GENERAL DESCRIPTION

This document describes specifications for the F1653NLGI I/Q Modulator implementing Zero-Distortion™ technology for low power consumption with improved ACLR. This device interfaces directly to a high performance dual DAC.

COMPETITIVE ADVANTAGE

In typical multi-mode, multi-carrier basestation transmitters the modulator has limited linearity and high power consumption which penalizes the system ACLR and system Power consumptions budgets in a Digital-Pre-Distortion environment.

The IDTF1653 is designed to eliminate these penalties by embedding Zero-Distortion™ technology into the device such that very high IP3 and IP2 are achieved with minimal current draw.

- Power consumption 45%
- IM3 Distortion 14 dB

FEATURES

- Power Gain = 3dB
- Direct 100Ω differential drive from Tx DAC
- < 590mW Power Consumption
- -159 dBm/Hz Output Noise
- -161 dBc/Hz Internal LO Path Noise
- IP20 = +64 dBm @ 2GHz
- IP30 = +36 dBm @ 2GHz
- Excellent native LO and image suppression
- 600 MHz input 1dB Bandwidth
- 600 MHz to 2900 MHz RF BW
- Fast Settling for TDD (< 200 nsec)
- 3.3V Single Power Supply
- LO port can be driven single ended or differential
- 4mm x 4mm, 24-pin TQFN package

PART# MATRIX

<table>
<thead>
<tr>
<th>Part#</th>
<th>RF freq Range</th>
<th>IP20</th>
<th>Power Cons.</th>
<th>IP30</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1650</td>
<td>600 – 2400</td>
<td>+60 dBm</td>
<td>587 mW</td>
<td>+36 dBm</td>
<td>-158 dBm/Hz</td>
</tr>
<tr>
<td>F1653</td>
<td>600 – 2900</td>
<td>+64 dBm</td>
<td>587 mW</td>
<td>+36 dBm</td>
<td>-159 dBm/Hz</td>
</tr>
</tbody>
</table>

DEVICE BLOCK DIAGRAM

ORDERING INFORMATION

- Omit IDT prefix
- 0.8 mm height package
- Tape & Reel
- RF product Line
- Green
- Industrial Temp range
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Description</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD to GND</td>
<td>-0.3V to +3.6V</td>
</tr>
<tr>
<td>STBY</td>
<td>-0.3V to (VDD + 0.3V)</td>
</tr>
<tr>
<td>BB_I+, BB_I-, BB_Q+, BB_Q-</td>
<td>-0.3V to 1.8V</td>
</tr>
<tr>
<td>LO_IN</td>
<td>-0.3V to 0.3V</td>
</tr>
<tr>
<td>RF_OUT</td>
<td>(VDD-0.35V) to (VDD-0.05V)</td>
</tr>
<tr>
<td>Continuous Power Dissipation</td>
<td>1.5W</td>
</tr>
<tr>
<td>θ_{JA} (Junction – Ambient)</td>
<td>+45°C/W</td>
</tr>
<tr>
<td>θ_{JC} (Junction – Case)</td>
<td>+2.5°C/W</td>
</tr>
<tr>
<td>Operating Temperature Range (Case Temperature)</td>
<td>$T_{CASE} = -40°C$ to $+105°C$</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>+260°C</td>
</tr>
</tbody>
</table>

Stresses above those listed above may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
IDTF1653 RECOMMENDED OPERATION CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Comment</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage(s)</td>
<td>V_DD</td>
<td>All V_DD pins</td>
<td>3.15</td>
<td>3.30</td>
<td>3.45</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_CASE</td>
<td>Case Temperature</td>
<td>-40</td>
<td>25</td>
<td>+105</td>
<td>deg C</td>
</tr>
<tr>
<td>LO Freq Range</td>
<td>F_LO</td>
<td>LO power -3dBm to +5dBm</td>
<td>600</td>
<td></td>
<td>2900</td>
<td>MHz</td>
</tr>
<tr>
<td>BB Common Mode Voltage</td>
<td>V_CM</td>
<td>T_CASE = -40C to +105C</td>
<td>0.1</td>
<td>0.25</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_DD = 3.3 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LO level = 0dBm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB input voltage compliance range</td>
<td></td>
<td>For each BB pin</td>
<td>0</td>
<td></td>
<td>1</td>
<td>Vpeak</td>
</tr>
<tr>
<td>BB Freq Range</td>
<td>F_BB</td>
<td>F_LO = 1950 MHz, BB_IQ = 200 mVp-p</td>
<td></td>
<td>DC</td>
<td>600</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_IF degrades < 1 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ZIF/CIF Modulator

