General Description

The 854S057B is a 4:1 or 2:1 LVDS Clock Multiplexer which can operate up to 2GHz. The PCLK, nPCLK pairs can accept most standard differential input levels. Internal termination is provided on each differential input pair. The 854S057B operates using a 2.5V supply voltage. The fully differential architecture and low propagation delay make it ideal for use in high speed multiplexing applications. The select pins have internal pulldown resistors. Leaving one input unconnected (pulled to logic low by the internal resistor) will transform the device into a 2:1 multiplexer. The SEL1 pin is the most significant bit and the binary number applied to the select pins will select the same numbered data input (i.e., 00 selects PCLK0, nPCLK0).

Features

• High speed differential multiplexer. The device can be configured as either a 4:1 or 2:1 multiplexer
• One LVDS output pair
• Four selectable PCLK, nPCLK inputs with internal termination
• PCLKx, nPCLKx pairs can accept the following differential input levels: LVPECL, LVDS, CML, SSTL
• Maximum output frequency: >2GHz
• Part-to-part skew: 200ps (maximum)
• Propagation delay: 800ps (maximum)
• Additive phase jitter, RMS: 0.065ps (typical)
• Full 2.5V power supply
• -40°C to 85°C ambient operating temperature
• Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdd</td>
<td></td>
</tr>
<tr>
<td>PCLK0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>nPCLK0</td>
<td></td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT0</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>PCLK1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>nPCLK1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>VT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>PCLK2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nPCLK2</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT2</td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCLK3</td>
<td></td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nPCLK3</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEL1</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEL0</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulldown</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulldown</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

854S057B
20-Lead TSSOP
4.4mm x 6.5mm x 0.925mm package body
G Package
Top View
Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 20</td>
<td>V_{DD}</td>
<td>Power</td>
<td>Power supply pins.</td>
</tr>
<tr>
<td>2</td>
<td>PCLK0</td>
<td>Input</td>
<td>Non-inverting LVPECL differential clock input. (R_T = 50\Omega) termination to VT0.</td>
</tr>
<tr>
<td>3</td>
<td>VT0</td>
<td>Input</td>
<td>Termination input. For LVDS input, leave floating. (R_T = 50\Omega) termination to VT0.</td>
</tr>
<tr>
<td>4</td>
<td>nPCLK0</td>
<td>Input</td>
<td>Inverting LVPECL differential clock input. (R_T = 50\Omega) termination to VT0.</td>
</tr>
<tr>
<td>5, 6</td>
<td>SEL1, SEL0</td>
<td>Input</td>
<td>Pulldown Clock select inputs. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>7</td>
<td>PCLK1</td>
<td>Input</td>
<td>Non-inverting LVPECL differential clock input. (R_T = 50\Omega) termination to VT1.</td>
</tr>
<tr>
<td>8</td>
<td>VT1</td>
<td>Input</td>
<td>Termination input. For LVDS input, leave floating. (R_T = 50\Omega) termination to VT1.</td>
</tr>
<tr>
<td>9</td>
<td>nPCLK1</td>
<td>Input</td>
<td>Inverting LVPECL differential clock input. (R_T = 50\Omega) termination to VT1.</td>
</tr>
<tr>
<td>10, 11</td>
<td>GND</td>
<td>Power</td>
<td>Power supply ground.</td>
</tr>
<tr>
<td>12</td>
<td>nPCLK2</td>
<td>Input</td>
<td>Inverting LVPECL differential clock input. (R_T = 50\Omega) termination to VT2.</td>
</tr>
<tr>
<td>13</td>
<td>VT2</td>
<td>Input</td>
<td>Termination input. For LVDS input, leave floating. (R_T = 50\Omega) termination to VT2.</td>
</tr>
<tr>
<td>14</td>
<td>PCLK2</td>
<td>Input</td>
<td>Non-inverting LVPECL differential clock input. (R_T = 50\Omega) termination to VT2.</td>
</tr>
<tr>
<td>15, 16</td>
<td>nQ, Q</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>17</td>
<td>nPCLK3</td>
<td>Input</td>
<td>Inverting LVPECL differential clock input. (R_T = 50\Omega) termination to VT3.</td>
</tr>
<tr>
<td>18</td>
<td>VT3</td>
<td>Input</td>
<td>Termination input. For LVDS input, leave floating. (R_T = 50\Omega) termination to VT3.</td>
</tr>
<tr>
<td>19</td>
<td>PCLK3</td>
<td>Input</td>
<td>Non-inverting LVPECL differential clock input. (R_T = 50\Omega) termination to VT3.</td>
</tr>
</tbody>
</table>

NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_{PULLDOWN}</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_T</td>
<td>Input Termination Resistor</td>
<td></td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Function Table

