FEATURES:
- N channel FET switches with no parasitic diode to \(V_{CC} \)
 - Isolation under power-off conditions
 - No DC path to \(V_{CC} \) or GND
 - 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- Low \(R_{on} \) - 4Ω typical
- Flat \(R_{on} \) characteristics over operating range
- Rail-to-rail switching 0 - 5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- Excellent \(R_{on} \) matching between channels
- \(V_{CC} \) operation: 2.3V to 3.6V
- High bandwidth - up to 500MHz
- LVTTL-compatible control Inputs
- Undershoot Clamp Diodes on all switch and control Inputs
- Low I/O capacitance, 4pF typical
- Available in QSOP, SOIC, and TSSOP packages

APPLICATIONS:
- Hot-swapping
- Multiplexing/demultiplexing
- Low distortion analog switch
- Replaces mechanical relay
- ATM 25/155 switching

DESCRIPTION:
The QS3VH257 HotSwitch Quad 2:1 multiplexer/demultiplexer is a high bandwidth bus switch. The QS3VH257 has very low ON resistance, resulting in under 250ps propagation delay through the switch. The Select (S) input controls the data flow. The multiplexers/demultiplexers are enabled when the Enable (E) input is low. In the ON state, the switches can pass signals up to 5V. In the OFF state, the switches offer very high impedance at the terminals.

The combination of near-zero propagation delay, high OFF impedance, and over-voltage tolerance makes the QS3VH257 ideal for high performance communication applications.

The QS3VH257 is characterized for operation from -40°C to +85°C.
ABSOLUTE MAXIMUM RATINGS(1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTERM(2)</td>
<td>Supply Voltage to Ground</td>
<td>-0.5</td>
<td>V</td>
</tr>
<tr>
<td>VTERM(3)</td>
<td>DC Switch Voltage Vs</td>
<td>-0.5</td>
<td>V</td>
</tr>
<tr>
<td>VTERM(3)</td>
<td>DC Input Voltage VIN</td>
<td>-0.5</td>
<td>V</td>
</tr>
<tr>
<td>VAC</td>
<td>AC Input Voltage (pulse width ≤20ns)</td>
<td>-3</td>
<td>V</td>
</tr>
<tr>
<td>IOUT</td>
<td>DC Output Current (max. sink current/pin)</td>
<td>120</td>
<td>mA</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>-65</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VCC terminals.
3. All terminals except VCC.

CAPACITANCE (TA = +25°C, F = 1MHz, VIN = 0V, VOUT = 0V)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter(1)</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Control Inputs</td>
<td>3</td>
<td>5</td>
<td>pF</td>
</tr>
<tr>
<td>CI/O</td>
<td>Quickswitch Channels (Switch OFF)</td>
<td>Demux</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>CI/O</td>
<td>Quickswitch Channels (Switch ON)</td>
<td>Mux</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

NOTES:
1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin Names</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ixx</td>
<td>I</td>
<td>Data Inputs</td>
</tr>
<tr>
<td>S</td>
<td>I</td>
<td>Select Input</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>Enable Input</td>
</tr>
<tr>
<td>YA - YD</td>
<td>O</td>
<td>Data Outputs</td>
</tr>
</tbody>
</table>

FUNCTION TABLE(1)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

NOTE:
1. H = HIGH Voltage Level
2. L = LOW Voltage Level
3. X = Don't Care
4. Z = High-Impedence
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: \(T_A = -40^\circ C \) to \(+85^\circ C \), \(V_{CC} = 3.3V \pm 0.3V \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.(^{(1)})</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input HIGH Voltage</td>
<td>Guaranteed Logic HIGH for Control Inputs (V_{CC} = 2.3V) to (2.7V)</td>
<td>1.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input LOW Voltage</td>
<td>Guaranteed Logic LOW for Control Inputs (V_{CC} = 2.3V) to (2.7V)</td>
<td>—</td>
<td>—</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>(I_{IN})</td>
<td>Input Leakage Current (Control Inputs) (0V \leq V_{IN} \leq V_{CC})</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>(I_{OZ})</td>
<td>Off-State Current (Hi-Z) (0V \leq V_{OUT} \leq 5V), Switches OFF</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>(I_{OFF})</td>
<td>Data Input/Output Power Off Leakage (V_{IN}) or (V_{OUT}) 0V to 5V, (V_{CC} = 0V)</td>
<td>—</td>
<td>—</td>
<td>±1</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>(R_{ON})</td>
<td>Switch ON Resistance (V_{CC} = 2.3V) (V_{IN} = 0V), (I_{ON} = 30mA)</td>
<td>—</td>
<td>6</td>
<td>8</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typical at (V_{CC} = 2.5V) (V_{IN} = 1.7V), (I_{ON} = 15mA)</td>
<td>—</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = 3V) (V_{IN} = 0V), (I_{ON} = 30mA)</td>
<td>—</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{IN} = 2.4V), (I_{ON} = 15mA)</td>
<td>—</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

1. Typical values are at \(V_{CC} = 3.3V \) and \(T_A = 25^\circ C \).

TYPICAL ON RESISTANCE \(vs \ V_{IN} \) AT \(V_{CC} = 3.3V \)