600MHz to 2900MHz

IDTF1653 Specification

See application circuit. Typical values are measured at $V_{DD} = +3.3V$, $F_{LO} = 1950$ MHz, $P_{LO} = 0$ dBm, $T_{CASE}=+25^\circ$C, STBY = GND, BB_I&Q frequency = 49, 50 MHz, BB_I&Q levels = 200 mVp-p each (-13dBm and 14 dB backoff from 1V DAC compliance), I & Q = 0.250V common-mode bias unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Comment</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Input High</td>
<td>V_{IH}</td>
<td>For STBY Pin</td>
<td>1.07</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic Input Low</td>
<td>V_{IL}</td>
<td>For STBY Pin</td>
<td></td>
<td>0.68</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic Current</td>
<td>I_{IH}, I_{IL}</td>
<td>For STBY Pin</td>
<td>-100</td>
<td>+1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Supply Current (ON)</td>
<td>I_{SUPP}</td>
<td>Total V_{DD}</td>
<td>178</td>
<td>190</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply Current (STBY)</td>
<td>I_{STBY}</td>
<td>Total V_{DD}, STBY = V_{IH}</td>
<td>2.8</td>
<td>5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>LO Power</td>
<td>P_{LO}</td>
<td>600MHz to 2900MHz</td>
<td>-3</td>
<td></td>
<td>+5</td>
<td>dBm</td>
</tr>
<tr>
<td>BB Input Resistance (Differential)</td>
<td>R_{BB}</td>
<td>Freq = 100 MHz</td>
<td>113</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>LO port Impedance</td>
<td>Z_{LO}</td>
<td>Single Ended (RL < -10dB)</td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can be driven differentially</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF port Impedance</td>
<td>Z_{RF}</td>
<td>Single Ended (RL < -10dB)</td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Power Gain</td>
<td>G</td>
<td></td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>dB</td>
</tr>
<tr>
<td>Output IP3 @ 850 MHz</td>
<td>IP_{3O1}</td>
<td>LO = 800 MHz</td>
<td>37</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output IP3 @ 2.00 GHz</td>
<td>IP_{3O2}</td>
<td>LO = 1950 MHz</td>
<td>30</td>
<td>36</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output IP3 @ 2.85 GHz</td>
<td>IP_{3O3}</td>
<td>LO = 2800 MHz</td>
<td>31</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output IP2 @ 850 MHz</td>
<td>IP_{2O1}</td>
<td>LO = 800 MHz Differential baseband input</td>
<td>65</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output IP2 @ 2.00 GHz</td>
<td>IP_{2O}</td>
<td>LO = 1950 MHz Differential baseband input</td>
<td>58²</td>
<td>64</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output IP2 @ 2.85 GHz</td>
<td>IP_{3O2}</td>
<td>LO = 2800 MHz Differential baseband input</td>
<td>63</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Turn on time</td>
<td>P_{ON}</td>
<td>STBY = low to 90% final output power</td>
<td>175</td>
<td></td>
<td></td>
<td>nsec</td>
</tr>
<tr>
<td>Turn off time</td>
<td>P_{OFF}</td>
<td>STBY = high to initial output power -30dB</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO (Carrier) Suppression</td>
<td>LO_{supp}</td>
<td>Native, Uncorrected $F_{LO} = 1950$ MHz</td>
<td>-39</td>
<td>-30</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Sideband (Image) Suppression</td>
<td>SS</td>
<td>Native, Uncorrected $F_{LO} = 1950$ MHz Differential baseband input</td>
<td>-34</td>
<td>-30</td>
<td></td>
<td>dBc</td>
</tr>
<tr>
<td>Output P1dB</td>
<td>P_{1dB}</td>
<td>Output Compression</td>
<td>15</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output Noise</td>
<td>NSD</td>
<td>10 MHz offset from LO BB I&Q levels = 0 Vp-p</td>
<td>-157</td>
<td>-159</td>
<td></td>
<td>dBm/Hz</td>
</tr>
<tr>
<td>LO Path Noise (internal)</td>
<td>$\Phi_{N,LO}$</td>
<td>+10 MHz offset</td>
<td>-161</td>
<td></td>
<td></td>
<td>dBc/Hz</td>
</tr>
</tbody>
</table>