Table 3. Control Input Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEL1</td>
<td>SEL0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{DD}</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, V_i</td>
<td>-0.5V to $V_{DD} + 0.5V$</td>
</tr>
<tr>
<td>Outputs, I_O</td>
<td>10mA</td>
</tr>
<tr>
<td>Continuous Current</td>
<td>15mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td>±50mA</td>
</tr>
<tr>
<td>Input Current, PCLK, nPCLK</td>
<td>±100mA</td>
</tr>
<tr>
<td>V_T Current, I_{VT}</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_{JA}</td>
<td>92.1°C/W (0 mps)</td>
</tr>
<tr>
<td>Storage Temperature, T_{STG}</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 4A. LVDS Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Power Supply Voltage</td>
<td>$V_{DD} = 2.5V$</td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>$V_{DD} = 2.5V$</td>
<td>1.7</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td>$V_{DD} = 2.5V$</td>
<td>-0.3</td>
<td>0.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>SEL0, SEL1</td>
<td>$V_{DD} = V_{IN} = 2.625V$</td>
<td>150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>SEL0, SEL1</td>
<td>$V_{DD} = 2.625V$, $V_{IN} = 0V$</td>
<td>-10</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Table 4C. LVPECL Differential DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IN}</td>
<td>Absolute Input Current; NOTE 1</td>
<td>$V_{DD} = V_{IN} = 2.625V$</td>
<td>35</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Voltage; NOTE 2</td>
<td></td>
<td>0.15</td>
<td>1.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Input Voltage; NOTE 2, 3</td>
<td>GND + 1.2</td>
<td></td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Guaranteed by design.
NOTE 2: V_{IL} should not be less than -0.3V.
NOTE 3: Common mode input voltage is defined as V_{IH}.
Table 4D. LVDS DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OD}</td>
<td>Differential Output Voltage</td>
<td></td>
<td>225</td>
<td>325</td>
<td>425</td>
<td>mV</td>
</tr>
<tr>
<td>ΔV_{OD}</td>
<td>V_{OD} Magnitude Change</td>
<td></td>
<td>4</td>
<td>35</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Offset Voltage</td>
<td></td>
<td>1.125</td>
<td>1.25</td>
<td>1.375</td>
<td>V</td>
</tr>
<tr>
<td>ΔV_{OS}</td>
<td>V_{OS} Magnitude Change</td>
<td></td>
<td>5</td>
<td>25</td>
<td></td>
<td>mV</td>
</tr>
</tbody>
</table>

Table 5. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MAX}</td>
<td>Output Frequency</td>
<td></td>
<td>>2</td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>t_{PD}</td>
<td>Propagation Delay; NOTE 1</td>
<td></td>
<td>300</td>
<td>800</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{sk(pp)}$</td>
<td>Part-to-Part Skew; NOTE 2, 3</td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{sk(i)}$</td>
<td>Input Skew</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>ϕ_{it}</td>
<td>Buffer Additive Phase</td>
<td>622.08MHz,</td>
<td>0.065</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t_R / t_F</td>
<td>Output Rise/Fall Time</td>
<td>$20%$ to $80%$</td>
<td>50</td>
<td>250</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>ω_{dc}</td>
<td>Output Duty Cycle</td>
<td>$\leq 700MHz$</td>
<td>49</td>
<td>51</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>$f \leq 1.1GHz$</td>
<td></td>
<td>47</td>
<td>53</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>$f \leq 2GHz$</td>
<td></td>
<td>43</td>
<td>57</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>$MUX_{ISOLATION}$</td>
<td>MUX Isolation</td>
<td>$f = 500MHz$</td>
<td>-65</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
</tbody>
</table>

NOTE: All parameters measured at $f \leq 1.9GHz$ unless noted otherwise.

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between different devices operating at the same supply voltage, same frequency and with equal load conditions. Using the same type of inputs on each device, the output is measured at the differential cross point.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.
Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the **dBc Phase Noise**. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

The source generator "Rohde & Schwarz SMA100A Low Noise Signal Generator as external input to an Agilent 8133A 3GHz Pulse Generator".
Parameter Measurement Information

LVDS Output Load AC Test Circuit

Differential Input Level

MUX Isolation

Part-to-Part Skew

Input Skew

Propagation Delay
Parameter Measurement Information, continued

Output Rise/Fall Time

Output Duty Cycle/Pulse Width/Period

Differential Output Voltage Setup

Offset Voltage Setup

\[\text{odc} = \frac{t_{PW}}{t_{PERIOD}} \times 100\% \]
Application Information

Recommendations for Unused Input Pins

Inputs:

LVCMOS Control Pins
All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

2.5V Differential Input with Built-In 50Ω Termination Unused Input Handling
To prevent oscillation and to reduce noise, it is recommended to have pullup and pulldown connect to true and compliment of the unused input as shown in Figure 1.
2.5V LVPECL Input with Built-In 50Ω Termination Interface

The PCLK /nPCLK with built-in 50Ω terminations accept LVDS, LVPECL, CML, SSTL and other differential signals. Both differential signals must meet the VPP and VCMR input requirements. Figures 2A to 2E show interface examples for the PCLK /nPCLK with built-in 50Ω termination input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 2A. PCLK/nPCLK Input with Built-In 50Ω Driven by an LVDS Driver

Figure 2B. PCLK/nPCLK Input with Built-In 50Ω Driven by an LVPECL Driver

Figure 2C. PCLK/nPCLK Input with Built-In 50Ω Driven by a CML Driver

Figure 2D. PCLK/nPCLK Input with Built-In 50Ω Driven by a CML Driver with Built-In 50Ω Pullup

Figure 2E. PCLK/nPCLK Input with Built-In 50Ω Driven by an SSTL Driver
LVDS Driver Termination

A general LVDS interface is shown in Figure 3. Standard termination for LVDS type output structure requires both a 100Ω parallel resistor at the receiver and a 100Ω differential transmission line environment. In order to avoid any transmission line reflection issues, the 100Ω resistor must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard termination schematic as shown in Figure 3 can be used with either type of output structure. If using a non-standard termination, it is recommended to contact IDT and confirm if the output is a current source or a voltage source type structure. In addition, since these outputs are LVDS compatible, the input receivers amplitude and common mode input range should be verified for compatibility with the output.

![Figure 3. Typical LVDS Driver Termination](image)

Schematic Example

Figure 4 shows a schematic example of the 854S057B. In this example, the PCLK0/nPCLK0 and PCLK1/nPCLK1 inputs are used.

![Figure 4. 854S057B LVDS Schematic Example](image)

The decoupling capacitors should be physically located near the power pin.
Power Considerations

This section provides information on power dissipation and junction temperature for the 854S057B. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 854S057B is the sum of the core power plus the power dissipation in the load(s).

The following is the power dissipation for $V_{DD} = 2.5V + 5\% = 2.625V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipation in the load.

- Power (core)$_{MAX} = V_{DD_MAX} * I_{DD_MAX} = 2.625V * 50mA = 131.25mW$
- Power Dissipation for internal termination R_T
 \[\text{Power (R_T)$_{MAX} = 4 \times (V_{PP_MAX})^2 / R_{T_MIN} = (1.2V)^2 / 80\Omega = 72mW} \]

Total Power$_{MAX} = 131.25mW + 72mW = 203.25mW$

2. Junction Temperature.

Junction temperature, T_J, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, T_J, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_J is as follows:

\[T_J = \theta_{JA} \times P_{d_total} + T_A \]

$T_J = \text{Junction Temperature}$

$\theta_{JA} = \text{Junction-to-Ambient Thermal Resistance}$

$P_{d_total} = \text{Total Device Power Dissipation} \text{ (example calculation is in section 1 above)}$

$T_A = \text{Ambient Temperature}$

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 92.1°C/W per Table 6 below.

Therefore, T_J for an ambient temperature of 85°C with all outputs switching is:

\[85°C + 0.203W \times 92.1°C/W = 103.7°C \]

This calculation is only an example. T_J will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 20 Lead TSSOP, Forced Convection

<table>
<thead>
<tr>
<th>θ_{JA} by Velocity</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meters per Second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>92.1°C/W</td>
<td>86.5°C/W</td>
<td>83.0°C/W</td>
</tr>
</tbody>
</table>
Reliability Information

Table 7. \(\theta_{JA} \) vs. Air Flow Table for a 20 Lead TSSOP

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>92.1°C/W</td>
<td>86.5°C/W</td>
<td>83.0°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for 854S057B is: 375
This device is pin and function compatible and a suggested replacement for 854057.

Package Outline and Package Dimensions

Table 8. Package Dimensions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>A2</td>
<td>0.80</td>
<td>1.05</td>
</tr>
<tr>
<td>b</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td>0.20</td>
</tr>
<tr>
<td>D</td>
<td>6.40</td>
<td>6.60</td>
</tr>
<tr>
<td>E</td>
<td>6.40 Basic</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>4.30</td>
<td>4.50</td>
</tr>
<tr>
<td>e</td>
<td>0.65 Basic</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0°</td>
<td>8°</td>
</tr>
<tr>
<td>aaa</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MO-153
Ordering Information

Table 9. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>854S057BGILF</td>
<td>ICS54S057BIL</td>
<td>"Lead-Free" 20 Lead TSSOP</td>
<td>Tube</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>854S057BGILFT</td>
<td>ICS54S057BIL</td>
<td>"Lead-Free" 20 Lead TSSOP</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
Revision History Sheet

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
</table>
| A | | 10 | Updated LVDS Output Termination application note.
 | | 11 | Updated Power Dissipation calculation in Power Considerations Application Note. | 3/26/10 | |
| A | | 11 | Corrected Power Dissipation calculation in the Power Considerations Application Note. | 3/29/10 |
| B | T9 | 1 | General Description - deleted HiperClocks logo. | 2/10/16 |
| | | 13 | Ordering Information Table - deleted count for Tape & Reel.
 | | | Deleted "ICS" prefix and "I" suffix in the part number throughout the datasheet. | |