GENERAL DISCLAIMER

Integrated Device Technology, Inc. ("IDT") reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance. IDT does not assume responsibility for use of any circuitry described herein other than the circuitry embodied in an IDT product. Disclosure of the information herein does not convey a license or any other right, by implication or otherwise, in any patent, trademark, or other intellectual property right of IDT. IDT products may contain errata which can affect product performance to a minor or immaterial degree. Current characterized errata will be made available upon request. Items identified herein as "reserved" or "undefined" are reserved for future definition. IDT does not assume responsibility for conflicts or incompatibilities arising from the future definition of such items. IDT products have not been designed, tested, or manufactured for use in, and thus are not warranted for, applications where the failure, malfunction, or any inaccuracy in the application carries a risk of death, serious bodily injury, or damage to tangible property. Code examples provided herein by IDT are for illustrative purposes only and should not be relied upon for developing applications. Any use of such code examples shall be at the user's sole risk.

Copyright © 2009 Integrated Device Technology, Inc.
All Rights Reserved.

The IDT logo is registered to Integrated Device Technology, Inc. IDT and CPS are trademarks of Integrated Device Technology, Inc.

"Accelerated Thinking" is a service mark of Integrated Device Technology, Inc.
Contents

1. Board Hardware .. 7
 1.1 Overview .. 7
 1.2 Board Architecture .. 7
 1.2.1 Baseband Processing Data Flow 7
 1.2.2 Board Specification 9
 1.2.3 Board Architecture 11
 1.3 Board Hardware Functional Description 12
 1.3.1 sRIO Switching and PrPMC Module 12
 1.3.2 FPGA Block ... 17
 1.3.3 DSP Block ... 19
 1.3.4 System Management Controller 22
 1.3.5 Clocking Management 24
 1.3.6 Power Management 26
 1.3.7 JTAG Port and I2C Bus 29
 1.4 PCB Characteristics ... 30
 1.4.1 PCB Form Factor .. 30
 1.5 Configuration Options .. 31
 1.5.1 DIP Switches ... 31
 1.5.2 Jumpers .. 34
 1.5.3 Push Button and Toggle Switch 34
 1.6 Board Connectors .. 36
 1.6.1 JTAG and FPGA Programming Connectors 36
 1.6.2 Communication Interface Connectors 36
 1.6.3 SMA Connectors .. 37
 1.6.4 MISC Connectors .. 37
 1.7 LEDs and Display .. 37
 1.7.1 Power Good Indicators 39
 1.7.2 AMC MMC LEDs ... 39
 1.7.3 LED Display ... 39
 1.7.4 Tri-color LEDs ... 39
 1.7.5 SFP Optical Transceiver LEDs 40
 1.7.6 GPIO LEDs .. 40

2. Board Software .. 41
 2.1 PMC Software ... 41
 2.1.1 Running the Software Using Ramdisk 42
 2.1.2 Running the Software Using NFS Server 43
 2.1.3 Installing the PMC Software 44
 2.1.4 Modifying the PMC Software 44
 2.2 FPGA Software .. 45
 2.2.1 Installing the FPGA Software 46
 2.2.2 Running the FPGA Software 48
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3</td>
<td>FPGA Hardware Load Facilities</td>
<td>49</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Software Environment</td>
<td>50</td>
</tr>
<tr>
<td>2.3</td>
<td>DSP Software</td>
<td>51</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Installing the DSP Software</td>
<td>51</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Running the DSP Software</td>
<td>52</td>
</tr>
<tr>
<td>2.3.3</td>
<td>DSP Hardware Facilities</td>
<td>52</td>
</tr>
<tr>
<td>2.4</td>
<td>PMC/DSP/FPGA Software Execution</td>
<td>53</td>
</tr>
</tbody>
</table>
About this Document

This document discusses the functional characteristics of the Tsi620 evaluation board. It describes the board’s key specifications, system architecture, and hardware implementation approaches. In addition, it discusses the board’s configuration options, connectors, and LEDs.

The next version of this document will explain how the board’s software can be used to test the board’s PMC, FPGA, and DSP capabilities.

Terms

AIF Antenna Interface
AMC Advanced Mezzanine Card
BB Baseband
bps Bit per second
BW Bandwidth (Usually means row data including encryption and service)
CPRI Common Public Radio Interface
DDR2 Double Data Rate 2 SDRAM
DFT Design for Testing
DSP Digital Signal Processor
EVB Evaluation Board
H/W Hardware
I/F Interface
LE Logic Element (FPGA programmable logic unit)
MMC MicroTCA AMC module management controller
OBSAI Open Base Station Air Interface
RF Radio Frequency
S/W Software
SFP Small Form Factor Pluggable
SPI Serial Peripheral Interface
SRIO Serial RapidIO
PrPMC Processor PMC
Revision History

60D7000_MA001_03, Formal, August 2009
There are no technical changes to this document.

60D7000_MA001_02, Formal, November 2008
This version was updated to include information about the software on the Tsi620 evaluation board (see “Board Software”).

60D7000_MA001_01, Preliminary, June 2008
This is the first version of the Tsi620 Evaluation Board Manual.
1. **Board Hardware**

This section discusses the following topics:

- “Overview” on page 7
- “Board Architecture” on page 7
- “Board Hardware Functional Description” on page 12
- “PCB Characteristics” on page 30
- “Configuration Options” on page 31

1.1 **Overview**

This chapter discusses the functional characteristics of the Tsi620 evaluation board. It describes the board’s key specifications, system architecture, and hardware implementation approaches.

The Tsi620 evaluation board serves the following purposes:

- To demonstrate the Tsi620’s potential application in a typical wireless baseband processing system
- To provide a hardware platform for customers to assess the Tsi620’s major features and to evaluate the performance of the device in a real wireless base station system
- To function as a design reference for customer’s Tsi620 hardware development

1.2 **Board Architecture**

1.2.1 **Baseband Processing Data Flow**

The Tsi620 evaluation board can function as a baseband processing module in a wireless base station application. The board can connect to an RF module with OBSAI/CPRI links. It is assumed that the board will be functioning in an MicroTCA chassis with AMC-sRIO backplane, which provides networking and system management interconnection.
The major baseband processing engine on the evaluation board is a TI triple-core DSP TCI6488 with 3-GHz processing capability. Altera’s Stratix3 FPGA with up to 150K LE functions as the DSP accelerator of the baseband data processing. Two antenna OBSAI/CPRI links provide the interface to an RF module through SFP optical transceiver over optical cable. The low-speed OBSAI link with 780 Mbps is directly connected to the FPGA, and another high-speed OBSAI with up to 3 Gbps is fed directly into the DSP antenna interface. One OBSAI/CPRI link is also supported between the AMC backplane at port 17 and the DSP antenna interface.

The Tsi620 functions as the central traffic hub to provide high-bandwidth data flow of the AMC backplane, FPGA, DSP, and PrPMC module. The processed data can be transmitted to the AMC sRIO backplane through the Tsi620 sRIO switch. Both upstream and downstream data flow can be implemented. The data transfer between the DSP and FPGA is through the Tsi620 using two 1x sRIO links so that the FPGA can function as a powerful accelerator to assist DSP baseband processing. The on-board PrPMC connector, which can function as the system management host and Ethernet networking interface, supports all standard PrPMC modules.
1.2.2 Board Specification

1.2.2.1 Baseband Processing Engine

- TI TCI6488 DSP
 - Triple 1-GHz core fixed-point DSP with enhanced baseband processing capability
 - 64-KB L1 cache, 3-MB L2 cache, and 64-KB L3 ROM
 - External 256 MB, 32-bit DDR2 SDRAM at 614 M DDR speed
 - External 4 MB serial Flash through the McBSP/SPI interface
 - One OBSAI/CPRI link from the SPF connector
 - One OBSAI/CPRI link from the AMC backplane port 17
 - OBSAI speed: 768 Mbps, 1536 Mbps, 3072 Mbps
 - CPRI speed: 614.4 Mbps, 1228.8 Mbps, 2457.6 Mbps
 - Four OBSAI/CPRI links to the FPGA support OBSAI at 768 Mbps or CPRI at 614.4 Mbps
 - One GigE SGMII port to RJ45 connector
 - Dual x1 sRIO ports to Tsi620 sRIO switch with 5 Gb bandwidth

- Altera Stratix3 FPGA
 - EP3SL150, 488 IOs, 780 FBGA 29 x 29 mm
 - 150K LE
 - 9.4-Mb embedded RAM
 - XGMII-like Interface to sRIO switch with 10 Gb bandwidth
 - One OBSAI/CPRI link to SFP port supports OBSAI at 768 Mbps or CPRI at 614.4 Mbps
 - Four OBSAI/CPRI links to DSP supports OBSAI at 768 Mbps or CPRI at 614.4 Mbps
 - One 10/100BaseT Ethernet to RJ45 connector
 - System clocking synchronization interface and management

1.2.2.2 Antenna Interface

- Supports OBSAI/CPRI protocols on antenna interface
- Two OBSAI/CPRI links through the SFP connectors
- One OBSAI/CPRI link from AMC port 17
- Low-speed OBSAI/CPRI link to FPGA supports OBSAI at 786 Mbps and CPRI at 614.4 Mbps
- High-speed OBSAI/CPRI link to DSP supports OBSAI up to 3072 Mbps and CPRI up to 2457.6 Mbps
- Supports system frame synchronization through SMA connectors or AMC backplane
1.2.2.3 sRIO Fabric

- Tsi620 functions as the central hub to provide high-bandwidth data traffic of backplane, FPGA, DSP, and PrPMC
- Tsi620 sRIO switch with dedicated PCI Interface and RIO XGMII port
- 4x sRIO link to AMC-sRIO backplane with 10-Gb bandwidth
- 4x sRIO link to AMC vertical slot for AMC to AMC connection in stand-alone mode
- 32-bit, 66-MHz PCI interface to PrPMC module
- XGMII-like 4x RIO port to FPGA with 10-Gb bandwidth
- Dual 1x sRIO links to DSP with 5-Gb bandwidth