![Graph](image-url)
POWER SUPPLY CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions(1)</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICCQ</td>
<td>Quiescent Power Supply Current</td>
<td>VCC = Max., Vin = GND or VCC, f = 0</td>
<td>—</td>
<td>2</td>
<td>4</td>
<td>mA</td>
</tr>
<tr>
<td>∆ICC</td>
<td>Power Supply Current (2,3) per Input HIGH</td>
<td>VCC = Max., Vin = 3V, f = 0 per Control Input</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>μA</td>
</tr>
<tr>
<td>ICCD</td>
<td>Dynamic Power Supply Current (4)</td>
<td>VCC = 3.3V, A and B Pins Open, Control Inputs Toggling @ 50% Duty Cycle</td>
<td>See Typical ICCD vs Enable Frequency graph below</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per input driven at the specified level. Mux/demux pins do not contribute to ∆ICC.
3. This parameter is guaranteed but not tested.
4. This parameter represents the current required to switch internal capacitance at the specified frequency. The mux/demux inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT VCC = 3.3V
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Ta = -40°C to +85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>VCC = 2.5 ± 0.2V $^{(1)}$</th>
<th>VCC = 3.3 ± 0.3V $^{(1)}$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min. $^{(4)}$</td>
<td>Max.</td>
<td>Min. $^{(4)}$</td>
</tr>
<tr>
<td>tPLH</td>
<td>Data Propagation Delay $^{(2,3)}$</td>
<td>——</td>
<td>0.2</td>
<td>——</td>
</tr>
<tr>
<td>tPHL</td>
<td>Yx to lxx or lxx to Yx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tSEL</td>
<td>Select Time</td>
<td>1.5</td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>S to Yx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tPZH</td>
<td>Enable Time</td>
<td>1.5</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>S to lxx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tPLZ</td>
<td>Disable Time</td>
<td>1.5</td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>S to Ixx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tP2H</td>
<td>Enable Time, P to Yx</td>
<td>1.5</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>tP2L</td>
<td>S to Ixx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tPHZ</td>
<td>Disable Time, P to Yx or Ixx</td>
<td>1.5</td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td>tPLZ</td>
<td>E to Yx or Ixx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tEorS</td>
<td>Operating Frequency - Enable $^{(2,5)}$</td>
<td>——</td>
<td>10</td>
<td>——</td>
</tr>
</tbody>
</table>

NOTES:

1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.2ns at $C_L = 50pF$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
4. Minimums are guaranteed but not production tested.
5. Maximum toggle frequency for S or E control input (pass voltage > VCC, $V_{IN} = 5V$, $R_{LOAD} \geq 1M\Omega$, no C_{LOAD}).
SOME APPLICATIONS FOR HOTSWITCH PRODUCTS

Rail-to-Rail Switching

Multiplexing / Demultiplexing

Hot-Swapping
TEST CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>VCC(1)= 3.3V ± 0.3V</th>
<th>VCC(2)= 2.5V ± 0.2V</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLOAD</td>
<td>6</td>
<td>2 x Vcc</td>
<td>V</td>
</tr>
<tr>
<td>Vih</td>
<td>3</td>
<td>Vcc</td>
<td>V</td>
</tr>
<tr>
<td>Vt</td>
<td>1.5</td>
<td>Vcc/2</td>
<td>V</td>
</tr>
<tr>
<td>Vlz</td>
<td>300</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>Vhz</td>
<td>300</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>CL</td>
<td>50</td>
<td>30</td>
<td>pF</td>
</tr>
</tbody>
</table>

DEFINITIONS:
CL = Load capacitance: includes jig and probe capacitance.

NOTES:
1. Pulse Generator for All Pulses: Rate ≤ 10MHz; tF ≤ 2.5ns; tR ≤ 2.5ns.
2. Pulse Generator for All Pulses: Rate ≤ 10MHz; tF ≤ 2ns; tR ≤ 2ns.

SWITCH POSITION

<table>
<thead>
<tr>
<th>Test</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPLZ/tPZL</td>
<td>VLOAD</td>
</tr>
<tr>
<td>tPHZ/tPZH</td>
<td>GND</td>
</tr>
<tr>
<td>tPZL</td>
<td>Open</td>
</tr>
</tbody>
</table>

NOTE:
1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times
ORDERING INFORMATION

QS XXXXX XX X

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>8 Tube or Tray</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>S1G</td>
<td>SOIC - Green</td>
<td></td>
</tr>
<tr>
<td>QG</td>
<td>QSOP - Green</td>
<td></td>
</tr>
<tr>
<td>PAG</td>
<td>TSSOP - Green</td>
<td></td>
</tr>
</tbody>
</table>

3VH257 2.5V / 3.3V Quad 2:1 Mux/Demux High Bandwidth Bus Switch

Datasheet Document History

09/01/08 Pg. 4, 8 Revise ICCO Typ. and Max. Remove non green package version and updated the ordering information by removing the “IDT” notation.
02/24/14 Pg. 8 Updated the Ordering Information by Adding Tape and Reel information.