IDTQS4A105
QUICKSWITCH® PRODUCTS
HIGH-PERFORMANCE CMOS
TWO CHANNEL 4PST SWITCH

FEATURES:
• Low ON resistance: $r_{DS(ON)} = 5 \Omega$
• Wide bandwidth: 1.3GHz (-3dB point)
• Crosstalk: 100dB at 50KHz, -70dB at 5MHz, -50dB at 30MHz
• Off-isolation: -90dB at 50KHz, -60dB at 5MHz, -55dB at 30MHz
• Single 5V supply
• Bidirectional signal flow
• TTL-compatible control inputs
• Ultra-low quiescent current: 3μA
• Switch turn on time of 6.5ns
• Available in QSOP package

APPLICATIONS:
• High-speed video signal switching/routing
• HDTV-quality video signal routing
• Audio signal switching/routing
• Data acquisition
• ATE systems
• Telecomm routing
• Token Ring transceivers
• High-speed networking

DESCRIPTION:
The QS4A105 is a high-performance CMOS two-channel 4PST switch with 3-state outputs. The low ON resistance of the QS4A105 allows inputs to be connected to outputs with low insertion loss and high bandwidth.

The QS4A105, with 1.3GHz bandwidth, is ideal for high-performance video signal switching, audio signal switching, and telecomm routing applications. Low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A105 is offered in the QSOP package which has several advantages over conventional packages such as PDIP and SOIC, including:
• Reduced signal delays due to denser component packaging on circuit boards
• Reduced system noise due to less pin inductance

The QS4A105 is characterized for operation at -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTERM(2)</td>
<td>Supply Voltage to Ground</td>
<td>–0.5</td>
<td>V</td>
</tr>
<tr>
<td>VTERM(3)</td>
<td>DC Switch Voltage Vs</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Analog Input Voltage</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>VTERM(3)</td>
<td>DC Input Voltage VIN</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>VAC</td>
<td>AC Input Voltage (pulse width (\leq 20\text{ns})</td>
<td>-3</td>
<td>V</td>
</tr>
<tr>
<td>IOUT</td>
<td>DC Output Current</td>
<td>120</td>
<td>mA</td>
</tr>
<tr>
<td>PMAX</td>
<td>Maximum Power Dissipation</td>
<td>0.7</td>
<td>W</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>–65</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to</td>
<td>150</td>
</tr>
</tbody>
</table>

NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VCC terminals.
3. All terminals except Vcc.

PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin Names</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ax, Bx</td>
<td>I/O</td>
<td>Ports A, B</td>
</tr>
<tr>
<td>Cx, Dx</td>
<td>I/O</td>
<td>Ports C, D</td>
</tr>
<tr>
<td>E1-E2</td>
<td>I</td>
<td>Enable</td>
</tr>
</tbody>
</table>

FUNCTION TABLE

<table>
<thead>
<tr>
<th>(\overline{E1})</th>
<th>(\overline{E2})</th>
<th>Ax, Cx I/Os</th>
<th>Bx, Dx I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>Disconnected</td>
<td>Disconnected</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>Ax = Cx</td>
<td>Disconnected</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>Disconnected</td>
<td>Bx = Dx</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>Ax = Cx</td>
<td>Bx = Dx</td>
</tr>
</tbody>
</table>

NOTE:
1. H = HIGH Voltage Level
2. L = LOW Voltage Level
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

- Industrial: \(T_A = -40°C \) to +85°C, \(V_{CC} = 5V \pm 5\%

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.(^{(1)})</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>Analog Signal Range(^{(2)})</td>
<td>(V_{CC} = \text{Min.}, V_{IN} = 0V, I_{ON} = 30mA)</td>
<td>0</td>
<td>—</td>
<td>(V_{CC} - 1)</td>
<td>V</td>
</tr>
<tr>
<td>(r_{DS(on)})</td>
<td>Drain-source (ON) resistance(^{(2,3)})</td>
<td>(V_{CC} = \text{Min.}, V_{IN} = 2.4V, I_{ON} = 15mA)</td>
<td>—</td>
<td>5</td>
<td>7</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(I_{(OFF)})</td>
<td>Channel (OFF) Leakage Current</td>
<td>(Ax, Bx = V_{CC}) or 0V, (Cx, Dx = 0V) or (V_{CC}, \bar{E} = V_{CC})</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>nA</td>
</tr>
<tr>
<td>(I_{(ON)})</td>
<td>Channel (ON) Leakage Current</td>
<td>(Ax = Bx = Cx = Dx = 0V) (each channel is turned on sequentially)</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>nA</td>
</tr>
</tbody>
</table>

Analog Switch

Digital Control

- \(V_{IH} \): Input \(HIGH \) Voltage
 - Guaranteed Logic \(HIGH \) for Control Pins
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - 2 | — | — | V |

- \(V_{IL} \): Input \(LOW \) Voltage
 - Guaranteed Logic \(LOW \) for Control Pins
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - — | — | 0.8 | V |