1.2.2.4 Ethernet Network Interface

- GigE RJ45 port to DSP SGMII EMAC for external network connection
- PrPMC module can bridge between the external Ethernet network and Tsi620’s sRIO switch
- Supports AMC backplane port 0 GigE (1000Base-BX) to RJ45 to facilitate system management networking connection
- 10M/100M Base-T RJ45 to Stratix3 FPGA

1.2.2.5 Board Form Factor

- Single width, full height, and custom length AMC card (73.8W x 350L x 29H mm)
- Supports a standard PrPMC module on the extension segment
- Available vertical AMC connector for another AMC card in stand-alone operation mode
- Front panel connectors: 2 x SFP cages, 2 x RJ45 (GigE), and 1 x MINI-USB
- Additional connectors: RJ45 (100BaseT) and 12V DC input barrel plug
- Supports DSP emulation port and FPGA JTAG port on board
- AMC physical Hot Swap function with the manual toggle switch

1.2.2.6 Design for Testing Features

- 4x sRIO to AMC vertical connector for stand-alone operation
- USB based JTAG port on Tsi620 for the internal register access
- Tsi620 on-die scope support with standard JTAG port (Wiggler)
- 60-pin DSP emulator connector for DSP development
- Single JTAG header for both Altera FPGA and Actel FPGA programming and debugging
- GPIO signal network of Tsi620, FPGA, and DSP
- Two LED-display attached to FPGA
- LEDs, DIP switches, and test points, for testing support
1.2.2.7 Clocking Distribution

- On-board clock generation and distribution for sRIO domain, GigE domain, and OBSAI domain
- On-board clock generation and distribution for FPGA, DSP, and Tsi620
- SMT connectors for the base station system frame synchronization
- AMC backplane system clocking synchronization

1.2.2.8 Board System Controller

- Actel Flash-based FPGA, AFS600-FBGA256
- Board reset control
- Power sequence control and monitoring
- Board status report
- AMC MMC support
- Multiple voltage interface conversion

1.2.2.9 Power Management

- Meets AMC.0 specification for power management
- 12V power supply from AMC finger connector
- 12V@5A DC input connector for stand-alone operation
- 60W maximum power consumption including PrPMC module
- 3.3V@100mA for AMC management power

1.2.3 Board Architecture

*Figure 2 displays the architecture of the Tsi620 evaluation board. The board includes the following functional blocks; each block’s architectural features are discussed in the next section (see “Board Hardware Functional Description”):
- sRIO switching and PrPMC module
- Stratix3 FPGA block
- TCI6488 DSP block
- GigE interface
- Clocking distribution
- Power management
- System controller
- AMC backplane and front panel connectors*
1.3 Board Hardware Functional Description

1.3.1 sRIO Switching and PrPMC Module

Tsi620 sRIO switch provides the high-speed interconnection of AMC backplane, on-board vertical AMC slot, Stratix3 FPGA, TI DSP, and the processor module (see Figure 3).

1.3.1.1 sRIO Switch

- Tsi620 sRIO switch with an endpoint to PCI interface
- 4x sRIO link to AMC backplane with speed at 1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud
- AMC finger connector with MMC support
- 4x sRIO link to on-board AMC slot connector with speed at 1.25 Gbaud, 2.5 Gbaud, and 3.125 Gbaud
- Conforms to AMC.1 and AMC.4 specification by PCIMG
- AMC.4 fabric port assignment support: Type4 (4x) only
- Two 1x sRIO links between TCI6488 and Tsi620
- XGMII interface to FPGA with 4x RapidIO protocol
Table 1: sRIO Switch Power-Up Configuration Setting

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP_HOST</td>
<td>0/1</td>
<td>0 = Not host (PrPMC is supposed to be the host) (S4 bit[1])</td>
</tr>
<tr>
<td>SP_MAST_EN</td>
<td>1</td>
<td>EndPoint can issue RapidIO Request packets</td>
</tr>
<tr>
<td>SP0_MODE_SEL</td>
<td>0</td>
<td>0 = 4x Connect to AMC vertical connector</td>
</tr>
<tr>
<td>SP2_MODE_SEL</td>
<td>0</td>
<td>0 = 4x Connect to AMC finger connector</td>
</tr>
<tr>
<td>SP4_MODE_SEL</td>
<td>1</td>
<td>1 = SP4 1x and SP5 1x connect to dual DSP 1x sRIO</td>
</tr>
<tr>
<td>SP6_MODE_SEL</td>
<td>1</td>
<td>1 = SP6 4x mode for FPGA I/F</td>
</tr>
<tr>
<td>SP_IO_SPEED[1:0]</td>
<td>10,01</td>
<td>10 = 3.125 Gb (Default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 = 2.5 Gb (S4 bit[4:3])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00 = 1.25 Gb</td>
</tr>
<tr>
<td>SP_CLK_SEL[1:0]</td>
<td>01</td>
<td>01 = 156.25 MHz</td>
</tr>
<tr>
<td>SP(n)_PWRDN n=2,4,5,6</td>
<td>0</td>
<td>0 = Port 2, 4, 5, 6 are powered up (assuming SP(0) is always powered up)</td>
</tr>
</tbody>
</table>
1.3.1.2 Processor PMC (PrPMC) Interface

The PrPMC module is a high-performance, processor-based intelligent controller that can perform the following functions:

- On-board system management
- Board software configuration
- Board booting control
- System interrupt handling
- Interface bridging between the module and the external networking system
- System operation status report and maintenance
- Baseband data processing assistance in real time

The PrPMC interface has the following features:

- Compliant to the following specifications:
 - *PCI Local Bus Specification (Revision 2.3)*
 - *PCI Bus Power Management Specification (Revision 1.1)*
 - *IEEE1386.1*
 - *ANSI/VITA 32-2003*
- PCI interface:
 - 32-bit bus
 - 33 MHz/66 MHz
 - 3.3V signal only
 - Tsi620 internal PCI arbiter
 - Tsi620 PCI clock generator performs PCI clocking
 - PCI interrupt handler: PrPMC module
 - Tsi620 drives reset to PrPMC (PrPMC may issue system reset from PMC_RESETOUT#)
- PrPMC: system host for SRIO switching and monarch for PCI bus
- Physical position: PrPMC module located on AMC extension segment out of chassis
- Physical connector: 3x 64-pin CMC connectors (Jn1, Jn2, Jn3)
- Maximum power consumption: 24W

Table 1: SRIO Switch Power-Up Configuration Setting (Continued)

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP(n)_PWRDN n=1,3</td>
<td>1</td>
<td>1 = Port 1 and 3 are powered down</td>
</tr>
<tr>
<td>SP_TX_SWAP</td>
<td>1</td>
<td>1 = Ports [0, 2, 4] Tx lane order is D, C, B, A</td>
</tr>
<tr>
<td>SP_RX_SWAP</td>
<td>1</td>
<td>1 = Ports [0, 2, 4] Rx lane order is D, C, B, A</td>
</tr>
</tbody>
</table>
1.3.1.3 XGMII FPGA Interface

- Tx/Rx clocking: synchronous 156.25, 125, or 62.5 MHz
- Tx_CLK: source to FPGA for RIO-XGMII interface clocking
- Signaling: HSTL-1.5V DDR
- Transmit: Tx_CLK, Tx_D[31:0], Tx_CTL[3:0], Tx_PHY_DISABLE
- Receive: Rx_CLK, Rx_D[31:0], Rx_CTL[3:0], Rx_ERROR
- The FPGA provides both on-chip parallel and serial termination for the XGMII interface.

 Note: This feature is not supported on revision 1 of the prototype board.

1.3.1.4 JTAG, GPIO, and I2C

- Tsi620 supports I2C master mode or optional slave mode with jumper setting
- External socket I2C device with 8 DIP package (AT24C64B)
- Supports I2C configuration loading
- Uses FT2233D, USB to UART/FIFO controller, as USB to JTAG port converter
- Supports Tsi620 register access through JTAG port (mini-USB connector)
• Mini USB connector on front panel with USB2.0 compatible
• Tsi620 GPIO[0:15] connection to DSP and FPGA
• Standard JTAG header for Tsi620 on-die scope support

Table 4: I2C Power-Up Configuration Setting

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2C_MA (PU)</td>
<td>0</td>
<td>1 = Multi-byte peripheral addressing</td>
</tr>
<tr>
<td>I2C_SA[6:0] (PU)</td>
<td>0000000</td>
<td>I2C port slave address</td>
</tr>
<tr>
<td>I2C_SLAVE (PU)</td>
<td>0</td>
<td>0 = Disable the I2C slave mode</td>
</tr>
<tr>
<td>I2C_SEL (PU)</td>
<td>0 only</td>
<td>0 = Asserted, I2C_SA[1,0] are used as the lower 2 bits of EEPROM</td>
</tr>
<tr>
<td>I2C_DISABLE (PD)</td>
<td>0/1</td>
<td>0 = Enable I2C register loading</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Disable I2C register loading (DIP Switch, S4 bit [2])</td>
</tr>
</tbody>
</table>

Table 5: Tsi620 GPIO Signal Assignment

<table>
<thead>
<tr>
<th>GPIO Signal</th>
<th>Connect To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIO[0:15]</td>
<td>FPGA</td>
<td>Intercommunicating between Tsi620 and FPGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPIO[20:23] connected to LED D3, D5, D6, and D4, respectively</td>
</tr>
<tr>
<td>GPIO[24:31]</td>
<td>LED, Test point</td>
<td>Intercommunicating between Tsi620 and the system controller (AFS600)</td>
</tr>
</tbody>
</table>

1.3.1.5 AMC Interfaces

• AMC finger connector supports sRIO AMC backplane
• AMC finger connector supports MMC including I2C
• AMC finger connector supports port 0 GigE (1000Base-BX) interface to RJ45 through the VSC8221 PHY (AMC.2)
• AMC finger connector does not support JTAG
• 3.3V management power; maximum 100 mA from figure connector
• AMC vertical slot connector does not support JTAG, I2C, and MMC functions
• AMC vertical slot shared with 12V power and local 3.3V
• Total power consumption including PrPMC and AMC slot should not be more than 60W
1.3.2 FPGA Block

The Altera Stratix3 FPGA can function as either a baseband data processing engine or as an accelerator to assist DSP baseband data processing (see Figure 4). The FPGA block includes a 780-pin FPGA, FPGA configuration, RIO XGMII interface, and an antenna interface.