Specification Notes:

1 – Items in min/max columns in **bold italics** are Guaranteed by Test
2 – All other Items in min/max columns are Guaranteed by Design Characterization
TYPICAL OPERATING CONDITIONS

Unless otherwise noted, the following conditions apply:

- Baseband I&Q levels = 200 mVpp each (-13 dBm / Channel / Tone)
- Baseband I&Q tones = 49, 50 MHz
- Low Side Injection
- $T_{AMBIENT} = 25^\circ C$, $V_{CC} = 3.30$ V, LO Power = 0 dBm
- $V_{CM} = 0.250$ Volts
- $f_0 = 1.95$GHz unless otherwise specified
- EVKit RF output Trace and Connector Losses De-Embedded

EVkit RF output loss (Trace + Connector)
TYPICAL OPERATING CONDITIONS (-1-)

OIP3 vs. T_{AMB}

![Graph of OIP3 vs. T_{AMB}]

- 45degC / 3.30V / 0dBm
- 25degC / 3.30V / 0dBm
- 85degC / 3.30V / 0dBm
- 100degC / 3.30V / 0dBm

OIP3 vs. V_{CC}

![Graph of OIP3 vs. V_{CC}]

- 25degC / 3.45V / 0dBm
- 25degC / 3.30V / 0dBm
- 25degC / 3.15V / 0dBm
- 25degC / 3.30V / -3dBm

OIP3 vs. LO level

![Graph of OIP3 vs. LO level]

- 25degC / 3.30V / 5dBm
- 25degC / 3.30V / 0dBm
- 25degC / 3.30V / -3dBm

OIP2 vs. T_{AMB}

![Graph of OIP2 vs. T_{AMB}]

- 45degC / 3.30V / 0dBm
- 25degC / 3.30V / 0dBm
- 85degC / 3.30V / 0dBm
- 100degC / 3.30V / 0dBm

OIP2 vs. V_{CC}

![Graph of OIP2 vs. V_{CC}]

- 25degC / 3.45V / 0dBm
- 25degC / 3.30V / 0dBm
- 25degC / 3.15V / 0dBm

OIP2 vs. LO level

![Graph of OIP2 vs. LO level]

- 25degC / 3.30V / 5dBm
- 25degC / 3.30V / 0dBm
- 25degC / 3.30V / -3dBm
TYPICAL OPERATING CONDITIONS (-2-)

I\(_{CC}\) vs. T\(_{AMB}\)

I\(_{CC}\) vs. V\(_{CC}\)

Power Consumption vs. T\(_{AMB}\)

Power Consumption vs. V\(_{CC}\)

Power Consumption vs. LO level
TYPICAL OPERATING CONDITIONS (-3-)

Gain vs. T_{AMB}

Gain vs. V_{CC}

Gain vs. LO level

RF Output Power vs. T_{AMB}

RF Output Power vs. V_{CC}

RF Output Power vs. LO level
TYPICAL OPERATING CONDITIONS (-4-)

Unadjusted LO Suppression vs. T\textsubscript{AMB}

![Graph showing Unadjusted LO Suppression vs. T\textsubscript{AMB}]

