Notes

Introduction

This document provides system design guidelines for IDT 89HPES24T3G2 PCI Express® (PCIe®) 2.0 base specification compliant switch device. The letters “G2” within the device name indicate that this device is capable of GEN2 (5.0 GT/S) serial data speeds. The PES24T3G2 device offers 24 PCIe lanes divided into 3 ports.

This document also describes the following device interfaces and provides relevant board design recommendations:

1) PCI Express Interface
2) Reference Clock (REFCLK) Circuitry
3) Reset (Fundamental Reset) Schemes
4) SMBus Interfaces
5) GPIO and JTAG pins
6) Power and Decoupling Scheme

PCI Express Interface

Port Configuration

Port 0 is always the upstream port with a maximum link width of x8 (i.e. 8 lanes). Ports 2 and 4 are downstream ports and statically allocated 8 lanes with ports labeled as 2 and 4. All ports support both 2.5 GT/S (Gen1) and 5.0 GT/S (Gen2) speeds.

Per the PCIe specification, each switch port is viewed as a virtual PCI-PCI bridge device. In the PES24T3G2, PCI device numbering follows the port numbering. Port 0 corresponds to Device 0 on the upstream bus. Port 2 corresponds to Device 2 on the PES24T3G2 virtual PCI bus and Port 4 corresponds to Device 4.

Note that unused PCIe TX and RX lanes are not required to have a termination and can be left open.

![Diagram of Port Numbering and Device Numbering](image-url)
Link Width

During link training, link width is automatically negotiated. The upstream port is capable of negotiating to a x8, x4, x2, or x1 link width. Each downstream port is capable of independently negotiating to a x8, x4, x2, or x1 link width.

Lane Reversal

The PES24T3G2 supports automatic lane reversal outlined in the PCIe specification. This allows trace routing flexibility to avoid crossovers and potentially reduces the number of trace vias required for signal routing. Lane reversal must be done for both the transmitter and the receiver of a port.

Lane reversal mappings for the various non-trivial x4 maximum link width configurations are illustrated in the IDT 89HPES24T3G2 Device User Manual.

Polarity Inversion

Each port of the PES24T3G2 supports automatic polarity inversion defined by the PCIe specification. This allows trace routing flexibility to avoid crossovers and potentially reduces the number of trace vias required for signal routing. Polarity inversion is a function of the receiver and not the transmitter. The transmitter never inverts its data. During link training, the receiver examines symbols 6 through 15 of the TS1 and TS2 ordered sets for inversion of the PExRP[n] and PExRN[n] signals. If an inversion is detected, then logic for the receiving lane automatically inverts received data. Polarity inversion is a lane function and not a link function. Therefore, it is possible for some lanes of link to be inverted and for others not to be inverted.

![Polarity Inversion](image)

AC Coupling

PCI Express signaling requires AC coupling between the transmitter and the receiver. The capacitor value must be between 75 nF and 200 nF. The 0402 package size and 100 nF value are recommended. The AC coupling capacitors should be placed near the transmitter of the device or the connector to minimize discontinuity effects.

Routing Differential Pairs

The switch includes 50 Ohm resistor on-die terminations on both the transmit and the receive pins. No external termination is required.

Individual traces within a given differential pair (positive and negative) must be matched in length to a tolerance of 5 mils. Length matching within a differential pair should occur on a segment-by-segment basis, as opposed to length matching across the total distance of the overall route. In addition, the spacing between traces of adjacent pairs must be at least 20 mils edge-to-edge to reduce crosstalk effects.

Note that trace length matching between pairs is not required because the PCIe 2.0 specifications allow up to 8ns of skew between differential pairs.

AC coupling capacitors are associated with the Tx differential pairs and should be located symmetrically on the top or bottom layer between the switch and the PCIe connectors/devices.
Every effort should be made to avoid vias on the PCIe differential pairs since they can result in a signal loss of up to 0.25 dB. When a via is unavoidable, its pad size should be less than 25 mils, its hole size should be less than 14 mils and its anti-pads should be 35 mils or smaller. No extra vias should be added over and above those needed for IC pads or a connector. Vias in a differential pair should always be at the same relative location and placed in a symmetrical fashion along the differential pair as shown in Figure 4.

Avoid 90-degree bends or turns on traces. Wherever possible, the number of left and right bends should be matched as closely as possible. Alternating left and right turns helps to minimize length skew differences between each signal of a differential pair.

Depending on the system topology and the maximum targeted trace length, regular FR4 material is appropriate dielectric material. In case of a backplane type of application, higher quality, lower loss material, such as Nelco 4000-13, may be used.

A HSPICE simulation kit for the switch can be requested by emailing ssdhelp@idt.com.

Serdes Reference Resistor Pins

The switch has one Serdes Reference Resistor pin per port. The 3.0K +/- 1% reference bias resistor should be located as close to these pins as possible and should be tapped immediately to the GROUND plane. This resistor must be isolated from any source of noise injection. One way to achieve this is to place the resistor on the back-side of the board, directly underneath the device. No bypass capacitors must be placed on these pins.