Dynamic Characteristics

- \(I_{(ON)} \): Enable Turn-On Time
 - \(\bar{E} \) to \(Ax, Bx, Cx, \) or \(Dx \)
 - \(RL = 1K\Omega, CL = 100pF \)
 - (See Switching Time)
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - 0.5 | — | 6.5 | ns |

- \(I_{(OFF)} \): Enable Turn-Off Time
 - \(\bar{E} \) to \(Ax, Bx, Cx, \) or \(Dx \)
 - (See Switching Time)
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - 0.5 | — | 6 | ns |

- \(f_{PD} \): Group Delay\(^{(2,4a)}\)
 - \(RL = 1K\Omega, CL = 100pF \)
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - — | — | 250 | ps |

- \(f_{3dB} \): -3dB Bandwidth
 - \(V_{IN} = 0 \) to 1V, 1Vp-p, \(RL = 75\Omega \)
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - — | 1.3 | — | GHz |

- OFF-isolation
 - \(V_{IN} = 0 \) to 1V, 1Vp-p, \(RL = 75\Omega, f = 5.5MHz \)
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - — | — | -60 | dB |

- XTALK: Crosstalk
 - \(V_{IN} = 1Vp-p, RL = 75\Omega, f = 5.5MHz \)
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - — | — | -70 | dB |

- \(C_{(OFF)} \): Mux \(OFF \) Capacitance
 - \(\bar{E} = V_{CC}, V_{IN} = V_{OUT} = 0V \)
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - — | 5 | — | pF |

- \(C_{(ON)} \): Mux \(ON \) Capacitance
 - \(\bar{E} = 0V, V_{IN} = V_{OUT} = 0V \)
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - — | 10 | — | pF |

- \(Q_{CI} \): Charge Injection
 - \(CL = 1000pF \)
 - Min. | Typ.\(^{(1)}\) | Max. | Unit
 - — | 1.5 | — | pC |

NOTES:

1. Typical values are at \(V_{CC} = 5.0V, T_A = 25°C \).
2. Max value is guaranteed but not production tested.
3. Measured by voltage drop between \(A \) and \(C \) pins or \(B \) and \(D \) pins at indicated current through the switch. \(ON \) resistance is determined by the lower of the voltages on the two \((A, C, or B, D) \) pins.
4. The bus switch contributes no group delay other than the RC delay of the \(ON \) resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

POWER SUPPLY CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ICC)</td>
<td>Supply Current</td>
<td>(V_{CC} = \text{Max.}, V_{IN} = \text{GND or } V_{CC})</td>
<td>3</td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

NOTES:
1. Crosstalk = 20 log |V₀/VS|
2. Off-isolation = 20 log |V₀/VS|

NOTES:
1. Crosstalk = 20 log |V₀/VS|
2. Off-isolation = 20 log |V₀/VS|

NOTES:
1. Insertion Loss = 20 log |V₀/VS|

OFF-ISOLATION AND CROSSTALK VS. FREQUENCY

VCC = 5V
RL = 75Ω

FREQUENCY (Hz)

CROSSTALK

OFF-ISOLATION

FREQUENCY (Hz)

FREQUENCY (Hz)

FREQUENCY (Hz)

FREQUENCY (Hz)

OFF-ISOLATION AND CROSSTALK VS. FREQUENCY

VCC = 5V
RL = 75Ω

FREQUENCY (Hz)

CROSSTALK

OFF-ISOLATION

FREQUENCY (Hz)

OFF-ISOLATION AND CROSSTALK VS. FREQUENCY

VCC = 5V
RL = 75Ω

FREQUENCY (Hz)

CROSSTALK

OFF-ISOLATION

FREQUENCY (Hz)

INSERTION LOSS VS. FREQUENCY

VCC = 5V
RL = 75Ω

FREQUENCY (Hz)

CROSSTALK

OFF-ISOLATION

FREQUENCY (Hz)

NOTES:
1. Insertion Loss = 20 log |V₀/VS|
2. Off-isolation = 20 log |V₀/VS|
TYPICAL CHARACTERISTICS (CONTINUED)

Insertion Loss vs. Frequency

NOTE:
1. Insertion Loss = \(20 \log |\frac{V_O}{V_S}|\)

On-Resistance vs. \(V_{IN}\)

TEST CIRCUITS

Switching Time
TEST CIRCUITS (CONTINUED)

Insertion Loss

NOTES:
1. Insertion Loss = 20 \log |V_O/V_S|
2. All unused pins are grounded.

Crosstalk

NOTES:
1. Crosstalk = 20 \log |V_O/V_S|
2. All unused pins are grounded.

Off-Isolation

NOTE:
1. Off-isolation = 20 \log |V_O/V_S|
ORDERING INFORMATION

QS XXXXX XX X

- Blank
- 8 Tube or Tray
- QG Tape and Reel
- QSOP Green Quarter Size Outline Package - QSOP Green
- 4A105 High Performance CMOS Two Channel 4PST Switch

DATASHEET DOCUMENT HISTORY

04/13/2014 Pg. 7 Updated the Ordering Information by removing non green package version and Adding Tape and Reel information.