1.3.2.1 FPGA Device

- Altera Stratix3 EP3SL150 in 780-pin BGA
- Package: 29 x 29 mm, 780-pin FBGA with 1 mm pitch
- Speed grade: -3
- Core voltage: 1.1V
- Clock tree performance: 450 MHz for -4 grade
- Maximum IO pins: 480
- Maximum allowed power consumption: 10W

Figure 4: FPGA Block Diagram
1.3.2.2 **RIO XGMII Interface**

- Up to 12-Gb bandwidth of data transfer between FPGA and sRIO switch
- Reference clock: RX_CLK from Tsi620
- Frequency: 62.5, 125, or 156.25 MHz (Note: Revision 1 of the Tsi620 evaluation board does not support 156.25 MHz.
- Tx_CLK: sync with Rx-CLK and must be PLL locked before driving out
- Signaling: HSTL-1.5V Class-II
- Termination: FPGA on-die parallel 50-ohm termination for the receiver and on-die 25 ohm serial termination for the transmitter
- Protocol: RapidIO for logical and transport layers
- Rx: 38 signals
- Tx: 38 signals

1.3.2.3 **RF Antenna Interface**

- Compliant specifications: CPRI specification v2.1, OBSAI v2.0, OBSAI RP3 v4.0
- Supports 1x link to SFP connector with OBSAI-768 Mb or CPRI-614.4 Mb
- Supports 4x link to DSP with OBSAI-768 Mb or CPRI-614.4 Mb
- Clocking Source: FPGA local PLL with reference clock at 30.72 MHz and LVDS/LVPECL logic

1.3.2.4 **OBSAI System Clock an Synchronization**

- Compliant specifications: OBSAI RP1 standard
- Source mode: AMC backplane or SMA connectors
- System clock input: 30.72 MHz with LVDS/LVPECL logic standard
- Frame synchronization burst input: 3.84 MHz with LVTTL logic
- FPGA outputs the system synchronization signals to the DSP Frame Sync Module (FSM)

1.3.2.5 **EMAC 100BaseT Port**

- 10Mb/100Mb BaseT with MII interface
- External PHY to RJ45 connector

1.3.2.6 **FPGA Testing Support**

- 2-digit LED display
- One Mictor connector
- One 2-bit DIP switch
1.3.2.7 FPGA Configuration

- Configuration mode: Active serial and JTAG
- Serial configuration device: EPCS64, 3.3V, 67 Mb, 16-pin SOIC
- Dedicated header support USB blaster programming cable
- Dedicated JTAG port for FPGA JTAG configuration and debugging
- Voltage: 3.3V

1.3.3 DSP Block

The DSP block includes TI TCI6488 DSP, DDR2 memory, antenna interface, sRIO links, serial flash, GigE link, and JTAG emulation port (see Figure 5). The TI TCI6488 is the major baseband processing engine on the Tsi620 evaluation board.

1.3.3.1 TCI6488 DSP

- DSP core: Triple C64X+
- Core frequency: 983 MHz (61.44Mx16)
- Core PLL multiplier: 4 ~ 16
- Core reference clock: 61.44 MHz
- Cache: L1-64 KB, L2-3 MB
- Boot mode: I2C, EMAC, sRIO
- 16-bit GPIO assignment:
 - 4 bits to FPGA
 - 4 bits to Tsi620 through AFS600
 - 1 bit to PrPMC for interrupt
 - 1 bit to AFS600 for status report
 - 6 bits for DSP local configuration
- Package: 561-pin, 23 x 23 mm BGA with 0.8 mm pitch
- Voltage supply: core-1.1V SerDes-1.1V, IO-1.8V
- Power consumption: max 8W
- Thermal dissipation management: Passive heat-sink, core voltage auto-scaling
1.3.3.2 DDR2 SDRAM Memory

- DDR2 memory device: 2x MT47H64MHR-3, 64Mx16b-677M
- Interface speed: 307.2 MHz or 614.4M DDR
- Memory size: 256 MB
- DDR PLL provide the clocking to DDR2 SDRAM
- Interface data width: 32 bit
- Reference clock: 61.44 MHz
- I/O Standard: SSTL-1.8V

1.3.3.3 Antenna Interface

- Antenna I/F link: 1x to SFP connector with up to 3 Gbps
- Antenna I/F link: 1x to AMC backplane Port 17 with up to 3 Gbps
- FPGA link: 4x to FPGA with up to 768 Mbps per lane
- CPRI compatible: 614.4 Mbps, 1.2288 Gbps, 2.4576 Gbps link rates
- OBSAI compatible: 768 Mbps, 1.536 Gbps, 3.072 Gbps link rates
• Reference clock: 61.4 MHz LVDS/LVPECL
• Frame synchronization: receive the system clock and synchronization burst from FPGA

1.3.3.4 sRIO Links and GigE Port

• Two x1 sRIO links to Tsi620
• sRIO link rates: 1.25 Gbps, 2.5 Gbps, and 3.125 Gbps
• One GigE link with SGMII interface
• Reference clock: LVPECL 156.25 MHz
• MII interface to GigE switch and GigE PHY through 3.3V to 1.8V level shifter
• One RJ45 connector with integrated magnetic
• 10/100/1000BaseT capable
• VSC8221 GigE-PHY SGMII interface
• MII port controller by DSP

1.3.3.5 Serial FLASH

• McBSP0 is configured to SPI bus master to support serial flash memory
• Serial flash can store the boot loader or software image
• Serial flash: SF25L064, 64 Mb, 50 MHz SPI, 3.3V device
• 3.3V to 1.8V level shifter is required between DSP and Serial flash

1.3.3.6 EEPROM and Emulation Interface

• 1.8V I2C EEPROM, AT24C64B-10TU-18
• Support emulation interface with 60-pin emulation connector

1.3.3.7 DSP Interrupt Assignment

• Three non-mask interrupts with active high are routed to FPGA for user-defined usage.
• Interrupts between DSP and FPGA through DSP_GPIO[12:15] with active low
• Interrupts between DSP and Tsi620 by DSP_GPIO[6] through the AFS600 as the level shift.

 Note: Care must be taken that the interrupt signals must be always driven after the reset once their direction and function has been defined.

• The DSP is responsible for managing two GiGe PHYs and two GiGe PHY MI interface interrupts (MINT# is connected to DSP_GPIO[7] pin).
1.3.4 System Management Controller

The system management controller is implemented with an Actel FPGA AFS600-256, which is a flash memory based mixed signal FPGA (see Figure 6). This FPGA has an embedded processor and is mainly powered by 3.3V_MP from an AMC finger connector since the system controller must be functioning whenever 3.3V_MP is available.

1.3.4.1 System Controller Functionality

- Board reset control
- Board power sequencing control and power monitoring
- Real-time clock
- AMC MMC (Memory management control)
- Multi-voltage level conversion
- UART port to USB interface
- Board status report

For more information on the function of the system controller, see the source files for the Tsi620 Evaluation Board System Controller (35D7000_PL007).

Figure 6: System Management Controller
1.3.4.2 AFS600-FBGA256 Implementation

- Bank 0: 1.8V LVCOMS1V8
- Bank 1: 3.3V LVTTTL, LVCOMS, LVPECL
- Bank 2: 2.5V LVCOMS2V5
- Bank 4: 3.3V LVTTTL, LVCOMS, LVPECL
- Analog Bank: 0 ~ 12V power monitoring
- Power: 3.3V_MP only with max. 100mA

1.3.4.3 Reset Control

The Actel Flash FPGA is used on the evaluation board to implement the module management controller of the AMC interface. The Actel FPGA also functions as the central reset controller to handle the reset control glue logic.

Reset Control Requirement

Table 6: Major Components Reset Signal List

<table>
<thead>
<tr>
<th>Devices</th>
<th>Reset Signal</th>
<th>Logic</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsi620</td>
<td>CHIP_RSTn</td>
<td>3.3VLVTTL</td>
<td>Tsi620 chip reset</td>
</tr>
<tr>
<td>Tsi620</td>
<td>BLOCK_RSTn</td>
<td>3.3VLVTTL</td>
<td>Tsi620 block reset</td>
</tr>
<tr>
<td>TI-DSP</td>
<td>PORz</td>
<td>1.8VLVCOMS</td>
<td>DSP power-on reset. Held low >1 ms after power and clk</td>
</tr>
<tr>
<td>TI-DSP</td>
<td>XWRSTz</td>
<td>1.8VLVCOMS</td>
<td>DSP warm reset. No affect on PLL and emulation</td>
</tr>
<tr>
<td>FPGA</td>
<td>HRSTn</td>
<td>3.3VLVTTL</td>
<td>FPGA power-on reset and trigger device reset</td>
</tr>
<tr>
<td>FPGA</td>
<td>SRSTn</td>
<td>3.3VLVTTL</td>
<td>FPGA soft reset and no affect to PLL</td>
</tr>
<tr>
<td>V8221</td>
<td>HRESETn</td>
<td>3.3VLVTTL</td>
<td>GigE PHY reset</td>
</tr>
</tbody>
</table>

Reset Control Logic

- System management controller: Actel AFS256-FG256, Flash-based mixed signal FPGA
- Supports multi-volt device control
1.3.4.4 MMC Implementation

The MMC’s design is based on Actel’s MMC reference design, which has been customized with an extended analog block for additional on-board voltage, current, and temperature monitoring functions. The Actel MMC reference design is a custom 8051-based microcontroller implemented in an Actel AFS600-FG256 Fusion mixed-signal FPGA, and is supported by IPMI firmware from uBlade. The MMC design supports the basic requirements defined by the PICMIG AMC.0 and Intel IPMI v2.0 specifications. For additional information about the MMC design, contact the Actel or IDT Technical Support team.

1.3.5 Clocking Management

This section specifies the clocking generation and distribution implementation.