Reference Clock (REFCLK) Circuitry

The switch has a single differential reference clock input (PEREFCLKP/PEREFCLKN) that is used to generate all of the clocks required by the internal switch logic and the SerDes.

The differential clock inputs require the signal source to drive a 0V common-mode and the REFCLK signal must meet the electrical specifications defined in the PCI Express Card Electromechanical Specification.
The reference clock inputs support spread spectrum clocking (SSC) for reducing EMI. If SSC is used, all clocks must come from a single source. This includes the clock for the switch itself, the clock for the devices connected to the downstream ports of the switch and the clocks for the root complex chipset or other devices (switch or bridge) connected to the upstream port of the switch. If SSC is not used, multiple clock sources are allowed for each PCI Express device in the tree.

Reference Clock Selection

The differential clock for the switch and downstream devices can be derived from a clock buffer/generator such as ICS9DB403 or ICS9DB803. System designers can use other Gen2-compatible clock buffers/generators. The ICS9DB803 device is used on the IDT evaluation boards.

The switch provides two clock operation modes for each side of the switch - common clock and a non-common clock. System designers must configure the CCLKUS and CCLKDS pins depending on which mode is chosen for the upstream side and the downstream side of the switch. For details related to each mode, please refer to the PES24T3G2 Device User Manual. The Spread Spectrum Clock must be disabled when the non-common clock is used on either the upstream port or downstream port.

Note that the downstream port’s reference clock must be controlled by power good signal or an appropriate control signal if downstream slots support hot-plug operation.

Reset (Fundamental Reset) Schemes

The PERSTN pin is used to reset all logic inside the switch and is a Schmitt Trigger Input which can be connected to the PERST# from the system or a power-on reset circuit.

In a system, the values of Tpvperl and Tperst-clk depend on the mechanical form factor in which the switch is used. For example, the PCIe Card Electromechanical Specification, Revision 2.0, specifies minimum value of Tperst-clk=100µs and Tpvperl=100ms.

For the reset signals to downstream ports, reset schemes listed below can be implemented.

- Simplified Reset Scheme
- Reset Scheme for Hot Plug Support

Simplified Reset Scheme

If Hot Plug support is not required, the simplified reset scheme can be implemented as shown in Figure 7. Add a buffer on the PERST# signal if the output from system is not able to drive a number of fan-out loads for all downstream ports.
Figure 7 Simplified Reset Scheme

Reset Scheme for Hot Plug Support

Figure 8 shows an implementation where downstream endpoints have independent fundamental reset. This scheme should be used if Hot-Plug support is needed selectively on the downstream ports.

Another way to generate the reset for downstream ports is by using the GPIO pins of the switch, if hot-plug support is required. The GPIO-0 and GPIO-1 pins can be configured to be the reset signals for the downstream ports by programming the GPIO Function (GPIOFUNC) register via an EEPROM or slave SMBus. When a fundamental Reset occurs, all of the GPIO pins default to GPIO inputs. Therefore, the downstream port resets are tri-stated. System designers should use a pull-down on these GPIO pins to ensure that these signals are asserted low before programming GPIOFUNC register.
SMBus Interfaces

The switch provides two SMBus interfaces.

1) The Master SMBus interface provides connection for an optional external serial EEPROM used for initialization and optional external I/O expanders.

2) The slave SMBus interface provides full access to all software visible registers in the PES24T3G2, allowing every register in the device to be read or written by an external SMBus master. The slave SMBus may also be used to preload the serial EEPROM used for initialization.

Master SMBus Clock Frequency

The master SMBus clock's frequency operates at 400KHz.

Note that the master SMBus clock will be in the active state during loading of the EEPROM contents or while accessing the IO Expanders. Once the operation is completed, the master SMBus clock will be in the inactive state, which is high.

Optional Serial EEPROM

During a fundamental reset, an optional serial EEPROM may be used to initialize any software visible register within the device. Serial EEPROM loading occurs if the Switch Mode (SWMODE [2:0]) field selects an operating mode that performs serial EEPROM initialization (e.g., Normal switch mode with Serial EEPROM initialization).

Any serial EEPROM compatible with those listed in Table 1 can be used to store switch initialization values. EEPROM space may not be fully utilized because some of these devices are larger than the total available PCI configuration space that can be initialized in the switch.
Configuring the I/O Expander Address

The switch utilizes external SMBus / I²C-bus I/O expanders connected to the master SMBus interface for hot-plug and port status signals. The switch is designed to work with Phillips PCA9555 compatible I/O expanders (i.e., PCA9555, PCA9535, and PCA9539). See the Phillips PCA9555 data sheet for details on the operation of this device.

The switch supports up to five external I/O expanders numbered 0 through 4.

- I/O expanders 0 through 3: hot-plug I/O signals
- I/O expander 4: link status and activity LED control
During switch initialization the SMBus/I²C-bus address allocated to each I/O expander used in that system configuration should be written to the corresponding I/O Expander Address (IOE[0,1,4]ADDR) field. The IOE[0,1]ADDR fields are contained in the I/O Expander Address 0 (IOEXPADDR0) register while the IOE[4]ADDR fields are contained in the SMBus I/O Expander Address 1 (IOEXPADDR1) register.

Hot-plug outputs and I/O expanders may be initialized via serial EEPROM. Since the I/O expanders and serial EEPROM both utilize the master SMBus, no I/O expander transactions are initiated until serial EEPROM initialization completes.

![Figure 11 Example of I/O Expander Interface](image)

Slave SMBus Address Interface

The slave SMBus interface provides the switch with a configuration, management, and debug interface. Using the slave SMBus interface, an external master can read or write any software visible register in the device.

Power and Decoupling Scheme

The switch has five different types of power supply pins:

1) **VDDCORE (1.0V)** powers the digital core of the switch.

2) **VDDPEA (1.0V)** power the SERDES core and analog circuits. VDDPEA should have no more than 25mVpeak-peak AC power supply noise superimposed on the 1.0V nominal DC value.

3) **VDDPEHA (2.5V)** power the SERDES core and analog circuits. VDDPEHA should have no more than 50mVpeak-peak AC power supply noise superimposed on the 2.5V nominal DC value.

4) **VDDPETA (1.0V)** is the termination voltage used on the SERDES TX lanes. VDDPETA can be adjusted to modify the TX common mode voltage as well as the voltage swing.

5) **VDD/O (3.3V)** powers the low speed I/Os of the switch.

VDDCORE, VDDPEA, and VDDPETA can be derived from the same voltage source with appropriate bypass capacitors and a ferrite bead. If all voltages can not be handled by a single voltage regulator, they can be derived from separate voltage regulators.
A ferrite bead can be used to attenuate the power noise and improve the analog circuit performance in a noisy environment. The following three parameters should be considered when you select a ferrite bead for power rails:

1) very low DC resistance
2) impedance of 50 ~ 120 ohms at 100MHz
3) provides enough DC current

Power Consumption

The typical and maximum power consumption can be found in the appropriate switch data sheet (see Reference Documents at the end of this guide).

Power-Up/Power-Down Sequence

During power supply ramp-up, VDDCORE must remain at least 1.0V below VDDI/O at all times. There are no other power-up sequence requirements for the various operating supply voltages. The power-down sequence can occur in any order.

Decoupling Scheme

1) One bypass capacitor per power pin is recommended if board layout allows. 0402 package ceramic capacitors are recommended for 0.1µF and 0.01µF capacitors.

2) Bypass Capacitors must be placed as close to the device pins as possible based on space availability. Note that some of the vias need to be shared in order to create space for placing a capacitor next to a pin.

3) A bigger capacitor should be used to filter out low frequency noise. Larger 1µF and 47µF capacitors should be added around the part. Two bigger capacitors per voltage supply are appropriate. One option is to spread out the big capacitors at four corners, top and bottom layers of the chips.

4) Short and wide traces should be used to minimize resistance and inductance.

5) Prioritize the bypass capacitors in the following order for each power supply:
 1. VDDCORE
 2. VDDPEA / VDDPETA
3. VDDPEHA
4. VDDI/O

GPIO and JTAG Pins

GPIO Pins

The switch has a number of General Purpose I/O (GPIO) pins that may be individually configured as general purpose inputs, general purpose outputs, or alternate functions. GPIO pins are controlled by the General Purpose I/O Function (GPIOFUNC), General Purpose I/O Configuration (GPIOCFG), and General Purpose I/O Data (GPIOD) registers in the upstream port’s PCI configuration space. Please refer to the device datasheet for additional details.

The internal pull-up resistors value for the GPIO pins under typical condition is about 92K ohms.

JTAG Pins

The switch provides the JTAG Boundary Scan interface to test the interconnections between integrated circuit pins after they have been assembled onto a circuit board. For details of the interface, please refer to the appropriate switch user manual (see Reference Documents below).

The JTAG_TRST_N pin must be asserted low when the switch is in normal operation mode (i.e. drive this signal low with an external pull-down or control logic on the board if the JTAG interface is not used).

Reference Documents

- PES24T3G2 Data Sheet
- PES24T3G2 User Manual
- PCI Express Base Specification, Revision 1.1, PCI-SIG
- PCI Express Base Specification, Revision 2.0, PCI-SIG
- PCI Express Card Electromechanical Specification Revision 1.1, PCI-SIG
- PCI Express Card Electromechanical Specification Revision 2.0, PCI-SIG
- PCI to PCI Bridge Architecture Specification, Revision 1.2, PCI-SIG
- SMBus Specification, Revision 2.0
- Intel PCI Express Electrical Interconnect Design

Revision History

December 18, 2007: Initial publication.