Sensing Technologies and Sensor Solutions

[Image of a cityscape and technology interfaces]
With more than 20 years of industry experience, IDT is an expert in providing sensor technologies that enable our customers to design and build best-in-class sensor solutions. As we expand the breadth of our sensor technologies, IDT will create unique and differentiated sensor solutions.

- **SensorShare™ Technology**
 Connects IDT’s array of environmental sensor solutions designed to measure, monitor and sense smart devices and industrial end applications.

- **Breadth of Experience**
 Bringing decades of knowledge, know-how and data from our technologies today into our solutions of the future.

- **Trusted, Reliable Partner**
 A proven supplier who has shipped millions of parts into major consumer and automotive manufacturers.

- **Best-in-Class Performance**
 Featuring low-power, high-accuracy solutions meeting ISO 26262, Automotive EMC, and reliability requirements.

Flow Sensors

- Flow Sensors
- Humidity Sensors
- Gas Sensors
- Position Sensors
- Sensor Signal Conditioners
High-Performance Gas Sensor Family

Leveraging more than 10 years of development and use, IDT’s gas sensors are reliable and proven.

IDT offers innovative, high-performance gas sensors ideal for industrial leak detection and air quality applications. Our industry-leading sensors are based upon a highly reliable ceramic substrate, coupled with advanced nanostructured materials tailored for individual applications.

The SGAS family of gas sensors are capable of accurately detecting a range of gases, including hydrogen, flammable gases (methane, propane, natural gas) and volatile organic compounds (includes TVOC, alcohols, aldehydes, ketones and more).

FEATURES AND BENEFITS
- Reliable gas detection
- High sensitivity to a wide range of gases
- Long lifetime:
 - SGAS707: 3 to 5 years
 - SGAS701/SGAS711: 5+ years
- Minimal response to relative humidity (RH)
- Over a decade of gas sensing experience
- Reduced frequency of calibrations
- Reduced maintenance and overall-system
- TVOC < 1 to 1000 ppm (SGAS707)

Typical Applications

<table>
<thead>
<tr>
<th>Building/Industrial Air Quality</th>
<th>Leak Detection</th>
<th>Process Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measure VOC in offices, light industrial settings, schools and hospitals</td>
<td>PPM range leak measurement of hydrogen, methane, propane, LPG, natural gas and other flammable gases</td>
<td>Measure hydrogen leaks to test seals and product integrity</td>
</tr>
<tr>
<td>• Measure efficacy of filtration/purification systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Control ventilation systems based on real-time air quality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To request samples, download documentation or learn more, visit: idt.com/gas
ZMOD4410 Metal Oxide Gas Sensor for Indoor Air Quality

FEATURE
- Environmentally compensated heater driver control
- Dual output - detects wide range of TVOC from ppb to ppm concentrations and provides eCO₂ reading
- I²C interface: up to 400kHz
- Adjustable ADC resolution for optimal speed vs. resolution: 16-bit maximum
- Configurable alarm/interrupt output

BENEFITS
- Proven MOx material with 12 years of reliability data
- Each sensor module is electrically and chemically tested and calibrated
- IDT offers downloadable source files and compiled code, enabling a product road map of indoor air measurement innovation
- Only sensor provider to utilize third-party validation of IAQ rating to help assess levels of clean air and recommend actions

IDT’s ZMOD4410 gas sensor platform provides best-in-class stability and sensitivity and is designed to identify trace gases in various locations within indoor environments.

These air quality sensors feature a miniature package, integrated ASIC, and MEMS sensing element that is comprised of a controlled heater and proven metal oxide (MOx) material. Constant temperature operation or a very precisely regulated variation of the heater temperature allows the detection of a wide range of indoor air contaminants by accurately measuring the sensor conductivity and resistance.

This flexibility makes the sensors in the ZMOD4410 platform capable of providing a variety of measurement options by varying the method of operation or changing the firmware used to interpret the resistance measurements. Downloadable libraries and source code provided by IDT make upgrades straightforward to implement. All sensors are electrically and chemically (gas) tested with calibration data stored in the built-in nonvolatile memory (NVM).

The ZMOD4410 platform focuses on detection, control and rating of Indoor Air Quality (IAQ). The indoor air quality rating is based on TVOC concentrations defined by the German Environment Agency (UBA) as the main source for unpleasant air in an indoor environment. By detecting TVOC and rating the IAQ, the ZMOD4410 helps systems address clean air in the ambient environment. Additional downloadable algorithms are available to estimate levels of CO₂ and control ventilation systems.
The ZMOD4410 uses the German Environment Agency (UBA) study as a basis to define clean air. Sensors are calibrated to this definition to ensure customer satisfaction.

Indoor Air Quality Ratings

<table>
<thead>
<tr>
<th>IDT IAQ Rating</th>
<th>Reference Level*</th>
<th>Air Information</th>
<th>TVOC (mg/m³)</th>
<th>Air Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1.99</td>
<td>Level 1</td>
<td>Clean Hygienic Air (Target Value)</td>
<td>< 0.3</td>
<td>Very Good</td>
</tr>
<tr>
<td>2.00 - 2.99</td>
<td>Level 2</td>
<td>Good Air Quality (if no threshold is exceeded)</td>
<td>0.3 - 1.0</td>
<td>Good</td>
</tr>
<tr>
<td>3.00 - 3.99</td>
<td>Level 3</td>
<td>Noticeable Comfort Concerns (Not recommended for exposure > 12 months)</td>
<td>1.0 - 3.0</td>
<td>Medium</td>
</tr>
<tr>
<td>4.00 - 4.99</td>
<td>Level 4</td>
<td>Significant Comfort Issues (Not recommended for exposure > 1 months)</td>
<td>3.0 - 10.0</td>
<td>Poor</td>
</tr>
<tr>
<td>≥ 5.00</td>
<td>Level 5</td>
<td>Unacceptable conditions (Not recommended)</td>
<td>> 10.0</td>
<td>Bad</td>
</tr>
</tbody>
</table>

* Based on a study by the German Environment Agency (UBA).

ZMOD4410 Firmware

<table>
<thead>
<tr>
<th>IAQ Firmware</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZMOD4410-UBA</td>
<td>UBA standard</td>
</tr>
<tr>
<td>ZMOD4410-LP†</td>
<td>Low power battery</td>
</tr>
<tr>
<td>ZMOD4410-Odors</td>
<td>Fan control</td>
</tr>
<tr>
<td>ZMOD4410-Bedroom</td>
<td>Bedroom odors, eCO₂ and TVOC</td>
</tr>
<tr>
<td>ZMOD4410-Office</td>
<td>HVAC control, eCO₂</td>
</tr>
</tbody>
</table>

† Contact IDT
Our mass flow sensors are ideal for use in the industrial process, healthcare and medical, and automotive markets.

FEATURES AND BENEFITS
- Gas or liquid flow
- MEMS thermopile sensing
- Silicon-carbide coating over MEMS flow sensor
- Robust solid isolation technology
- No cavity in MEMS element to cause clogging
- Resistant to vibration and pressure shock
- High accuracy
- High sensitivity
- Food-grade compatible version
- Easy cleaning and sterilization
- 3 to 5 V DC supply, (5V for FS2012)

IDT mass flow sensor modules measure gas or liquid flow across a sensing surface using the thermo-transfer (calorimetric) principle. The flow sensor utilizes a series of MEMS thermocouples which provides excellent signal-to-noise ratio. The solid thermal isolation of the active MEMS sensing element along with the silicon-carbide film coating offers excellent abrasive wear resistance and long-term reliability.

IDT offers an uncalibrated millivolt output version (FS1012), uncalibrated with amplification circuit (FS102x) and fully-calibrated and linearized (FS2012) modules for either gas or liquid with typical accuracy down to 2% of reading.

Typical Applications

<table>
<thead>
<tr>
<th>Industrial Process</th>
<th>Healthcare and Medical</th>
<th>Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process controls and monitoring</td>
<td>Medical infusion pumps</td>
<td>Mass air flow module</td>
</tr>
<tr>
<td>Oil and gas leak detection</td>
<td>CPAP and respiratory devices</td>
<td>Diesel fuel flow</td>
</tr>
<tr>
<td>HVAC and air-control systems</td>
<td>Breathalyzer</td>
<td>Brake fluid flow</td>
</tr>
<tr>
<td>Liquid dispensing and metering</td>
<td>Oxygen concentrators</td>
<td>Cabin air quality control</td>
</tr>
<tr>
<td>systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FLOW SENSORS PRODUCT DETAILS

<table>
<thead>
<tr>
<th></th>
<th>FS1012 (Millivolt Output)</th>
<th>FS102x (Uncalibrated, Amplified Output)</th>
<th>FS2012 (Fully-Calibrated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>3 to 5 V DC (Heater)</td>
<td>5V DC</td>
<td>5V DC</td>
</tr>
<tr>
<td>Gas Flow Range</td>
<td>0 to 2 Liter/Min (FS1012-1020-NG) 0 to 10 Liter/Min (FS1012-1100-NG)</td>
<td>—</td>
<td>0 to 2 Liter/Min (FS2012-1020-NG) 0 to 10 Liter/Min (FS2012-1100-NG)</td>
</tr>
<tr>
<td>Liquid Flow Range</td>
<td>0 to 0.5 Liter/Min (FS1012-1001-LQ) 0 to 1 Liter/Min (FS1012-1002-LQ)</td>
<td>0 to 3 Liter/Min (FS1023) 0 to 7 Liter/Min (FS1025) 0 to 10 Liter/Min (FS1027)</td>
<td>0 to 0.5 Liter/Min (FS2012-1001-LQ) 0 to 1 Liter/Min (FS2012-1002-LQ)</td>
</tr>
<tr>
<td>Flow Accuracy</td>
<td>—</td>
<td>—</td>
<td>±2% (Typical)</td>
</tr>
<tr>
<td>Output</td>
<td>Analog (millivolts)</td>
<td>Analog (0 to 5 V DC)</td>
<td>Digital I2C and Analog (0 to 5 V DC)</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>10mA at 3V DC (Heater Current)</td>
<td>11mA</td>
<td>30mA at 5V DC</td>
</tr>
<tr>
<td>Module Size</td>
<td>53.35 × 24.0 mm, 6-pin header</td>
<td>25 × 58 mm, 6-pin connector</td>
<td>53.35 × 24.0 mm, 6-pin header</td>
</tr>
</tbody>
</table>

Figure 1: FS1012 Single-Ended Application Circuit Diagram

Figure 2: FS1012 Differential Application Circuit Diagram

SDAWIR Complete Environmental Sensor Evaluation Kit
Real-time, low-power wireless sensor measurements for connected and monitoring applications

To request samples, download documentation or learn more, visit: idt.com/flow
Relative humidity sensors provide industry-leading accuracy and response times to improve system performance.

FEATURES
- Silicon carbide structure
- ±1.5% RH accuracy (HS3001)
- Fast RH response time (typical 6 seconds)
- 0.1% RH per year drift
- 14-bit resolution: 0.01% RH (typical)
- Low power consumption: 1.0µA average
- Digital/Analog output
- Extended supply voltage: 2.3 to 5.5 V

IDT’s humidity sensors offer high accuracy with the fastest measurement response time of comparable devices currently on the market.

The HS300x family of relative humidity sensors feature a ±1.5% RH accuracy and six-second response time (rated 20% to 80% RH range in still air and does not require airflow). Since humidity sensors consume the most power when they are taking a measurement, the fast response time to a stable measurement reduces the amount of sampling needed.

This is especially important for battery-powered applications where lower power consumption equates to longer battery life. In addition to high-accuracy and fast response times, the HS300x family features excellent long term stability of 0.1% RH per year as a result of a robust silicon carbide construction and an innovative design. This improves useful lifetime and lowers effective cost.

Typical Applications

<table>
<thead>
<tr>
<th>Measurement of water vapor content in medical oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity measurement in home appliances</td>
</tr>
<tr>
<td>Monitor humidity in the air in industrial processes, climate control systems (HVAC), weather stations and portable personal health devices</td>
</tr>
</tbody>
</table>
High-Performance Relative Humidity and Temperature Sensors

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Relative Humidity Accuracy Typ (±%RH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS3001</td>
<td>1.5</td>
</tr>
<tr>
<td>HS3002</td>
<td>1.8</td>
</tr>
<tr>
<td>HS3003</td>
<td>2.8</td>
</tr>
<tr>
<td>HS3004</td>
<td>3.8</td>
</tr>
</tbody>
</table>

BENEFITS

- Integrated temperature and humidity sensing solution
- Small form factor solution with lower system cost
- Low power consumption saves battery
- 14-bit high resolution provides extremely tight accuracy
- Insensitive to environmental contaminants like dirt and dust
- Small solution size saves space and BOM for compact designs
- On board calibration reduces time to market
- Wide supply voltage range eliminates the need for LDO/DC-DC
- Fast RH response time (typical 6 seconds)

High Relative Humidity Accuracy and Long Term Stability You Can Depend On

HS3001 RH Accuracy Tolerance at 25°C

To request samples, download documentation or learn more, visit: idt.com/humidity
Connect the IoT Dots

IDT’s ZWIR4512 and ZWIR4532 connectivity modules provide critical and secure 6LoWPAN wireless connectivity to link devices to the Internet of Things (IoT). These modules feature IDT SensorShare™ technology, which connects IDT’s array of environmental sensor solutions designed to measure, monitor and sense smart devices and industrial end applications.

APPLICATIONS
- Smart home devices – Use network-connected products to control household devices such as lighting, automatic window blinds, bathroom exhaust fans, garage doors, and home security systems
- Factory automation monitoring – Detect aging and failure of motors and fans, remote air quality monitoring, activate alarms and lighting in an emergency, staff presence, keep out zone and secure area detection, energy conservation
- Smart city lighting – City LED lamps, emergency alert or signaling, pedestrian danger keep out zone, reduction of light pollution
- Environmental sensing – Air quality monitoring, weather forecast, fire detection, leaks and flood detection

IDT ADVANTAGES
- Compatible with all IPv6 standards – Native communication with computers or mobile devices over IPv6
- Lower power – <1µA standby, maximizes battery life
- Small footprint – Compact modules ideal for solutions with size constraints
- FCC and CE certified – Sub-GHz transceiver module is certified for use in North America and Europe
- Standard firmware offering features IDT SensorShare™ firmware, a 6LoWPAN open standard stack, with no associated license fees or royalties
- Mesh routing features – Self-healing ad-hoc mesh network to cover large areas and long ranges
- End-to-end security – Secure communication based on open standard protocols

To request samples, download documentation or learn more, visit: idt.com/6lowpan
Inductive Position Sensor Family

The ZMID5201, ZMID5202 and ZMID5203 family of inductive position sensors are designed for absolute position sensing in automotive, industrial and consumer applications.

This family utilizes the physical principles of induction in a wire loop and eddy currents to detect the position of a metallic target that is sliding or rotating above a set of coils consisting of one transmitter coil and two receiver coils. The three coils are typically printed as copper traces on a printed circuit board and are used to detect the metallic target’s position over the coils. After demodulating and processing the secondary voltages from the receiver coils, a signal representative of the metallic target’s position over the coils is obtained.

The ZMID520x family is fully qualified to automotive standard AEC-Q100, grade 0 up to 150°C ambient temperature.

FEATURES AND BENEFITS

- No magnet required
 - Simple metallic target immune to magnetic stray fields (ISO 11452-8)
- Flexible; same IC for a variety of position sensing applications
- Fully AEC-Q100-qualified
- Replaces potentiometer, Hall-effect and magneto-resistive technology
- Very thin assembly height
- Tolerant to target misalignment in any direction

SPECIFICATIONS

- Analog, PWM and SENT output versions
- Only 3 wires: +5V, Ground, Output
- Non-volatile memory, programmable through output pin
- –14 to +18 V overvoltage and reverse polarity protection
- –40°C to +150°C ambient temperature range
- Coil temperature can be >150°C
- Suitable for safety-related systems compliant to ISO 26262 up to ASIL-B
- TSSOP-14 package

Typical Applications

- Automobiles and other vehicles
- Robotics and unmanned aerial vehicles (UAVs)
- Automation
- Home Appliances

Contactless absolute position sensors for linear and angular position
PERFORMANCE
- Accuracy down to ±0.2% full scale
- Resolution up to 4096 steps full scale
- Scalable accuracy and resolution
- Up to 10kHz output update rate
- 2.2 to 5.6 MHz oscillation frequency

PROGRAMMING OPTIONS
- 9-point linearization
- Input signal offset
- Input signal gain
- Slope of transfer function
- Analog clamping voltages
- PWM clamping duty cycles
- PWM base frequency
- SENT data format
- Various diagnostic diagrams
 - Oscillator failure
 - Coil failure
 - Supply voltage out of range
 - Missing target

The same chip can be used for rotary, linear or other position sensing types by simply adapting the shape of the coils and the target. Additionally, the coil design can be scaled to smaller angles while maintaining the full resolution and accuracy within the mechanical borders of the design. The moving target can be any solid metallic structure with a minimum thickness of a few micrometers.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZMID5201</td>
<td>Inductive position sensor IC with analog output</td>
</tr>
<tr>
<td>ZMID5202</td>
<td>Inductive position sensor IC with PWM output</td>
</tr>
<tr>
<td>ZMID5203</td>
<td>Inductive position sensor IC with SENT output</td>
</tr>
<tr>
<td>ZMID5201STKIT</td>
<td>Inductive position sensing starter kit with arc, rotary, and linear modules</td>
</tr>
</tbody>
</table>

To request samples, download documentation or learn more, visit: idt.com/position
Sensor Signal Conditioner ICs

Designing sensor interfaces can be quite challenging and time consuming, and producing them in volume is often expensive due to long test cycles on costly production test equipment. IDT Sensor Signal Conditioner (SSC) ICs facilitate both design and production of sensor interfaces by providing programmable, highly accurate, wide gain and quantization functions combined with powerful, high-order digital correction and linearization algorithms.

IDT is a trusted partner in the sensing market with more than twenty years of experience developing leading-edge core technologies for sensor signal conditioning devices.

IDT’s SSC ICs are all-in-one, energy efficient products that are easy-to-use and are supported by advanced software and expert technical support staff.

Our portfolio offers a broad range of resistive and capacitive SSC ICs. IDT’s highly accurate single-pass calibration operation enables the design of cost-effective, accurate sensing systems.

FEATURES AND BENEFITS

- Analog and one-wire interface
- Digital I2C & SPI output
- Resistive and capacitive sensor interface
- High analog gain for sophisticated sensors
- Automotive, industrial and consumer applications
- Low-power and battery-powered applications
- Single-pass calibration
- High ADC resolution up to 24 bit
- Wafer and packaged delivery forms

SSCs provide performance, test and calibration process advantages for our customers’ sensor modules.
Single-bridge Automotive Sensor Signal Conditioners

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Supply Voltage (V)</th>
<th>Interface</th>
<th>Adjustable Analog Gain</th>
<th>Resolution (Bits)</th>
<th>Sample Rate Max (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZSSC3015</td>
<td>Resistive Sensor Signal Conditioner with Diagnostics – AEC-Q100 qualified</td>
<td>2.7 to 5.5</td>
<td>Ratiometric Voltage, Absolute Voltage, ZACwire™</td>
<td>6, 24, 48, 96</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>ZSC31150</td>
<td>Automotive Sensor Signal Conditioner</td>
<td>4.5 to 5.5</td>
<td>Ratiometric Voltage, ZACwire, I²C</td>
<td>3, 7, 9, 14, 26, 35, 52, 70, 105, 140, 210, 280, 420</td>
<td>16</td>
<td>7.8</td>
</tr>
<tr>
<td>ZSSC3131</td>
<td>Capacitive Sensor Signal Conditioner with Digital Output</td>
<td>4.5 to 5.5</td>
<td>Ratiometric Voltage, ZACwire, I²C</td>
<td>3, 7, 9, 14, 26, 35, 52, 70, 105</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ZSSC3135</td>
<td>Sensor Signal Conditioner for Piezoresistive Bridge Sensors</td>
<td>4.5 to 5.5</td>
<td>Ratiometric Voltage, ZACwire, I²C</td>
<td>3, 7, 9, 14, 26, 35, 52, 70, 105</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ZSSC3136</td>
<td>Automotive Sensor Signal Conditioner for Safety Switch Applications</td>
<td>4.5 to 5.5</td>
<td>Ratiometric Voltage, ZACwire, I²C</td>
<td>3, 7, 9, 14, 26, 35, 52, 70, 105</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ZSSC3138</td>
<td>Automotive Sensor Signal Conditioner for Ceramic Sensor Applications</td>
<td>4.5 to 5.5</td>
<td>Ratiometric Voltage, ZACwire, I²C</td>
<td>3, 7, 9, 14, 26, 35, 52, 70, 105, 140, 210, 280, 420</td>
<td>16</td>
<td>7.8</td>
</tr>
<tr>
<td>ZSSC3154</td>
<td>Automotive Sensor Signal Conditioner with Dual Analog Output</td>
<td>4.5 to 5.5</td>
<td>Ratiometric Voltage, ZACwire, I²C, Dual Analog Output</td>
<td>3, 7, 9, 14, 26, 35, 52, 70, 105, 140, 210, 280, 420</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>ZSSC3170</td>
<td>Automotive Sensor Signal Conditioner with LIN and PWM Interface</td>
<td>7 to 18</td>
<td>PWM, LIN</td>
<td>3, 7, 9, 14, 26, 35, 52, 70, 105, 140, 210, 280, 420</td>
<td>14</td>
<td>0.43</td>
</tr>
<tr>
<td>ZSSC4151</td>
<td>Automotive Sensor Signal Conditioner with Analog Output</td>
<td>4.5 to 5.5</td>
<td>Ratiometric Voltage, ZACwire, I²C</td>
<td>1 to 200</td>
<td>18</td>
<td>1.56</td>
</tr>
<tr>
<td>ZSSC4162</td>
<td>Automotive Sensor Signal Conditioner with Analog Output</td>
<td>4.75 to 5.25</td>
<td>SENT 3.0, I²C</td>
<td>1 to 200</td>
<td>18</td>
<td>1.56</td>
</tr>
<tr>
<td>ZSSC4169</td>
<td>Automotive-grade Resistive Sensor Signal Conditioner with SENT Output & ASIL-C</td>
<td>4.5 to 5.5</td>
<td>SENT, I²C</td>
<td>1 to 200</td>
<td>18</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Single-bridge Industrial Sensor Signal Conditioners

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type</th>
<th>Voltage</th>
<th>Output</th>
<th>ADC</th>
<th>Package</th>
<th>Typical Application/Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZSC31010</td>
<td>Resistive</td>
<td>2.7 to 30 V</td>
<td>Analog/Digital</td>
<td>14 bit</td>
<td>SOIC, Wafer</td>
<td>Industrial/Analog Sensors</td>
</tr>
<tr>
<td>ZSC31014</td>
<td>Resistive</td>
<td>2.7 to 5.5 V</td>
<td>Digital</td>
<td>14 bit</td>
<td>SOIC, Wafer</td>
<td>Industrial/PC Sensors</td>
</tr>
<tr>
<td>ZSC31015</td>
<td>Resistive</td>
<td>2.7 to 30 V</td>
<td>Analog/Digital</td>
<td>14 bit</td>
<td>SOIC, Wafer</td>
<td>Industrial/Analog Sensors</td>
</tr>
<tr>
<td>ZSC31050</td>
<td>Resistive</td>
<td>2.7 to 40 V</td>
<td>Analog/Digital</td>
<td>15 bit</td>
<td>SSOP, Wafer</td>
<td>Industrial/Current Loop</td>
</tr>
<tr>
<td>ZSSC3026</td>
<td>Resistive</td>
<td>1.8 to 3.6 V</td>
<td>Digital</td>
<td>16 bit</td>
<td>Wafer</td>
<td>Consumer, White Goods</td>
</tr>
<tr>
<td>ZSSC3036</td>
<td>Resistive</td>
<td>1.8 to 3.6 V</td>
<td>Digital</td>
<td>16 bit</td>
<td>Wafer</td>
<td>Industrial</td>
</tr>
<tr>
<td>ZSSC3027</td>
<td>Resistive</td>
<td>1.7 to 3.6 V</td>
<td>Digital</td>
<td>16 bit</td>
<td>Wafer</td>
<td>Stacked Die Assemblies</td>
</tr>
<tr>
<td>ZSSC3018</td>
<td>Resistive</td>
<td>1.68 to 3.6 V</td>
<td>Digital</td>
<td>18 bit</td>
<td>QFPN, Wafer</td>
<td>Industrial/White Goods</td>
</tr>
<tr>
<td>ZSSC3218</td>
<td>Resistive</td>
<td>1.68 to 3.6 V</td>
<td>Digital</td>
<td>18 bit</td>
<td>QFPN, Wafer</td>
<td>Consumer/White Goods</td>
</tr>
<tr>
<td>ZSSC3224</td>
<td>Resistive</td>
<td>1.68 to 3.6 V</td>
<td>Digital</td>
<td>24 bit</td>
<td>QFPN, Wafer</td>
<td>Industrial/Consumer</td>
</tr>
<tr>
<td>ZSSC3122</td>
<td>Capacitive</td>
<td>1.8 to 5.5 V</td>
<td>Digital, PDM</td>
<td>14 bit</td>
<td>TSSOP, Wafer</td>
<td>Consumer/White Goods</td>
</tr>
<tr>
<td>ZSSC3123</td>
<td>Capacitive</td>
<td>2.3 to 5.5 V</td>
<td>Digital, PDM</td>
<td>14 bit</td>
<td>TSSOP, Wafer</td>
<td>Industrial</td>
</tr>
</tbody>
</table>
Sensor Resources

Find the tools and resources you need to start your sensor design today.

idt.com/sensors