1.3.5.1 Clocking Source Requirement

General requirements for all clocking sources:

- Stability: +/-100 ppm
- Duty cycle: 40/60%
- Trise/Tfall: 50 ps–1300 ps for 20% to 80% swing

![Figure 7: Reset Control Illustration](image)
Table 7 summarizes the clocking sources requirements for all major components on the Tsi620 evaluation board.

Table 7: Clocking Sources List

<table>
<thead>
<tr>
<th>Clock Name</th>
<th>Function/Domain</th>
<th>Logic Standard</th>
<th>Frequency</th>
<th>Input Jitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLK(p,n)</td>
<td>Tsi620 system reference</td>
<td>LVDS/PECL(AC)</td>
<td>156.25 MHz</td>
<td></td>
</tr>
<tr>
<td>SP6_RXCLK</td>
<td>Tsi620 XGMAI RXCLK</td>
<td>HSTL-1.5V</td>
<td>62.5 MHz, 125 MHz, 156.25 MHz</td>
<td>175 ps (pk2pk)</td>
</tr>
<tr>
<td>PCI_CLK</td>
<td>Tsi620 PCICLK input</td>
<td>PCI-3.3V</td>
<td>66.7 MHz/33.3 MHz</td>
<td>+/-100 ps</td>
</tr>
<tr>
<td>RIO_XGMII_RxCLK</td>
<td>FPGA XGMII RxCLK input from Tsi620</td>
<td>HSTL-1.5V</td>
<td>62.5 MHz, 125 MHz, 156.25 MHz</td>
<td></td>
</tr>
<tr>
<td>GigE_REFCLK</td>
<td>FPGA GigE EMAC reference</td>
<td>LVDS/PECL(AC)</td>
<td>156.25 MHz</td>
<td></td>
</tr>
<tr>
<td>AIF_REFCLK</td>
<td>FPGA OBSAI/OPRI reference</td>
<td>LVDS/PECL(AC)</td>
<td>30.72 MHz</td>
<td></td>
</tr>
<tr>
<td>SYSCLK{p,n}</td>
<td>DSP core and AIF reference</td>
<td>LVDS/PECL(AC)</td>
<td>61.44 MHz</td>
<td>2 ps RMS</td>
</tr>
<tr>
<td>DDRREFCLK(p,n)</td>
<td>DSP DDR2 reference</td>
<td>LVDS/PECL(AC)</td>
<td>61.44 MHz</td>
<td>75 ps (pk2pk)</td>
</tr>
<tr>
<td>RIOSGMIICLK(p,n)</td>
<td>DSP sRIO and SGMII reference</td>
<td>LVDS/PECL(AC)</td>
<td>156.25 MHz</td>
<td>4 ps RMS 56 ps (pk2pk)</td>
</tr>
<tr>
<td>GigE PHY_REFCLK</td>
<td>GigE PHY Crystal</td>
<td>25 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFS600_REFCLK</td>
<td>AFS600 reference clock</td>
<td>Internal RC</td>
<td>100 MHz +/-1%</td>
<td></td>
</tr>
</tbody>
</table>

1.3.5.2 Clocking Architecture Implementation

There are two clock synthesizers on board that provide the reference clocking required for the FPGA, DSP, and sRIO switch. The first synthesizer has a 25-MHz crystal source: it outputs 156.25 MHz with LVPECL logic to serve sRIO system reference clock, FPGA EMAC and SGMII reference, and DSP sRIO and SGMII reference. The second clock synthesizer has a 30.72-MHz oscillator source: it supplies 30.72 MHz and 61.44 MHz CML clocking references for the DSP, DDR2, FPGA antenna interface, DSP core PLL, and DSP antenna interface (see Figure 8).

In order to simplify the clocking architecture, both the DSP core frequency and the on-board DDR2 memory operation frequency, run at slightly lower than their maximum specification. Both DSP and DDR2 memory use the same clocking source at 61.44 MHz, DSP core frequency is 983 MHz, and DDR2 memory operates at 614.4 M double data rate.
The Tsi620 FMAC and FPGA RIO-XGMII interface function in the synchronous mode. The TX_CLK from the Tsi620 is sourcing from its SYSCLK(p,n), while the FPGA must use RX_CLK as its RIO-XGMII operation reference clock. The TX_CLK driven from the FPGA must therefore be synchronized with TX_CLK driven by the Tsi620. In addition, TX_CLK of the FPGA cannot be applied to the Tsi620 until the FPGA PLL is locked.

Figure 8: Clocking Generation and Distribution

The FPGA XGMII PLL is synchronized to received RX_CLK from the Tsi620. The clock synthesizer CDC610 must be managed through its serial interface, while the DSP is responsible for CDC610 configuration through its I2C bus.

1.3.6 Power Management

1.3.6.1 Power Supply and Consumption Analysis

The board power distribution design must comply with AMC.1 power management requirements. The AMC card has only single +12V supply available from either AMC finger connector or DC barrel plug:

- AMC max power consumption: <60W including all add-in cards
- AMC finger connector: 12V@5A for MicroTCA chassis operation
- DC barrel plug: 12V@5A for stand-alone operation
Table 8 summarizes the major components’ supply requirements and max potential current demand.

Table 8: Major Components Power Supply Requirement (Power Budget)

<table>
<thead>
<tr>
<th>Device</th>
<th>1.1V</th>
<th>1.2V</th>
<th>1.5V</th>
<th>1.8V</th>
<th>2.5V</th>
<th>3.3V</th>
<th>3.3VSB</th>
<th>5V</th>
<th>12V</th>
<th>Notes^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsi620</td>
<td>3A</td>
<td>0.5A</td>
<td></td>
<td>0.5A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><4.7W, sequencing</td>
</tr>
<tr>
<td>TCI6488</td>
<td>7A+1A</td>
<td></td>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><9W, sequencing req.</td>
</tr>
<tr>
<td>EP3SL150</td>
<td>8A</td>
<td>0.5A</td>
<td>0.5A</td>
<td>0.5A</td>
<td>0.5A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assume <10W (TBV)</td>
</tr>
<tr>
<td>DDR2 x6</td>
<td></td>
<td>0.7A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350mA x2</td>
</tr>
<tr>
<td>VCS8221x2</td>
<td></td>
<td>0.5Ax2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.8w inner reg@1.2v</td>
</tr>
<tr>
<td>S25FL064</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IG</td>
</tr>
<tr>
<td>PrPMC</td>
<td>4.5A</td>
<td>3A</td>
<td>0.5A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tall<25W, -12V@0.5A</td>
</tr>
<tr>
<td>AT24C512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IG</td>
</tr>
<tr>
<td>AMC SLOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3A</td>
<td>1/2(60W)=30W</td>
</tr>
<tr>
<td>DDR2 x6</td>
<td>80mA</td>
<td>0.1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3V_MP@100mA</td>
</tr>
<tr>
<td>CDCL6010</td>
<td></td>
<td>0.5A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMC FGR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6A</td>
<td>8V~14Vin, 60W</td>
</tr>
<tr>
<td>Ex Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-5A</td>
<td>From DC barrel plug</td>
</tr>
<tr>
<td>LED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8A+8A</td>
<td>3A</td>
<td>1A</td>
<td>3A</td>
<td>0.5A</td>
<td>7A</td>
<td>1A</td>
<td>3A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a. IG = Ignore, FGR = Finger connector.

1.3.6.2 Power Distribution Implementation

- The LTM4601, LTC DC/DC switching micro module generates +5V, +3.3V, 1.1V_DSP, and 1.1V_FPGA (see Figure 9)
- 4x LTM4601 work in synchronous mode and are controlled by a 4 phase PLL driver
- TCI6488 power management supports the core voltage scaling for power consumption auto-control
- TCI6488 SerDes 1.1V supply comes from FPGA_CORE_1.1v
- Both LTM4601and TI switching modules support auto-tracking, which is used for silicon power sequencing control
- The LTM4604, 4A, (15 mm x 9 mm x 2.3 mm) DC/DC switching regulator generates +1.2V, +1.5V, +1.8V, and +2.5v from either 5V rail or 3.3V rail.
- -12V is implemented on-board for PrPMC only with max I <= 350mA
1.3.6.3
Power Monitoring and Sequencing Control

- The Actel AFS600 is the on-board power monitor and power-on sequencing controller, and should be working whenever 12V and 3.3V_MP are available. A 2.5V reference and a couple of comparators are used to assist the sequencing control.
- Tsi620 sequencing: 1.5V → 1.2V → 3.3V
- TI-DSP sequencing: 1.8V → 500μS → CVdd and 1.1V
- FPGA sequencing: VCCio → VCCcore
- Proposed sequencing: 12V → 5V → 1.5V → 1.2V → 3.3V → 2.5V → 1.8V → 1.1V_core + 1.1V_dsp
- 3.3V_MP (100mA) is for AFS600. 3.3VSB is only working in stand-alone mode

The power-up sequencing has four stages:

1. After 3.3V_MP available, the AFS600 system controller is functioning and waiting for +12V from the AMC backplane once the Hot Swap handler is closed.
2. When +12V is powered up and SW2 is turned on, the AFS600 signals to start +5V, 1.5V, and 1.2V.
3. After 1.2V is powered up, the third power chain, +3.3V, 2.5V, and 1.8V, start to ramp up.
4. When 1.8V power-good is detected, the sequencing control logic turns on the 1.1V_DSP and 1.1V_FPGA rails.

1.3.6.4
Power Consumption Assumption

The real power consumption of PrPMC and FPGA are critical to the power management. An active cooling fan is required for the FPGA, and passive cooling heat sinks are needed for the DSP and Tsi620.

- Assuming the power consumption of PrPMC module is <15W
- Assuming the power consumption of FPGA is <5W
- Assuming the power consumption of DSP + DDR2 are <10W
- Assuming the power consumption of MISC is <10W
- Assuming the power consumption of Tsi620 is <5W

So, the maximum power consumption allowed for the AMC vertical slot is <15W.
1.3.7 JTAG Port and I2C Bus

1.3.7.1 JTAG Interface Implementation

- The Altera FPGA and Actel FPGA are in the same 3.3V JTAG chain (they share the single 10-pin JTAG header)
- Tsi620’s internal registers can be accessed by either USB or JTAG header
• The FDTI-2232D is self-powered by 3.3V_USB from the mini-USB connector. It provides bridges the USB interface and JTAG port for the Tsi620, and also provides a USB to UART interface for the AFS600.

• JTAG connectors for the following:
 — TI 6488 DSP (60-pin emulator)
 — Tsi620 JTAG
 — Actel FPGA and Stratix3 JTAG chain access

1.3.7.2 Local I2C Bus

There are two segments of the local I2C bus (see Figure 10):

• 3.3V I2C bus: The Tsi620 is I2C master. This bus includes the Tsi620 I2C EEPROM and two SFP optical transceivers.

• 1.8V I2C bus: The DSP is I2C master. This bus includes the DSP, I2C EEPROM, and CDCL6010.

Figure 10: Local I2C Bus Connection

1.4 PCB Characteristics

1.4.1 PCB Form Factor

• Board form factor: AMC single width module

• Module dimension: 73.5 mm x 350 mm (Out-chassis section length 169 mm)

• Module height: Full height, components side 1 is <13.7 mm; components side 2 is <2.5 mm

• Thickness: 1.6 mm+/−10 %

• No mechanical front panel (face-plate) implemented

• Additional stand off or mounting holes are available for both chassis and standalone operation
1.5 Configuration Options

This section describes the configuration options for the Tsi620 evaluation board.

1.5.1 DIP Switches

Switches S1 to S5 combine four small slide switches identified with numbers 1 to 4 (see example in Figure 5). For information on the individual DIP switches, see Tables 9 to 13.

Figure 5: DIP Switch Package/Individual Switch Position

ON: represent “0” or logic “Low”

OFF: represent “1” or logic “High”
1.5.1.1 S1 – DSP Boot-mode Setting

Table 9: S1[1:2:3:4] BSP Boot-mode Setting

<table>
<thead>
<tr>
<th>Switch S1[1:2:3:4]</th>
<th>BOOTMODE[0:3]</th>
<th>DSP Boot-mode</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-ON-ON-ON</td>
<td>0-0-0-0</td>
<td>No Boot</td>
<td></td>
</tr>
<tr>
<td>OFF-ON-ON-ON</td>
<td>1-0-0-0</td>
<td>I2C Master Boot A</td>
<td>Not supported</td>
</tr>
<tr>
<td>ON-OFF-ON-ON</td>
<td>0-1-0-0</td>
<td>I2C Master Boot B</td>
<td>I2C address at 0x51</td>
</tr>
<tr>
<td>OFF-OFF-ON-ON</td>
<td>1-1-0-0</td>
<td>I2C Slave Boot</td>
<td></td>
</tr>
<tr>
<td>ON-ON-OFF-ON</td>
<td>0-0-1-0</td>
<td>EMAC Master Boot</td>
<td></td>
</tr>
<tr>
<td>OFF-OFF-OFF-ON</td>
<td>1-0-1-0</td>
<td>EMAC Slave Boot</td>
<td></td>
</tr>
<tr>
<td>ON-OFF-OFF-ON</td>
<td>0-1-1-0</td>
<td>EMAC Forced-Mode Boot</td>
<td></td>
</tr>
<tr>
<td>ON-OFF-ON-OFF</td>
<td>0-1-0-1</td>
<td>sRIO Boot – 1.25 G</td>
<td>CFG2 - 1.25 G (Default)</td>
</tr>
<tr>
<td>OFF-OFF-ON-OFF</td>
<td>1-1-0-1</td>
<td>sRIO Boot – 3.125 G</td>
<td>CFG3 – 3.125 G</td>
</tr>
<tr>
<td>All others</td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

1.5.1.2 S2 – Tsi620 GPIO Setting

Table 10: S2[1:2:3:4] Setting

<table>
<thead>
<tr>
<th>Switch S2</th>
<th>Signal Assignment</th>
<th>Default</th>
<th>ON/OFF Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 1</td>
<td>Tsi620_GPIO16</td>
<td>OFF</td>
<td>ON = 0 or logic low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF = 1 or logic high</td>
</tr>
<tr>
<td>Bit 2</td>
<td>Tsi620_GPIO17</td>
<td>OFF</td>
<td>ON = 0 or logic low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF: 1 or logic high</td>
</tr>
<tr>
<td>Bit 3</td>
<td>Tsi620_GPIO18</td>
<td>OFF</td>
<td>ON = 0 or logic low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF = 1 or logic high</td>
</tr>
<tr>
<td>Bit 4</td>
<td>Tsi620_GPIO19</td>
<td>OFF</td>
<td>ON = 0 or logic low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF = 1 or logic high</td>
</tr>
</tbody>
</table>
1.5.1.3 S3 – MISC Setting

Table 11: S3[1:2:3:4] Setting

<table>
<thead>
<tr>
<th>Switch S3</th>
<th>Signal Assignment</th>
<th>Default</th>
<th>ON/OFF Setting</th>
</tr>
</thead>
</table>
| Bit 1 | PCI_M66EN | 1 = OFF | ON = Force PCI bus clock at 33 MHz
 | | | OFF = Set PCI bus clock at 66 MHz |
| Bit 2 | Tsi620_BCE | 1 = OFF | ON = Set Tsi620_BCE to “0” for on-die-scope operation
 | | | OFF = Normal operation |
| Bit 3 | FPGA_SET_3V3 | 1 = OFF | ON = 0 or logic low to FPGA
 | | | OFF = 1 or logic High to FPGA |
| Bit 4 | AFS_SET_3V3 | 1 = OFF | Reserved |

1.5.1.4 S4 – Tsi620 Option Setting

Table 12: S4[1:2:3:4] Setting

<table>
<thead>
<tr>
<th>Switch S4</th>
<th>Signal Assignment</th>
<th>Default</th>
<th>ON/OFF Setting</th>
</tr>
</thead>
</table>
| Bit 1 | TSI620_SP_HOST | 1 = OFF | ON = Force PCI bus clock at 33 MHz
 | | | OFF = Set PCI bus clock at 66 MHz |
| Bit 2 | TSI620_I2C_DISABLE| 1 = OFF | ON = Set Tsi620_BCE to 0 for on-die-scope operation
 | | | OFF = Normal operation |
| Bit 3 | TSI620_SP_IO_SPEED[1:0] | 1_0 | 0_0 = 1.25 Gbps sRIO link
 | | | 0_1 = 2.5 Gbps sRIO link
 | | | 1_0 = 3.125 Gbps sRIO link
 | | | 1_1 = Reserved |

1.5.1.5 S5 – DSP Clocking Setting

Table 13: S5[1:2:3:4] Setting

<table>
<thead>
<tr>
<th>Switch S5</th>
<th>Signal Assignment</th>
<th>Default</th>
<th>ON/OFF Setting</th>
</tr>
</thead>
</table>
| Bit 1 | CORECLKSEL | 1 = OFF | ON = Force PCI bus clock at 33 MHz
 | | | OFF = Set PCI bus clock at 66 MHz |
| Bit 2 | FPGA_SET_1V8 | 1 = OFF | ON = 0 or logic low to FPGA
 | | | OFF = 1 or logic High to FPGA |
| Bit 3 | 30M72_SEL[0:1] | 0_0 | 0_0: On-board 30.72 MHz oscillator
 | | ON_ON | 0_1: 30.72 MHz from AFS600
 | | | 1_0: 30.72 MHz from FPGA
 | | | 1_1: External 30.72 MHz clock from SMA J13 |
1.5.2 Jumpers

The Tsi620 evaluation board has only one jumper, J6, which is reserved for the future use. This jumper should be left open for the normal operation.

1.5.3 Push Button and Toggle Switch

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Switch Type</th>
<th>Signal Assignment</th>
<th>Function Description</th>
</tr>
</thead>
</table>
| SW1 | Push button | SOFT_RESETN | When the button is pushed, the following occurs:
 - Negative asserted at Tsi620 pin, BLK_RSTN
 - Negative asserted at DSP pin, XWRSTN; and FPGA pin, FPGA_SRSTN
 - Negative asserted at GigE PHY VSC8621 pin, SRESETN |
| SW2 | Toggle Switch | POWER_ON/OFF, HotSwap_OPEN/CLOSE | In non AMC-Chassis mode, after +12V applied, SW2 functions as the power sequencing ON/OFF switch.
In AMC-Chassis mode, SW2 functions as Hot Swap switch
When switch handler position points to RJ45 side, it represents as “Power OFF” or “Hot Swap Switch Open”.
When switch handler position points to push button side, it represents as “Power ON” or “Hot Swap Switch Close”. |
| SW3 | Push button | SYSTEM_RESETN | When the button is pushed, the following occurs:
 - Negative asserted FPGA pin, NCONFIG, for FPGA re-configuration
 - Negative asserted FPGA pin, FPGA_HRSTN
 - Negative asserted Tsi620 pin, CHIP_RSTN and TRSTN
 - Negative asserted USB_RSTN
 - Negative asserted DSP pin, PORSTN
 - Negative asserted GigE PHY pin, HRSTN
 - Positive asserted U7, 156.25M PLL buffer, pin MR |
Figure 11: Location of Switches and Connections
1.6 Board Connectors

This section discusses the external connectors on the Tsi620 evaluation board.

The pin definition for each board connector is not included in this document. For information on pin assignments, see the Tsi620 evaluation board schematics (60D7000_SC003).

1.6.1 JTAG and FPGA Programming Connectors

<table>
<thead>
<tr>
<th>Connector Name</th>
<th>Reference Designator</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP Emulator</td>
<td>J2</td>
<td>A dedicated 60-pin header for TI DSP emulator connection</td>
</tr>
<tr>
<td>FPGA Programmer</td>
<td>J5</td>
<td>A dedicated 10-pin header for Altera FPGA active serial flash programming</td>
</tr>
<tr>
<td>FPGA JTAG</td>
<td>J9</td>
<td>A 10-pin header of the JTAG chain of both Actel FPGA and Altera FPGA. The header supports both Actel and Altera FPGA programming download cables.</td>
</tr>
<tr>
<td>Tsi620 JTAG</td>
<td>J10</td>
<td>A dedicated 16-pin header for the Tsi620 JTAG port; this header is pin-matched to a Wiggler JTAG cable.</td>
</tr>
<tr>
<td>USB Port</td>
<td>U35</td>
<td>A mini-USB port to access the Tsi620 JTAG port or AFS600 UART port through an FTDI FT2232D converter.</td>
</tr>
</tbody>
</table>

- The header supports both Actel FPGA and Altera FPGA JTAG access only when both FPGAs are powered up. IDT does not recommend re-programming the Actel FPGA without consulting the IDT Technical Support team.
- Both J10 and U35 can be used to access the Tsi620’s internal registers through its JTAG port; however, they work exclusively.
- FT2232D has independent USB-to-JTAG and USB-to-UART channels.

1.6.2 Communication Interface Connectors

<table>
<thead>
<tr>
<th>Connector Name</th>
<th>Reference Designator</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA RJ45</td>
<td>U26</td>
<td>A dedicated RJ45 port for Altera FPGA 10/100BaseT Ethernet interface</td>
</tr>
<tr>
<td>GigE RJ45</td>
<td>U34</td>
<td>Dual RJ45 Jack for GigE interface Upper RJ45 port: AMC-SGMII GigE port Lower RJ45 port: DSP-SGMII GigE port</td>
</tr>
<tr>
<td>FPGA SFP</td>
<td>J14</td>
<td>A dedicated FPGA SFP connector of antenna RF SerDes interface for OBSAI at 768 Mbps or CPRI at 614.4 Mbps.</td>
</tr>
<tr>
<td>DSP SFP</td>
<td>J15</td>
<td>A dedicated DSP SFP connector of antenna RF SerDes interface for OBSAI at 3072 Mbps or CPRI at 2457.6 Mbps.</td>
</tr>
</tbody>
</table>

- IDT recommends Avago optical transceiver: AFBR-57J5APZ, tri-speed OBSAI/CPRI optical transceiver.
1.6.3 SMA Connectors

<table>
<thead>
<tr>
<th>Connector Name</th>
<th>Reference Designator</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential SMA pair</td>
<td>J7 & J8</td>
<td>Connected to FPGA pin, AE2 & AF1<sup>a</sup></td>
</tr>
<tr>
<td>Differential SMA pair</td>
<td>J11 & J12</td>
<td>Connected to FPGA pin, AC2 & AC1<sup>a</sup></td>
</tr>
<tr>
<td>MICTOR</td>
<td>J13</td>
<td>30.72 MHz external clock source<sup>b</sup></td>
</tr>
</tbody>
</table>

^a LVDS or 2.5V
^b 3.3V TTL

1.6.4 MISC Connectors

<table>
<thead>
<tr>
<th>Connector Name</th>
<th>Reference Designator</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V Supply</td>
<td>U29</td>
<td>A dedicated +12V DC barrel input connector<sup>a</sup></td>
</tr>
<tr>
<td>AMC Slot</td>
<td>P1</td>
<td>AMC card slot with the components side facing SMA</td>
</tr>
<tr>
<td>MICTOR</td>
<td>J4</td>
<td>A 32-pin Mictor connector attached to the FPGA</td>
</tr>
<tr>
<td>PrPMC</td>
<td>J17, J18, J16</td>
<td>Standard PrPMC card connector</td>
</tr>
</tbody>
</table>

^a IDT recommends minimal 5A supply capability.

1.7 LEDs and Display

The following figure shows the location of the board’s LEDs and displays.
Figure 12: Location of LEDs and Displays (Top View)
1.7.1 Power Good Indicators

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D21</td>
<td>Red</td>
<td>Indicates +12V and 3.3VSB are good</td>
</tr>
<tr>
<td>D22</td>
<td>Orange</td>
<td>Indicates 5V is good</td>
</tr>
<tr>
<td>D20</td>
<td>Orange</td>
<td>Indicates 3.3V is good</td>
</tr>
<tr>
<td>D16</td>
<td>Green</td>
<td>Indicates 1.1V_DSP is good</td>
</tr>
<tr>
<td>D17</td>
<td>Green</td>
<td>Indicates 1.1V_FPGA is good*</td>
</tr>
</tbody>
</table>

* Not supported by the Tsi620 evaluation board.

1.7.2 AMC MMC LEDs

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>Yellow</td>
<td>Pharos Flash: Normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid Yellow: Either HRSTn or SRSTn is asserted</td>
</tr>
<tr>
<td>D14</td>
<td>Green</td>
<td>MMC LED2</td>
</tr>
<tr>
<td>D13</td>
<td>Red</td>
<td>MMC LED1</td>
</tr>
<tr>
<td>D12</td>
<td>Blue</td>
<td>MMC LED0</td>
</tr>
</tbody>
</table>

1.7.3 LED Display

Two 7-segment LED displays, U21 and U22, are directly controlled by the FPGA. The LED display can be used as an FPGA operation status indication.

1.7.4 Tri-color LEDs

D18 and D19 are tri-color LED devices, which are attached to the Actel FPGA AFS600. By default, D18 and D19 demonstrate rotated color display in the second interval. They can be used as a board status indicator by the system controller, which is implemented with the AFS600 FPGA.
1.7.5 SFP Optical Transceiver LEDs

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8</td>
<td>Green</td>
<td>J14 SFP optical transceiver transmitter is good</td>
</tr>
<tr>
<td>D9</td>
<td>Orange</td>
<td>J14 SFP optical transceiver receiver is good</td>
</tr>
<tr>
<td>D10</td>
<td>Green</td>
<td>J15 SFP optical transceiver transmitter is good</td>
</tr>
<tr>
<td>D11</td>
<td>Orange</td>
<td>J15 SFP optical transceiver receiver is good</td>
</tr>
</tbody>
</table>

1.7.6 GPIO LEDs

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>Yellow</td>
<td>Tsi620 GPIO20:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = OFF</td>
</tr>
<tr>
<td>D5</td>
<td>Yellow</td>
<td>Tsi620 GPIO21:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = OFF</td>
</tr>
<tr>
<td>D6</td>
<td>Yellow</td>
<td>Tsi620 GPIO22:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = OFF</td>
</tr>
<tr>
<td>D4</td>
<td>Yellow</td>
<td>Tsi620 GPIO23:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = OFF</td>
</tr>
</tbody>
</table>
2. **Board Software**

This chapter describes how to use the software that is on the Tsi620 evaluation board. The following topics are discussed:

- “PMC Software” on page 41
- “FPGA Software” on page 45
- “DSP Software” on page 51
- “PMC/DSP/FPGA Software Execution” on page 53

2.1 PMC Software

The Tsi620 evaluation board (EVB) features a PCI Mezzanine Card (PMC) connector on the underside of the board for connecting a third-party board to the PCI port of the Tsi620. The standard evaluation kit ships with the Embedded Planet EP8343 PMC connected to this port. The software running on the PMC is based on the Linux kernel, the GNU software utilities, and custom applications provided by IDT. The PMC software demonstrates the use of Tsi620 generated RapidIO transactions to access both the FPGA and the DSP from the PMC.

The PMC software consists of four main components:

- Linux kernel and GNU utilities
- Tsi620 driver (tsi620.ko)
- RapidIO device access driver (rio-dev.ko)
- User space applications

The Linux kernel is based on version 2.6.26 available from www.kernel.org. A few modifications have been done to the kernel to provide for better support of the EP8343 board and enhanced RapidIO capabilities. The modified source of the Linux kernel is licensed under the GNU Public Licence (GPL), and is available on the companion CD for the Tsi620 evaluation board. The GNU utilities consist of a number of programs for Unix-like operating systems. The utilities included are from the Embedded Linux Development Kit (ELDK) collection available from www.denx.de.

The Tsi620 driver (tsi620.ko) is a low-level hardware driver for the Linux operating system that allows the Tsi620 device to be accessed as a RapidIO device. This driver translates RapidIO requests from the Linux kernel into PCI accesses that perform the requested operations from the Tsi620. While the source code for this driver is available on the companion CD for the Tsi620 evaluation board, the driver is not licensed under the GPL and should not be compiled into the kernel. As a result, only the compiled binary kernel module (tsi620.ko) should be distributed to customers (for licensing information, please contact IDT by sending an email to sRIO@idt.com).
The RapidIO device access driver (rio-dev.ko) is another kernel module that allows for user space applications to communicate with RapidIO devices. This driver allows special device files (in the /dev directory of the system) to be created and used to access RapidIO devices as if they were simply a file. The driver works with any RapidIO host that implements a specific set of kernel interfaces; however, the only known driver that implements these interfaces is the Tsi620 driver. For example, the RapidIO port built into the Freescale 8548 could potentially be accessed through this driver, however the Freescale driver would have to be modified to support the device access routines. Because the driver depends on the RapidIO system being enumerated, this driver must be loaded after the RapidIO hardware driver. As the Tsi620 driver may only be loaded from a binary module after boot, the device access driver should also be compiled as a binary module and loaded after the Tsi620 driver. This driver may be released under the GPL, and the source code is included with the Linux kernel code on the companion CD for Tsi620 evaluation board.

The user space applications demonstrate access of RapidIO devices using the device access driver described above. The applications communicate with the DSP (or FPGA) to demonstrate correct operation of the Tsi620 driver. There are two included applications:

- memdump – This accesses the memory of an endpoint and displays its memory contents
- askdsp – This communicates with a program executing on a DSP to perform a calculation

Although both applications are relatively simple, they demonstrate that the RapidIO devices are accessible and useful from user space. This means that much more complex applications may be built using RapidIO resources to extend and enhance the system’s capabilities. The user space applications are provided in pre-compiled binary form on the EP8343 ramdisk image, or in both pre-compiled and source code form on the EP8343 NFS image (both which can be found on the companion CD for the Tsi620 evaluation board).

2.1.1 Running the Software Using Ramdisk

1. Ensure the serial cable is connected to the PMC’s RS-232 port using an RJ-45 cable and an RJ-45 to DB9 adapter.

2. Start the terminal program of your choice.

 IDT has had success using the TeraTerm software although other terminal emulation programs can be used (for information about the TeraTerm software, see http://vector.co.jp/authors/VA002416/teraterm.html). The terminal program should be configured to communicate 115200 bps with 8 data bits, 1 stop bit, and no parity bits.

3. Power up the Tsi620 evaluation board by connecting the power adapter, and setting the toggle switch to the “on” position.

 The U-Boot boot loader software should start and a prompt should appear on the terminal program.

4. Enter the command `run rd`.

 This command boots the Linux kernel stored in flash. The Linux kernel uses a ramdisk stored in flash as the file system.

5. Log in to the system as “root”; no password is required.

 From the shell prompt you are presented with, enter the command `cd /root` to get to the root user’s home directory.
6. Load the binary kernel drivers by executing `insmod ./tsi620.ko` followed by `insmod ./rio-dev.ko`.

7. Enter the command `ls` to see a list of directory contents. There are two programs:
 - `askdsp`
 - `memdump`

8. Enter the command `./memdump` to see the contents of a portion of the DSP L2 cache. Additional areas of DSP memory space can be viewed by specifying the memory address. For more information, run `./memdump -h` and a list of options are displayed. For information about the DSP memory map, see the Texas Instruments 6487 User Manual.

9. If the DSP software is currently running on the DSP (see “Running the DSP Software”) then you can enter the command `./askdsp 100`.
 This places a value of 100 in the DSP’s memory, and asks the DSP to calculate the square root of the number. Other values can be substituted for 100.

2.1.2 Running the Software Using NFS Server

To facilitate testing and development, the PMC can also be run using a kernel and filesystem not stored on internal Flash memory. A filesystem usable for this type of execution is provided on the CD; however, directions for configuring an NFS server is beyond the scope of this document. To execute a kernel downloaded from a remote TFTP server, and to boot it using a remote NFS file system, complete the following:

1. Complete steps 1 to 3 in “Running the Software Using Ramdisk” to enter the U-Boot console.
2. Set the PMC’s IP address to a static value using the `setenv ipaddr` command (for example, `setenv ipaddr 192.168.1.6`).
3. Set the address of the TFTP server to be used by using the `setenv serverip` command (for example, `setenv serverip 192.168.1.50`).
4. Set the `filename` environment variable to the name of the kernel located on the TFTP server (for example, `setenv filename cuImage.mpc834x`).
5. Set the `nfsargs` variable in U-Boot with the `setenv nfsargs` command (enter the `printenv` command to see an example). When completing this command, ensure the `riohdid=1` argument is present in the argument.
6. Use the `run nfs` command to download the kernel and run it.
7. You may now complete execution by performing steps 5 to 9 in “Running the Software Using Ramdisk”.
2.1.3 Installing the PMC Software

The PMC software is pre-installed on the Flash memory of the PMC. Re-installation is only required if you need to modify the software (see “Modifying the PMC Software”).

Installing the software onto the Flash memory of the PMC requires it to be transferred to the card using a TFTP server. Note that kernels must be in “cuImage” or “compatibility uImage” file format, and that ramdisks must be in U-Boot image file format. The default images included on the CD are of this format.

To install the PMC software, complete the following steps:

1. Follow step 1 to 3 in “Running the Software Using Ramdisk” to enter the U-boot console.
2. Set the PMC’s IP address to a static value using the `setenv ipaddr` command (example: `setenv ipaddr 192.168.1.6`).
3. Set the address of the server to be used by using the `setenv serverip` command (example: `setenv serverip 192.168.1.50`).
4. If installing a new Linux kernel, set the name of the kernel file on the TFTP server by using the `setenv kernel` command (for example, `setenv kernel cuImage.mpc834x`). Transfer the kernel and save it to flash using `run install_kernel`.
5. If installing a new ramdisk, set the name of the image file on the TFTP server by using the `setenv ramdisk` command (for example, `setenv ramdisk ramdisk.img`). Transfer the file and save it to flash using `run install_ramdisk`.
6. Run `saveenv` to save changed environment variables to flash (this is required to update file sizes).

2.1.4 Modifying the PMC Software

To modify the PMC software, different steps must be followed depending on which aspect of the PMC software you wish to modify.

2.1.4.1 Modifying the Linux Kernel

To modify the Linux kernel, unpack the source code from the CD into a directory of your choice. The kernel may be compiled with ELDK 4.1 software available from DENX (www.denx.de) with the “ARCH” and “CROSS_COMPILE” environment variables set to “powerpc” and “ppc_82xx-” respectively. Note that the included Linux kernel source has been modified by IDT to support additional RapidIO functionality, and to include the rio-dev driver. These modifications can be distributed to customers or applied to your own custom software under the terms of the GPL. A sample kernel configuration file which will build the kernel with these features enabled is included in `config.rio` in the source directory. This file can be copied to “.config” to build a kernel with identical functionality to the included precompiled kernel.

Example:

```
[root] export ARCH=powerpc
[root] export CROSS_COMPILE=ppc_82xx-
[root] tar -xjf linux-2.6.26-rio
[root] cd linux-2.6.26-rio
```
2.1.4.2 Modifying the TSi620 Driver

The TSi620 low-level driver is not included in the Linux kernel source code because it is not licensed under the GPL. To compile the binary kernel module, first compile the kernel as described above. Uncompress the TSi620 driver into a location of your choice and — from the Linux kernel source directory — run "make SUBDIRS=<location> modules" with the same environment settings.

Example:

```
[root/linux-2.6.26-rio] cd ..
[root] tar -xjf tsi620.tar.bz2
[root] cd linux-2.6.26-rio
[root/linux-2.6.26-rio] make SUBDIRS=../tsi620 modules
```

2.1.4.3 Modifying the User Space Files

Modifying the user space files on the ramdisk can be done by uncompressing the rImage.gz file included on the disc, and mounting it at as a loopback device on a Linux system. Files can then be revised as if they were on the local filesystem. Please note that if installing any programs onto the ramdisk, they should be compiled using static libraries, or appropriate shared libraries should be installed. After modifications to the ramdisk are done, unmount the filesystem, gzip it and create a U-Boot ramdisk image using mkimage program included with the Linux source code (for example, `mkimage -A ppc -O linux -T ramdisk -C gzip -d rImage.gz rImage.gz.img`).

2.2 FPGA Software

The FPGA software consists of the following:

- FPGA hardware loads based on the Altera NIOS II Processor and RapidIO IP for each RapidIO configuration
- Software loads for the NIOS II processor, specific to each FPGA hardware load

Currently, the only RapidIO configuration available for the FPGA is a four-lane configuration operating at 62.5 MHz DDR. This is the equivalent of a RapidIO port operating in 4x mode at 1.25 Gbaud. For this reason, the FPGA load is named “altera_stratic_3_srio_1250_x4.zip”.

All examples assume the use of the “altera_stratic_3_srio_1250_x4.zip” load.

The installation, configuration and execution of the different software loads is identical.

The loads available are found in the following zip files:

- altera_stratix_3_srio_1250_x1.zip - Single lane RapidIO interface, operating at 62.5 MHz DDR
- altera_stratix_3_srio_2500_x1.zip - Single lane RapidIO Interface, operating at 125 MHz DDR
2.2.1 Installing the FPGA Software

In order to run the FPGA software, it is necessary to install the following software from www.altera.com:

- Quartus Version 7.2 or later
- Megacore 7.2 or later
- NIOS II 7.2 IDE or later

Once the Altera software is installed, create the directory which should contain all of the Alter FPGA loads and unpack the FPGA_loads.zip file into this directory.

⚠️ Due to restrictions on the Altera software, the directory path must not have any spaces.

Correct example: c:/my_fpga_loads
Incorrect example: c:/my fpga loads/temp

Instructions for the NIOS II 7.2 IDE are used below. Future versions of the IDE may require different actions.

Next, launch the a NIOS II Command Shell by selecting START->All Programs->Altera->NIOS II EDS 7.2->NIOS II 7.2 Command Shell. This should create a window like the one shown in **Figure 13**.

Figure 13: NIOS II Command Shell Window
This command window supports Unix/Linux like commands for file system navigation, including `cd` (change directory), `pwd` (print working directory), and file name completion by selecting the “Tab Right” key. Using these commands, go to the directory of the FPGA configuration you would like to run. You will need to execute the following commands to configure the software load:

- `cd software_bsp`
- The only file in software_bsp should be create-this-bsp. Execute this file by typing `./create-this-bsp`. This command configures and generates the Board Support Package software based on the Altera software libraries.

The BSP software files are generated based on the Altera hardware configuration.

Do not modify the BSP software files after they have been generated.

- `cd ../software_app`
- There should be nine files in /software_app:
 - create-this-app
 - srio_main_full.c
 - srio_regs.h
 - cmdFPGA.c
 - cmdFPGA.h
 - cmdRioDma.c
 - cmdRioDma.h
 - cmdBase.c
 - cmdBase.h
- Execute create-this-app by typing `./create-this-app`. This command configures the makefile and other supporting files for the software application which the user has written. The makefile will compile and link the users software application and the BSP to create an executable file named `srio_test.elf`.

The command sequence above must be repeated for each hardware configuration that will be used.

Once the software has been created, a NIOS II IDE project must be created by importing the user’s software application as follows:

1. Launch the NIOS II IDE tool
2. Under the File menu, select Import. An Import dialog window will pop up.
3. In the Import dialog window, select “Existing NIOS II software build tools project or folder into workspace”.

The “system.h” file found in the software_bsp directory of all configurations gives definitions for the base address and size of all hardware components and registers found in the FPGA hardware configuration.

Tip

The “system.h” file found in the software_bsp directory of all configurations gives definitions for the base address and size of all hardware components and registers found in the FPGA hardware configuration.
4. Select Next >.

 The Import dialog window changes to “Import NIOS II Project from File System” dialog box.

5. In the “Project contents:” text box, select the software_app directory of the hardware configuration you want to run.

6. In the “Project Name:” text box, give the software project a unique name.

 This document assumes the project name is “srio_1250_x4”.

7. Select “Next >”.

 The software project should now be created.

You are now ready to run the software.

2.2.2 Running the FPGA Software

The NIOS II IDE is used to run the FPGA software. The NIOS II IDE supports multiple debug facilities and an integrated console to allow users to debug and interact with the software. It requires the use of a JTAG cable, preferably the Altera USB-Blaster Download Cable, which is available from Altera Corporation (see www.altera.com). Connect the USB side of the cable to your PC, then connect the JTAG side of the cable as shown in the Altera USB-Blaster Download Cable User Guide.

The location of the “Pin 1” stripe on the cable must match the location of the “Pin 1” dot on the Tsi620 evaluation board.

Before executing the FPGA software, the FPGA hardware load must be programmed into the FPGA as follows:

1. In the “Tools” pull-down menu, select “Quartus II programmer”.

 The Quartus II Programmer dialog box pops up.

2. If the USB-Blaster Download Cable is not selected in the “Hardware Setup” dialog window, select the “Hardware Setup” button and then select the USB Blaster hardware.

3. Use the “Auto Detect” button to find the devices in the JTAG chain.

 This should find two devices, the second of which is the Stratix III device labelled EP3SL150.

4. Select the Stratix III device, then select “Change File”.

 A dialog box will pop up.

5. Navigate to the directory that contains the hardware configuration you want to execute, then select the file named “srio_1250_x4.sof”.

 The “.sof” indicates that this is an FPGA hardware configuration file. Other hardware configurations have similarly named files, all ending in “.sof”.

The location of the “Pin 1” stripe on the cable must match the location of the “Pin 1” dot on the Tsi620 evaluation board.
6. Ensure the “Program/Configure” check box is selected for the Stratix III device file.

7. Select Start.

The Stratix III device will be programmed.

Software can be downloaded and executed only when the FPGA hardware load is programmed. To
download and execute the software load, complete the following:

1. Select “Run” from the “Run” pull-down menu.

 This displays the “Create, manage, and run configurations” dialog window.

2. Select the “Nios II Hardware” option in the dialog window, and then select the “New Hardware
Configuration” button in the upper left-hand corner of the dialog box.

 This creates a hardware configuration named “New Configuration” below the “Nios II Hardware”
heading.

3. Select the “New Configuration” item that was just created.

4. In the “SOPC Builder System PTF File” entry text box, use the “Browse” button to select the PTF
file associated with the FPGA hardware configuration you have programmed. The
“srio_1250_x4_sys.ptf” file is found in the same directory as the “srio_1250_x4.sof” hardware
configuration file.

5. In the “Project” text box, select “Browse” and then select the software project name
(srio_1250_x4) which matches the FPGA hardware load.

 When the software project is selected, the “NIOS II ELF Executable” text box is filled in with
“srio_test.elf”.

6. Change the name of the configuration from “New Configuration” to a unique hardware/software
configuration name, such as “srio_1250_x4_config”.

7. Select “Run”.

 The software is downloaded, and begins execution. Once the software/hardware configuration has
been created, the configuration can be selected to execute or debug the software load.

2.2.3 FPGA Hardware Load Facilities

The FPGA hardware load has the following facilities:

- RapidIO packet sink memory, 16 KB in size, connected to the RapidIO Avalon Master\(^1\). The
 packet sink memory is the target for NREAD and NWRITE RapidIO request packets received by
 the FPGA. The NIOS II processor accesses the RapidIO packet sink memory using the Remote
 Read DMA engine or the Remote Write DMA engine.

- A Remote Read DMA engine, connected to the 16 KB RX_MEMORY. The Remote Read DMA
 engine is used to generate NREAD requests. Addresses and packet types are controlled by the
 RapidIO Avalon Slave configuration\(^1\). The processor can access RX_MEMORY starting at address
 0x80000.

\(^1\) For more information on the RapidIO Avalon Master or Slave, see the *RapidIO MegaCore Function User Guide* available at
• A Remote Write DMA engine, connected to the 64KB TX_MEMORY. The Remote Write DMA engine is used to generate NWRITE, NWRITE_R, or SWRITE requests. Addresses and packet types are controlled by the RapidIO Avalon Slave configuration\(^1\). The processor can access TX_MEMORY starting at address 0x60000.

• Maintenance Avalon Slave and Maintenance Avalon Master modules for reception and origination of Maintenance Read and Write transactions.

• A NIOS II Processor with 128 KB of memory for the storage and execution of a software load. The NIOS II processor can access all control registers for the functions listed above, and the TX_MEMORY and RX_MEMORY.

The NIOS II processor cannot access the packet sink memory. The only way for the NIOS II processor to access the packet sink memory is for the Remote Read DMA engine to copy packet sink memory to the RX_MEMORY. This can be done using the following commands:

• REMDEST – Set the remote destination ID to match the destination ID of the FPGA. The FPGA’s destination ID is found in a register at offset 0x60\(^1\).

• REMRD – Copy the packet sink memory into the RX_MEMORY.

• MEM – Display the RX_MEMORY contents copied from the packet sink memory

\[2.2.4\] Software Environment

The software environment begins execution by displaying the following:

• The environment

• The list of available commands

• The syntax for the “?” command, which displays information about commands in the environment.

For more information on a command and its syntax, use “?” <cmd> FULL”.

Typically, the following command sequence is used:

1. INIT – To initialize the RapidIO masters and slaves
2. MNIT and MEM commands – To initialize and display the TX_MEMORY and RX_MEMORY
3. GET and LOAD commands – To read and write hardware registers and memory
4. RMR and RMW commands – To verify RapidIO connectivity to the Tsi620 and other RapidIO devices.
5. REMDEST – To set the Destination ID for the REMRD and REMWR commands
6. REMRD and REMWR commands – To read and write memory on RapidIO devices
2.2.4.1 Software Implementation Structure

The main routine of the executable is found in the srio_main_full.c file. This consists of a single routine that initializes the command base, binds FPGA and DMA related commands into the command base, and then executes the main command loop.

The cmdBase.c and cmdBase.h files implement the command base, which consists of the following:

- Command interpreter initialization and main loop
- Mechanism for binding commands into the command interpreter
- “QUIT” command to exit the command interpreter
- “?” command
- Parameter parsing utilities
- Syntax error display facility

The cmdFPGA.c and cmdFPGA.h files implement basic FPGA commands:

- GET and LOAD
- RMR and RMW
- RMSOAK
- INIT
- RESET
- MEM and MNIT

The cmdRioDma.c and cmdRioDma.h files implement DMA-related FPGA commands:

- REMDEST
- REMRD, REMWR
- REMSOAK

2.3 DSP Software

The DSP software consists of a simple application that interacts with the PMC software. The DSP also supports a large amount of memory that can act as a target for transfers to and from the FPGA/PMC.

2.3.1 Installing the DSP Software

In order to execute the DSP software, the Texas Instruments Code Composer Studio (CCS) application must be used (for information on the application’s installation and use, see www.ti.com). CCS needs a Blackhawk emulator to physically transfer data from CCS to the DSP hardware (for information on ordering a Blackhawk emulator, see www.blackhawk-dsp.com).

IDT recommends the purchase of the Blackhawk “Bus-powered USB560 JTAG emulator” product. This emulator requires a 14-pin to 60-pin converter module from Blackhawk, model number BH-14e_TI-60t_TI.
The source code for the demo software can be installed to a directory of your choice. If you choose to re-compile the software, you must install the Chip Support Library (CSL) available from Texas Instruments. The precompiled image included on the disk was compiled with CSL version 10, although newer versions of the software should also work.

2.3.2 Running the DSP Software

To execute the software, first connect the Blackhawk emulation pod to the Tsi620 evaluation board connector. The 60-pin connector is not keyed, however once the Blackhawk emulator and adapter are installed, a correctly oriented cable will have the lead pointing toward the FPGA fan.

On your PC, perform the following steps to run the DSP software:

1. Launch Code Composer Studio Setup.
2. Select “File->Import” and browse to the Tsi620EVB.ccs file found on the CD in the “DSP” directory.
 This configures CCS and the Blackhawk emulator to use the 3-core DSP mounted on the Tsi620 evaluation board.
3. Click “Save and Quit” and launch Code Composer Studio.
 The “CCStudio: Parallel Debug Manager” window appears with four entries: ICEPICK_C_0, C6400PLUS_0, C6400PLUS_1, and C6400PLUS_2. The C6400PLUS entries represent the three cores in the TI 6487 DSP.
4. Right-click on C6400PLUS_0 and select “Connect”.
5. Double-click on C6400PLUS_0 to enter CCStudio using Core 0.
6. From the “File” menu, select “Load Program”.
 This programs the DSP from the precompiled file.
7. From the “Debug” menu, select “run”.
 The DSP is now executing code, and waiting for interaction from the PowerPC.

2.3.3 DSP Hardware Facilities

DSP hardware that is accessible from other devices includes L2 cache memory on each of the three DSP cores. These memory addresses can be accessed from RapidIO using I/O transactions beginning at offset 0x10800000 for core 0, 0x20800000 for core 1, and 0x30800000 for core 2. Each core can access its local L2 cache as address 0x00800000.

The DSP hardware also supports RapidIO Doorbell functionality, although this is not covered by the demo software or by this document (for more information, Texas Instruments documentation).
2.4 PMC/DSP/FPGA Software Execution

To execute the PMC software at the same time as the DSP and FPGA software, the following order of software execution must be used:

1. After the Tsi620 evaluation board is powered up, the DSP and FPGA software must be started before the PMC software can be started.

 The correct Tsi620 configuration must be programmed into the EEPROM. The board must then be reset before the DSP or PMC software can be executed.

 To program the correct Tsi620 configuration, use the IDT JTAG Register Access Software Tool for the “Tsi” RapidIO switches and the “altWSPD.txt” file to program the Tsi620 EEPROM, where:

 - W – FPGA interface width, either 4 or 1
 - SPD – FPGA interface speed, either 125, 250, or 3125

2. The FPGA “INIT” command must be executed before the PMC software can be started.