Unadjusted LO Suppression vs. V\textsubscript{CC}

![Graph showing Unadjusted LO Suppression vs. V\textsubscript{CC}]

Unadjusted LO Suppression vs. LO level

![Graph showing Unadjusted LO Suppression vs. LO level]

Unadjusted Sideband Suppression vs. T\textsubscript{AMB}

![Graph showing Unadjusted Sideband Suppression vs. T\textsubscript{AMB}]

Unadjusted Sideband Suppression vs. V\textsubscript{CC}

![Graph showing Unadjusted Sideband Suppression vs. V\textsubscript{CC}]

Unadjusted Sideband Suppression vs. LO level

![Graph showing Unadjusted Sideband Suppression vs. LO level]
TYPICAL OPERATING CONDITIONS (-5-)

Baseband 2\(^{nd}\) Harmonic vs. T\(_{\text{AMB}}\)

![Graph showing Baseband 2\(^{nd}\) Harmonic vs. T\(_{\text{AMB}}\)]

Baseband 2\(^{nd}\) Harmonic vs. V\(_{\text{CC}}\)

![Graph showing Baseband 2\(^{nd}\) Harmonic vs. V\(_{\text{CC}}\)]

Baseband 2\(^{nd}\) Harmonic vs. LO level

![Graph showing Baseband 2\(^{nd}\) Harmonic vs. LO level]

Baseband 3\(^{rd}\) Harmonic vs. T\(_{\text{AMB}}\)

![Graph showing Baseband 3\(^{rd}\) Harmonic vs. T\(_{\text{AMB}}\)]

Baseband 3\(^{rd}\) Harmonic vs. V\(_{\text{CC}}\)

![Graph showing Baseband 3\(^{rd}\) Harmonic vs. V\(_{\text{CC}}\)]

Baseband 3\(^{rd}\) Harmonic vs. LO level

![Graph showing Baseband 3\(^{rd}\) Harmonic vs. LO level]
TYPICAL OPERATING CONDITIONS (-6-)

Output Noise vs. Frequency

Graph

- X-axis: LO Frequency (GHz)
- Y-axis: Output Noise (dBm/Hz)

Output Noise vs. P_{OUT} [$V_{\text{CC}} = 3.3V$, $T_{\text{AMB}} = 25^\circ\text{C}$]

Graph

- X-axis: Output Power (dBm)
- Y-axis: Output Noise (dBm/Hz)

Input Bandwidth (fixed LO = 2.092 GHz)

Graph

- X-axis: Baseband Input Frequency (MHz)
- Y-axis: Power Gain (dB)

LO & RF Port Return Loss

Graph

- X-axis: Frequency (GHz)
- Y-axis: Return Loss (dB)

I&Q Input Parallel Resistance/Capacitance

Graphs

- Three graphs showing the relationship between Input Balanced R_P or C_P and Baseband Input Frequency (MHz) for different temperatures and supply voltages.

1dB Compression

Graph

- X-axis: LO Frequency (GHz)
- Y-axis: Output $P_{1\text{dB}}$ (dBm)

Details:

- **Output Noise vs. Frequency:**
 - Frequency range from 0.6 to 3.0 GHz.
 - Output Noise levels from -164 to -150 dBm/Hz.

- **Output Noise vs. P_{OUT}:**
 - Output Power range from 0 to 6 dBm.
 - Output Noise levels up to -154 dBm/Hz.

- **Input Bandwidth:**
 - Fixed LO frequency of 2.092 GHz.
 - Power Gain range from 0 to 14 dB.

- **LO & RF Port Return Loss:**
 - LO Port and RF Port return loss measurements.

- **I&Q Input Parallel Resistance/Capacitance:**
 - Graphs show the effect of temperature and supply voltage on input impedance.

- **1dB Compression:**
 - LO Frequency = 1.95 GHz.
 - LO Level range from -3 to 0 dBm.
 - Output $P_{1\text{dB}}$ range from 12 to 17 dBm.
TYPICAL OPERATING CONDITIONS (-7-)

Turn On Time

![Turn on time <200ns graph]

Polarity: LO = 2.0GHz, BB_I+/ leads BB_Q+/

Carrier Suppression Nulling Performance

![Carrier suppression graph]

Turn Off Time

![Turn off time <30ns graph]

Polarity: LO = 2.0GHz, BB_I+/- lags BB_Q+/

Image Suppression Nulling Performance

![Image suppression graph]
Generic DAC Interface

- LCM DAC: low common mode voltage DAC usually has high output impedance and sourcing current out
- LPF: to filter out unwanted harmonics
- DC common mode voltage on BBP/BBN Vcm: $Vcm = IDC \times \frac{R_{dac}}{R_{dc_IQMOD}}$
- Vcm is determined by DAC bias current and IQ Mod input DC impedance

Diagram

- DAC
- LCM
- IOUTxP
- IOUTxN
- BBP
- BBN
- DAC
- Low Pass Filter
- Vcm
- DC impedance: 50Ω per side
- AC impedance: 100Ω differential

$Idc = I_{bias} + 0.5I_{fs}$

$I_{bias} + 0.5I_{fs}$

0 to 20 mA

R_{dac}

50Ω

R_{dac}

50Ω

Vcm
TOP View
(looking through the top of the package)

Package Drawing
- **4 mm x 4 mm package dimension**
- **2.60 mm x 2.60 mm exposed pad**
- **0.5 mm pitch**
- **24 pins**
- **0.75 mm height**
- **0.25 mm pad width**
- **0.40 mm pad length**
Pin Descriptions

<table>
<thead>
<tr>
<th>Pins</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STBY</td>
<td>STBY Mode. Pull this pin high for Standby Mode. Pull low or ground for Normal Operation.</td>
</tr>
<tr>
<td>2, 5, 13, 19</td>
<td>GND</td>
<td>Ground these pins.</td>
</tr>
<tr>
<td>6, 7, 8, 11, 12, 14, 15, 17, 20, 23</td>
<td>NC</td>
<td>IDT recommends grounding these pins.</td>
</tr>
<tr>
<td>3, 4</td>
<td>LO+, LO-</td>
<td>Local oscillator (LO) 50 ohm differential or 25ohm each pin single-ended input. Pins must be ac-coupled. For 50 ohm single-ended operation, ac-couple USED Pin to 50 ohm termination and ac-couple UNUSED pin to GND.</td>
</tr>
<tr>
<td>9, 10</td>
<td>BB_Q-, BB_Q+</td>
<td>Quadrature differential baseband input. Internally matched to 100 ohms.</td>
</tr>
<tr>
<td>16</td>
<td>RF_OUT</td>
<td>RF output. Must be ac-coupled.</td>
</tr>
<tr>
<td>18, 24</td>
<td>VDD</td>
<td>Power Supply. Bypass to GND with capacitors as shown in the Typical Application Circuit as close to pin as possible.</td>
</tr>
<tr>
<td>21, 22</td>
<td>BB_I+, BB_I-</td>
<td>In-Phase differential baseband input. Internally matched to 100 ohms.</td>
</tr>
<tr>
<td>—</td>
<td>EP</td>
<td>Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the specified RF performance.</td>
</tr>
</tbody>
</table>
POWER SUPPLIES
All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than 1V/20uS. In addition, all control pins should remain at 0V (+/-0.3V) while the supply voltage ramps or while it returns to zero.
EVKIT BOM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>1</td>
<td>8pF ±0.5pF, 50V, C0G Ceramic Capacitor (0402)</td>
<td>GRM155S5C1H8R0D</td>
<td>MURATA</td>
</tr>
<tr>
<td>C4,C6,C8,C10,C17</td>
<td>5</td>
<td>10pF ±10%, 16V, X7R Ceramic Capacitor (0402)</td>
<td>GRM155S7C103K</td>
<td>MURATA</td>
</tr>
<tr>
<td>C1</td>
<td>1</td>
<td>39pF ±5%, 50V, C0G Ceramic Capacitor (0402)</td>
<td>GRM155S5C1H08J</td>
<td>MURATA</td>
</tr>
<tr>
<td>C7,C9</td>
<td>2</td>
<td>100nF ±10%, 16V, X7R Ceramic Capacitor (0402)</td>
<td>GRM155R7C104K</td>
<td>MURATA</td>
</tr>
<tr>
<td>R3,R6,R9,C13-C16,L5</td>
<td>8</td>
<td>0Ω 1/10W Resistor (0402)</td>
<td>ERJ-2G0R00X</td>
<td>Panasonic</td>
</tr>
<tr>
<td>R5,R12</td>
<td>2</td>
<td>24.9Ω ±1%, 1/4W Resistor (1206)</td>
<td>RMCP1206F124R9</td>
<td>Stackpole Electronics</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>47.0Ω ±1%, 1/8W Resistor (0402)</td>
<td>RC0402FR-0747KL</td>
<td>Yageo</td>
</tr>
<tr>
<td>VR2,VR4</td>
<td>2</td>
<td>1kΩ ±10%, 1/4W Resistor Trimmer</td>
<td>TS63Y102KR10</td>
<td>Vishay/Sfernice</td>
</tr>
<tr>
<td>J2,J5,J8,J9</td>
<td>4</td>
<td>CONN HEADER VERT SGL 2 X 1 POS GOLD</td>
<td>961102-6404-AR</td>
<td>3M</td>
</tr>
<tr>
<td>J3,J4,J7,J10</td>
<td>4</td>
<td>Edge Launch SMA (0.250 inch width, round center contact)</td>
<td>142-0711-B21</td>
<td>Emerson Johnson</td>
</tr>
<tr>
<td>J1,J6</td>
<td>2</td>
<td>Edge Launch SMA (0.375 inch width, flat center contact)</td>
<td>142-0701-B51</td>
<td>Emerson Johnson</td>
</tr>
<tr>
<td>T1,T2</td>
<td>2</td>
<td>2:1 Center Tap Balun</td>
<td>AD12-11+</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>IQ MOD</td>
<td>F1653</td>
<td>IDT</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Printed Circuit Board</td>
<td>F1650 SE EVKIT REV (02)</td>
<td>Coastal Circuits</td>
</tr>
<tr>
<td>VR1,VR3</td>
<td>1</td>
<td>DNP</td>
<td>DNP</td>
<td>DNP</td>
</tr>
<tr>
<td>C3,C5,C11,C12,C18</td>
<td>DNP</td>
<td>DNP</td>
<td>DNP</td>
<td></td>
</tr>
<tr>
<td>L1,L2,L3,L4</td>
<td>DNP</td>
<td>DNP</td>
<td>DNP</td>
<td></td>
</tr>
<tr>
<td>R2,R4,R6,R7,R10,R11</td>
<td>DNP</td>
<td>DNP</td>
<td>DNP</td>
<td></td>
</tr>
<tr>
<td>R13,R14,R16,R18</td>
<td>DNP</td>
<td>DNP</td>
<td>DNP</td>
<td></td>
</tr>
</tbody>
</table>

APPLYING V_CM AT THE BASEBAND INPUTS

With L1, L2, L3, and L4 unpopulated, the common mode voltage is set by VR2 and VR4. The voltage set by VR2 has a DC path through the balun transformer T1 to pins BB_I+ and BB_I-, as highlighted. This also applies for VR4, T2, and pins BB_Q+ and BB_Q-. With this configuration, the same voltage will be applied to BB_I+ and BB_I- and the same voltage will be applied to BB_Q+ and BB_Q-. The I and Q common mode voltages may be different from each other to null LO (carrier) leakage.
Note: VCC connection on evaluation board is VDD Power Supply on the datasheet.

VDD connection on evaluation board is used to set baseband pin common mode (CM) voltage (see schematic).
TOP MARKINGS

Part Number: F1653GI
Lot Code: ZC1442N
Date Code: Q42A016Y

Die Step: Q42A016Y (Week 42 of 2014)