Brief Description
The ZSSC3026 is a sensor signal conditioner (SSC) integrated circuit for high-accuracy amplification and analog-to-digital conversion of a differential input signal. Developed for correction of resistive bridge sensors and optimized for high-resolution altimeter module applications, the ZSSC3026 can perform offset, span, and 1st and 2nd order temperature compensation of the measured signal. It can also provide a corrected temperature output measured with an internal sensor. The corrected measurement values are provided at the digital output pins, which can be configured as \(\text{I}^2\text{C}^{\text{TM}} \) (\(\leq 3.4\text{MHz} \)) or SPI (\(\leq 20\text{MHz} \)).

Digital compensation of the signal offset, sensitivity, temperature, and non-linearity is accomplished via an 18-bit internal digital signal processor (DSP) running a correction algorithm. Calibration coefficients are stored on-chip in a highly reliable, non-volatile, multiple-time programmable (MTP) memory. Programming the ZSSC3026 is simple via the serial interface. An internal charge pump provides the programming voltage. The interface is used for the PC-controlled calibration procedure, which programs the calibration coefficients in memory. The digital mating is fast and precise, eliminating the overhead normally associated with trimming external components and multi-pass calibration routines.

Features
- Flexible, programmable analog front-end design; up to 16-bit scalable, charge-balancing two-segment analog-to-digital converter (ADC)
- Fully programmable gain amplifier for optimizing sensor signals: gain range 14 to 72 (linear)
- Internal auto-compensated temperature sensor
- Digital compensation of individual sensor offset; 1st and 2nd order compensation of sensor gain
- Digital compensation of 1st and 2nd order temperature gain and offset drift
- Intelligent power management unit
- Layout customized for die-die bonding with sensor for high-density chip-on-board assembly
- Typical sensor elements can achieve accuracy of better than \(\pm 0.10\% \) FSO @ -40 to 85°C

Benefits
- Excellent for low-voltage and low-power battery applications
- Integrated 18-bit calibration math DSP
- Costs minimized via one-pass calibration
- No external trimming components required
- Highly integrated CMOS design

Physical Characteristics
- Supply voltage range: 1.8 to 3.6V
- Current consumption: 900µA (operating mode)
- Sleep State current: 50nA (typical)
- Temperature resolution: <0.003K/LSB
- Operation temperatures depending on part number: –40°C to +85°C
- Small die size
- Delivery options: die for wafer bonding, bumped die for Flip Chip, PQFN24

Typical Applications
The ZSSC3026 is designed for operation in calibrated resistive (e.g., pressure) sensor modules:
- Barometric altitude measurement for portable navigation
- Altitude measurement for emergency call systems and car navigation
- Inside hard disk pressure measurement
- Weather forecast
- Fan control

ZSSC3026 Application Example
ZSSC3026 Block Diagram

Ordering Information (Please contact IDT Sales for additional options)

<table>
<thead>
<tr>
<th>Sales Code</th>
<th>Description</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZSSC3026CC1B</td>
<td>ZSSC3026 Die — temperature range: -40°C to +85 °C, tested</td>
<td>Unsawn wafer (304µm)</td>
</tr>
<tr>
<td>ZSSC3026CI1B</td>
<td>ZSSC3026 Die — temperature range: -40°C to +85 °C; extended qualification:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tested, 10 years MTP-data retention, HTOL tested</td>
<td>Unsawn wafer (304µm)</td>
</tr>
<tr>
<td>ZSSC3026KIT</td>
<td>Evaluation Kit for ZSSC30x6 Product Family; two circuit boards, cable, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 sample (Evaluation Software is downloadable from www.IDT.com/ZSSC3026)</td>
<td>Kit</td>
</tr>
</tbody>
</table>

Corporate Headquarters
6024 Silver Creek Valley Road
San Jose, CA 95138
www.IDT.com

Sales
1-800-345-7015 or 408-284-8200
Fax: 408-284-2775
www.IDT.com/go/sales

Tech Support
www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved.