Description

The P9225-R-EVK Evaluation Kit demonstrates the functionality, features, and performances of the P9225-R 5W Wireless Power Receiver (Rx). The kit includes the P9225-R Mass-Market (MM) EV Board (EVB). The P9225-R converts AC voltage from a coil into a programmable DC voltage used by the load. The P9225-R has integrated protection for itself and the load from being damaged in some fault events including over-current, over-voltage, and over-temperature during power transfer. It also integrates an I2C communication interface and provides an interrupt pin (INT) for an external application processor (AP). The AP can read internal registers via I2C and read the interrupt pin to determine the P9225-R status. P9225-R can automatically detect the Tx and determine whether to operate in WPC or PMA protocol on startup. If in WPC protocol, the P9225-R can be programmed as needed for foreign object detection (FOD).

The P9225-R-EVK demonstrates a high-efficiency, turnkey reference design, and it is supported by comprehensive online digital resources to significantly expedite design-in efforts and enable rapid prototyping while minimizing the bill of materials (BOM). The total active printed circuit board (PCB) area is optimized to 40mm × 16mm.

Features

- WPC-1.2.4 compliant; PMA SR1 compatible
- Support for up to 5W Baseline Power Profile (BPP) power transfer
- Tx-Rx overall efficiency up to 82% (with the P9038-R-EVK, which is sold separately)
- 5V output voltage; also can be programmed in the range of 4.5V to 5.5V in 0.1V steps
- On-chip over-temperature protection
- Dedicated pin for remote temperature monitor
- Board includes an LED indicator for status monitor
- I2C interface and INT pin for communication with AP
- Programmability for FOD tuning

Kit Contents

- P9225-R Mass-Market (MM) EV Board (EVB) including the coil assembly

P9225-R-EVK MM EV Board
Power Transfer with the P9225-R-EVK on the P9038-R-EVK
Important Notes

Disclaimer

Integrated Device Technology, Inc. and its affiliated companies (herein referred to as “IDT”) shall not be liable for any damages arising out of defects resulting from

(i) delivered hardware or software
(ii) non-observance of instructions contained in this manual and in any other documentation provided to user, or
(iii) misuse, abuse, use under abnormal conditions, or alteration by anyone other than IDT.

TO THE EXTENT PERMITTED BY LAW, IDT HEREBY EXPRESSLY DISCLAIMS AND USER EXPRESSLY WAIVES ANY AND ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, STATUTORY WARRANTY OF NON-INFRINGEMENT, AND ANY OTHER WARRANTY THAT MAY ARISE BY REASON OF USAGE OF TRADE, CUSTOM, OR COURSE OF DEALING.

Restrictions in Use

IDT’s P9225-R-EVK is designed for evaluation purpose only. It must not be used for module or mass production purposes.

Contents

1. Setup ..5
 1.1 Required or Recommended User Equipment ..5
 1.2 Kit Hardware Connections ...5
2. Usage Guide ..6
 2.1 Overview of the P9225-R EVK ..6
 2.2 VOUT Programming ...7
 2.3 Over Current Limit Programming ...8
 2.4 Remote Temperature Sensing Thermistor ..9
 2.5 Communication Interface ...9
 2.6 Foreign Object Detection (FOD) Tuning ..10
 2.7 End-of-Charge (EOC) ..11
 2.8 Receiving Coil ..11
3. Hardware Information ..12
 3.1 Schematic for P9225-R MM EV Board ...12
 3.2 Bill of Materials (BOM) ..13
 3.3 Board Layout ...14
4. Ordering Information ...15
5. Revision History ..16
List of Figures
Figure 1. Evaluation Kit Connections..5
Figure 2. P9225-R-EVK Features ...6
Figure 3. R34 and R33 Location on the PCB ..7
Figure 4. R38 and R22 Location on the PCB ..8
Figure 5. Location for R19 and Connecting Pads for the NTC Thermistor ..9
Figure 6. Communication Port Pins ..9
Figure 7. RPPG and RPPO Connections ...10
Figure 8. Locations of R27, R28, R29, and R30 on the PCB ...10
Figure 9. Connection for the EOC Pin ...11
Figure 10. EOC Test Point on Board ...11
Figure 11. Evaluation Board Schematic ..12
Figure 12. Evaluation Board Layout ...14

List of Tables
Table 1. Setting the Output Voltage ..7
Table 2. Setting the Over-Current Limit ...8
Table 3. Coil Information ..11
Table 4. P9225-R MM EV Board BOM ..13
1. Setup

1.1 Required or Recommended User Equipment

The following additional lab equipment is required for using the kit:

- P9038-R Transmitter Evaluation Board or any WPC-1.2.4 or PMA SR1 compliant transmitter.
- 5V DC power source or adapter that supports a type-C socket.

1.2 Kit Hardware Connections

Follow these procedures to set up the kit as shown in Figure 1.

1. Solder wires to the VOUT and GND test points on the P9225-R MM EV Board to allow measuring the output voltage or connect to load.
2. Set up the P9038-R Evaluation Board (or other transmitter board) according to the board’s user manual and apply power.
3. Place the P9225-R MM EV Board at center on the transmitter coil surface with the yellow coil back facing upwards. P9225-R will detect which protocol the transmitter board uses.
4. Verify that the green LEDs on both kits are illuminated, which indicates that power transfer has been established.

Figure 1. Evaluation Kit Connections

Green D1 LED on P9225-R-EVK indicates that the wireless connection has been made.

Solder wire leads to GND and VOUT test points to allow measuring VOUT or to apply load.

Solder wire leads to GND and VOUT test points to allow measuring VOUT or to apply load.
2. Usage Guide

2.1 Overview of the P9225-R EVK

Figure 2. P9225-R-EVK Features

- Optional remote temperature sensing thermistor RTS
- Footprint for optional EEPROM for debugging purposes
- Application processor programming interface pins from left to right: INT, SCL, SDA, GND, external 5V supply
- Quick test points for common features
- Test points for V_{VRECT}
- R34, R33: Used to set V_{OUT}
- R28, R27: Used to adjust FOD gain
- R38, R22: Used to adjust over-current limit
- R30, R29: Used to adjust FOD offset
2.2 VOUT Programming

The P9225-R output voltage can be set to 4.5V through 5.5V in steps of 0.1V by changing the R34 or R33 resistor values; see Table 1. The default output voltage is set to 5V on the P9225-R-EVK as indicated by bold font in Table 1.

Table 1. Setting the Output Voltage

<table>
<thead>
<tr>
<th>R34</th>
<th>R33</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kΩ</td>
<td>Open</td>
<td>4.5V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>49.9kΩ</td>
<td>4.6V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>34kΩ</td>
<td>4.7V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>20kΩ</td>
<td>4.8V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>14.7kΩ</td>
<td>4.9V</td>
</tr>
<tr>
<td>Open</td>
<td>10kΩ</td>
<td>5.0V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>10kΩ</td>
<td>5.1V</td>
</tr>
<tr>
<td>14.7kΩ</td>
<td>10kΩ</td>
<td>5.2V</td>
</tr>
<tr>
<td>20kΩ</td>
<td>10kΩ</td>
<td>5.3V</td>
</tr>
<tr>
<td>34kΩ</td>
<td>10kΩ</td>
<td>5.4V</td>
</tr>
<tr>
<td>49.9kΩ</td>
<td>10kΩ</td>
<td>5.5V</td>
</tr>
</tbody>
</table>

Figure 3. R34 and R33 Location on the PCB
2.3 Over Current Limit Programming

The P9225-R has a programmable current limit for protecting the device in the event of an over-current or short-circuit fault condition. If the output current exceeds the programmed threshold, the P9225-R will limit the load current by reducing the output voltage. Recommendation: Set the current limit to 130% of the maximum output current by setting the voltage on the ILIM pin as shown in Table 2 by adjusting R22 while keeping R38 as 10kΩ, which is connected to the 1.8V supply. The default value for the over-current limit is set to 1.2A on the R9225-R-EVK as indicated by bold font.

Table 2. Setting the Over-Current Limit

<table>
<thead>
<tr>
<th>R38</th>
<th>R22</th>
<th>ILIM Setting for Maximum I_{OUT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kΩ</td>
<td>47kΩ</td>
<td>0.8A</td>
</tr>
<tr>
<td>10kΩ</td>
<td>22kΩ</td>
<td>0.9A</td>
</tr>
<tr>
<td>10kΩ</td>
<td>Open</td>
<td>1.0A</td>
</tr>
<tr>
<td>10kΩ</td>
<td>10kΩ</td>
<td>1.1A</td>
</tr>
<tr>
<td>Open</td>
<td>10kΩ</td>
<td>1.2A</td>
</tr>
</tbody>
</table>

Figure 4. R38 and R22 Location on the PCB
2.4 Remote Temperature Sensing Thermistor

The P9225-R includes the TS input pin for optional temperature sensing via an external NTC thermistor, which can be used to monitor a remote temperature, such as for a coil or a battery charger. The over-temperature shutdown is triggered if the voltage on the TS pin is lower than 0.6V. The TS pin voltage can be calculated by Equation 1. Note that the NTC thermistor (RTS) is not populated on the R9225-R-EVK.

\[V_{TS} = V_{VDD18} \times \frac{NTC}{NTC + R19} \]

Equation 1

Where NTC is the thermistor's resistance and R19 is the pull-up resistor connected to the 1.8V supply voltage on the P9225-R-EVK.

![Figure 5. Location for R19 and Connecting Pads for the NTC Thermistor](image)

2.5 Communication Interface

P9225-R features an I2C interface circuit and an INT pin to communicate with an external AP. The AP can read the INT pin status or internal registers to determine what action is required.

The INT pin should be pulled up on the AP side to the proper voltage level. No pull-up resistor is included on the P9225-R-EVK. For further details, contact IDT Tech Support: www.IDT.com/go/support.

![Figure 6. Communication Port Pins](image)
2.6 Foreign Object Detection (FOD) Tuning

Refer to the P9225-R Datasheet and the datasheet for the transmitter for a full explanation of foreign object detection. The transmitter uses the value sent by the P9225-R in the Received Power Packet (RPP) to determine whether a foreign object has been detected. The RPPG and RPPO pins on the P9225-R allow adjusting the RPP value to adapt the P9225 for various applications. The voltage on the RPPG pin determines the gain adjustment of the RPP value, which can be set by the values of R27 and R28 (see Figure 7). The voltage on the RPPO pin determines the offset adjustment of the RPP value, which can be set by the values of R29 and R30.

Figure 7. RPPG and RPPO Connections

Figure 8. Locations of R27, R28, R29, and R30 on the PCB

The P9225-R calculates the original received power by multiplying the voltage on the VRECT pin by the coil current, and then it performs initial calibrations to obtain the middle product P_{CAL}. Then the RPP value is computed using Equation 2:

$$RPP = RPPG \times P_{\text{CAL}} + RPPO$$ \hspace{1cm} \text{Equation 2}
2.7 End-of-Charge (EOC)

When the voltage on the EOC pin is >1.4V, the P9225-R sends an End Power Transfer (EPT) packet (charge complete) to the transmitter, which then terminates the power transfer. The EOC pin is by default pulled to GND through R40.

Figure 9. Connection for the EOC Pin

![Connection for the EOC Pin]

Figure 10. EOC Test Point on Board

![EOC Test Point on Board]

R40 Pull-Down Resistor on the EOC Pin

2.8 Receiving Coil

The following coil is recommended with the P9225-R receiver for 5W applications for optimum performance. The recommended vendor has been tested and verified. This coil is used for L1 in the P9225-R-EVK.

Table 3. Coil Information

<table>
<thead>
<tr>
<th>Output Power</th>
<th>Vendor</th>
<th>Part Number</th>
<th>Inductance at 100kHz</th>
<th>DCR at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5W</td>
<td>Sunlord</td>
<td>SWA50R40H09C01BMDIDD</td>
<td>8.3μH±10%</td>
<td>150mΩ ±20%</td>
</tr>
</tbody>
</table>
3. Hardware Information

3.1 Schematic for P9225-R MM EV Board

Figure 11. Evaluation Board Schematic
3.2 Bill of Materials (BOM)

Table 4. P9225-R MM EV Board BOM

Note: See Table 3 for the details for L1.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Quantity</th>
<th>Value</th>
<th>Description</th>
<th>Part Number</th>
<th>PCB Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3</td>
<td>3</td>
<td>220nF</td>
<td>CAP CER 0.22µF 50V X7R 0603</td>
<td>GRM188R71H224KAC4D</td>
<td>0603</td>
</tr>
<tr>
<td>C5</td>
<td>1</td>
<td>47nF</td>
<td>CAP CER 0.047µF 50V X7R 0402</td>
<td>GRM155R71H473KE14D</td>
<td>0402</td>
</tr>
<tr>
<td>C6, C7, C14, C15</td>
<td>4</td>
<td>47nF</td>
<td>CAP CER 0.047µF 50V X7R 0402</td>
<td>GRM155R71H473KE14D</td>
<td>0402</td>
</tr>
<tr>
<td>C8, C16</td>
<td>2</td>
<td>15nF</td>
<td>CAP CER 0.015µF 50V X7R 0402</td>
<td>GRM155R71H153KA12J</td>
<td>0402</td>
</tr>
<tr>
<td>C9</td>
<td>1</td>
<td>3.3nF</td>
<td>CAP CER 3300PF 50V X7R 0402</td>
<td>GRM155R71H332KA01D</td>
<td>0402</td>
</tr>
<tr>
<td>C10</td>
<td>1</td>
<td>22µF</td>
<td>CAP CER 22µF 16V X5R 0805</td>
<td>CL21A226MOCLRNC</td>
<td>0805</td>
</tr>
<tr>
<td>C18, C20</td>
<td>2</td>
<td>1µF</td>
<td>CAP CER 1µF 10V X5R 0402</td>
<td>GRM155R61A105KE15D</td>
<td>0402</td>
</tr>
<tr>
<td>C19, C31</td>
<td>2</td>
<td>0.1µF</td>
<td>CAP CER 0.1µF 10V X5R 0201</td>
<td>GRM033R61A104ME15D</td>
<td>0201</td>
</tr>
<tr>
<td>C25</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21, C22</td>
<td>2</td>
<td>22µF</td>
<td>CAP CER 22µF 25V X5R 0805</td>
<td>CL21A226MAQNNNE</td>
<td>0805</td>
</tr>
<tr>
<td>C23</td>
<td>1</td>
<td>0.1µF</td>
<td>CAP CER 0.1µF 25V X5R 0201</td>
<td>GRM033R61E104KE14D</td>
<td>0201</td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>LED</td>
<td>LED GREEN CLEAR 0603 SMD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>1</td>
<td>1N4148W</td>
<td>DFN 150mA 75V Sm Sgnl Switching</td>
<td>CDSQR4148</td>
<td>0402</td>
</tr>
<tr>
<td>J1</td>
<td>1</td>
<td>I2C</td>
<td>HEADER_1X5_0P1PITCH60P42D</td>
<td>68002-205HLF</td>
<td>DI</td>
</tr>
<tr>
<td>RTS</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>5.1kΩ</td>
<td>RES SMD 5.1K OHM 5% 1/16W 0402</td>
<td>MCR01MRTJ512</td>
<td>0402</td>
</tr>
<tr>
<td>R6, R8, R13, R14</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td>0402</td>
</tr>
<tr>
<td>R17, R23, R39, R40, R19, R22, R27, R28, R29, R30, R33</td>
<td>11</td>
<td>10kΩ</td>
<td>RES SMD 10kΩ 5% 1/20W 0201</td>
<td>ERJ-1GEJ103C</td>
<td>0201</td>
</tr>
<tr>
<td>R18, R34, R38</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td>0201</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>P9225-R</td>
<td>MP Wireless Power Receiver</td>
<td>P9225-R</td>
<td>52-WLCSP</td>
</tr>
<tr>
<td>U2</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td>TDFN08</td>
</tr>
</tbody>
</table>
3.3 Board Layout

Figure 12. Evaluation Board Layout
4. Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9225-R-EVK</td>
<td>P9225-R Mass-Market Evaluation Kit</td>
</tr>
</tbody>
</table>
5. Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 24, 2018</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved.