>
<td>$I_{OL} = 24mA$</td>
<td>—</td>
<td>0.3</td>
<td>0.55</td>
</tr>
</tbody>
</table>

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $VCC = 5.0V$, $+25°C$ ambient.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. This test limit for this parameter is $\pm 5\mu A$ at $TA = -55°C$.

IDT74FCT162827AT/CT
FAST CMOS 20-BIT BUFFER
INDUSTRIAL TEMPERATURE RANGE
POWER SUPPLY CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions(1)</th>
<th>Min.</th>
<th>Typ.(2)</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔICC</td>
<td>Quiescent Power Supply Current</td>
<td>VCC = Max.</td>
<td>—</td>
<td>0.5</td>
<td>1.5</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>TTL Inputs HIGH</td>
<td>VIN = 3.4V(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCD</td>
<td>Dynamic Power Supply Current(4)</td>
<td>VCC = Max.</td>
<td>—</td>
<td>60</td>
<td>100</td>
<td>µA/ MHz</td>
</tr>
<tr>
<td></td>
<td>Outputs Open</td>
<td>xOE1 = xOE2 = GND</td>
<td>VIN = VCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>One Input Toggling</td>
<td>50% Duty Cycle</td>
<td>VIN = GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>One Bit Toggling</td>
<td>10MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Twenty Bits Toggling</td>
<td>2MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>Total Power Supply Current(5)</td>
<td>VCC = Max.</td>
<td>—</td>
<td>0.6</td>
<td>1.5</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Outputs Open</td>
<td>fi = 10MHz</td>
<td>VIN = VCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% Duty Cycle</td>
<td>xOE1 = xOE2 = GND</td>
<td>VIN = GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>One Bit Toggling</td>
<td></td>
<td>VIN = 3.4V</td>
<td></td>
<td>0.9</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Twenty Bits Toggling</td>
<td></td>
<td>VIN = 3.4V</td>
<td></td>
<td>3</td>
<td>5.5(5)</td>
</tr>
</tbody>
</table>

NOTES:
1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at VCC = 5.0V, +25°C ambient.
3. Per TTL driven input (VIN = 3.4V). All other inputs at VCC or GND.
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the ICC formula. These limits are guaranteed but not tested.
6. IC = IQUESCENT + INPUTS + IDYNAMIC
 \[IC = \Delta ICC * DN + ICCD \times (fCP \times NCp/2 + fNI) \]
 \[\Delta ICC = Quiescent Current (ICCL, ICCH and ICCZ) \]
 \[ICC = Power Supply Current for a TTL High Input (VIN = 3.4V) \]
 \[DH = Duty Cycle for TTL Inputs High \]
 \[NT = Number of TTL Inputs at DH \]
 \[ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL) \]
 \[fCP = Clock Frequency for Register Devices (Zero for Non-Register Devices) \]
 \[NCp = Number of Clock Inputs at fCP \]
 \[fI = Input Frequency \]
 \[NI = Number of Inputs at fI \]
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition(1)</th>
<th>FCT162827AT</th>
<th>FCT162827CT</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPLH</td>
<td>Propagation Delay</td>
<td>CL = 50pF, RL = 500Ω</td>
<td>1.5</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>xAx to xYx</td>
<td>CL = 300pF(4), RL = 500Ω</td>
<td>1.5</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>tPHL</td>
<td>Output Enable Time</td>
<td>CL = 50pF, RL = 500Ω</td>
<td>1.5</td>
<td>12</td>
<td>.5</td>
</tr>
<tr>
<td></td>
<td>xOE to xYx</td>
<td>CL = 300pF(4), RL = 500Ω</td>
<td>1.5</td>
<td>23</td>
<td>1.5</td>
</tr>
<tr>
<td>tPHZ</td>
<td>Output Disable Time</td>
<td>CL = 5pF(4), RL = 500Ω</td>
<td>1.5</td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>xOE to xYx</td>
<td>CL = 50pF, RL = 500Ω</td>
<td>1.5</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>tSK(o)</td>
<td>Output Skew(3)</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>0.5</td>
</tr>
</tbody>
</table>

NOTES:
1. See test circuit and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.
4. This limit is guaranteed but not tested.
TEST CIRCUITS AND WAVEFORMS

SWITCH POSITION

<table>
<thead>
<tr>
<th>Test</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Drain</td>
<td>Closed</td>
</tr>
<tr>
<td>Disable Low</td>
<td></td>
</tr>
<tr>
<td>Enable Low</td>
<td></td>
</tr>
<tr>
<td>All Other Tests</td>
<td>Open</td>
</tr>
</tbody>
</table>

DEFINITIONS:

- C_L = Load capacitance: includes jig and probe capacitance.
- R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

Test Circuits for All Outputs

- **DATA INPUT**
 - Set-up: $3V$, $1.5V$, $0V$
 - Hold: $3V$, $1.5V$, $0V$
- **TIMING INPUT**
 - Set-up: $3V$, $1.5V$, $0V$
 - Hold: $3V$, $1.5V$, $0V$
- **ASYNCHRONOUS CONTROL**
 - Set-up: $3V$, $1.5V$, $0V$
 - Hold: $3V$, $1.5V$, $0V$
- **SYNCHRONOUS CONTROL**
 - Set-up: $3V$, $1.5V$, $0V$
 - Hold: $3V$, $1.5V$, $0V$
- **CLOCK ENABLE ETC.**
 - Set-up: $3V$, $1.5V$, $0V$
 - Hold: $3V$, $1.5V$, $0V$

Set-up, Hold, and Release Times

- **SAME PHASE INPUT TRANSITION**
 - Propagation delay: $3V$, $1.5V$, $0V$
- **OUTPUT**
 - Propagation delay: $3V$, $1.5V$, $0V$
- **OPPOSITE PHASE INPUT TRANSITION**
 - Propagation delay: $3V$, $1.5V$, $0V$

Propagation Delay

Pulse Width

- **LOW-HIGH-LOW PULSE**
 - Pulse width: $1.5V$
- **HIGH-LOW-HIGH PULSE**
 - Pulse width: $1.5V$

Enable and Disable Times

- **ENABLE**
 - Control input: $3V$, $1.5V$, $0V$
 - Output normally low: $3.5V$, $1.5V$, $0V$
- **DISABLE**
 - Control input: $3V$, $1.5V$, $0V$
 - Output normally low: $3.5V$, $0V$

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate ≤ 1.0MHz; $\tau_r \leq 2.5$ns; $\tau_f \leq 2.5$ns.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Temp. Range</th>
<th>Family</th>
<th>Device Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX</td>
<td>FCT</td>
<td>XXX</td>
<td>XXXX</td>
</tr>
<tr>
<td>PVG</td>
<td>Shrink Small Outline Package - Green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAG</td>
<td>Thin Shrink Small Outline Package - Green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>827AT</td>
<td>20-Bit Buffer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>827CT</td>
<td>20-Bit Buffer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Double-Density, 5 Volt, Balanced Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>40 C to +85 C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datasheet Document History

09/06/09 Pg. 7 Updated the ordering information by removing the "IDT" notation and non RoHS part.