Brief Description

The ZSSC3036 is a sensor signal conditioner (SSC) integrated circuit for high-accuracy amplification and analog-to-digital conversion of a differential input signal. Designed for high-resolution altimeter module applications, the ZSSC3036 can perform offset, span, and 1st and 2nd order temperature compensation of the measured signal. Developed for correction of resistive bridge sensors, it can also provide a corrected temperature output measured with an internal sensor.

The measured and corrected bridge values are provided at the digital output pins, which can be configured as I²C™ (≤3.4MHz) or SPI (≤20MHz). Digital compensation of signal offset, sensitivity, temperature, and non-linearity is accomplished via an 18-bit internal digital signal processor (DSP) running a correction algorithm. Calibration coefficients are stored on-chip in a highly reliable, non-volatile, multiple-time programmable (MTP) memory. Programming the ZSSC3036 is simple via the serial interface. The IC-internal charge pump provides the MTP programming voltage. The interface is used for the PC-controlled calibration procedure, which programs the set of calibration coefficients in memory. The ZSSC3036 provides accelerated signal processing in order to support high-speed control, safety, and real-time sensing applications. It complements IDT’s additional ZSSC30x6 products.

Features

• Flexible, programmable analog front-end design; up to 16-bit scalable, charge-balancing two-segment analog-to-digital converter (ADC)
• Fully programmable gain amplifier accepting sensors from 14 to 72 (linear factor)
• Internal auto-compensated temperature sensor
• Digital compensation of individual sensor offset; 1st and 2nd order digital compensation of sensor gain as well as of 1st and 2nd order temperature gain and offset drift
• Fast sensing: 16-bit conditioned sensor signal measurement rate at more than 200s⁻¹
• Typical sensor elements can achieve accuracy of less than ±0.10% FSO** @ -40 to 110°C

Benefits

• Integrated 18-bit calibration math DSP
• Fully corrected signal at digital output
• Layout customized for die-die bonding with sensor for high-density chip-on-board assembly
• Single-pass calibration minimizes calibration costs
• No external trimming, filter, or buffering components required
• Highly integrated CMOS design
• Excellent for low-voltage and low-power battery applications
• Optimized for operation in calibrated resistive sensor modules

Physical Characteristics

• Supply voltage range: 1.8 to 3.6V
• Current consumption: 1mA (operating mode)
• Sleep State current: 50nA (typical)
• Temperature resolution: <0.003K/LSB
• Operation temperatures: −40°C to +85°C
• Small die size
• Delivery options: die for wafer bonding

ZSSC3036 Application Example

* I²C™ is a trademark of NXP.
** FSO = Full Scale Output.
Low-Power, High-Resolution 16-Bit Sensor Signal Conditioner

ZSSC3036 Datasheet

Applications
- Barometric altitude measurement for portable navigation or emergency call systems
- Altitude measurement for car navigation
- Inside hard disk pressure measurement
- Weather forecast
- Fan control
- Industrial, pneumatic, and liquid pressure

ZSSC3036 Block Diagram

Ordering Information (See section 6 in the data sheet for additional options for delivery package and wafer thickness of 725µm.)

<table>
<thead>
<tr>
<th>Sales Code</th>
<th>Description</th>
<th>Delivery Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZSSC3036CC1B</td>
<td>Die—temperature range: –40°C to +85 °C</td>
<td>Wafer (304µm) unsawn, tested</td>
</tr>
<tr>
<td>ZSSC3036CI1B</td>
<td>Die—temperature range: –40°C to +85 °C, extended qualification</td>
<td>Wafer (304µm) unsawn, tested</td>
</tr>
<tr>
<td>ZSSC3036CC1C</td>
<td>Die—temperature range: –40°C to +85°C</td>
<td>Dice on frame (304µm), tested</td>
</tr>
<tr>
<td>ZSSC3036CI1BH</td>
<td>Die—temperature range: –40°C to +110 °C, extended qualification</td>
<td>Wafer (304µm) unsawn, tested</td>
</tr>
<tr>
<td>ZSSC3036CI1CH</td>
<td>Die—temperature range: –40°C to +110 °C, extended qualification</td>
<td>Dice on frame (304µm), tested</td>
</tr>
<tr>
<td>ZSSC30x6-KIT</td>
<td>Evaluation Kit for ZSSC30x6 Product Family, including boards, cable, software, and 1 sample</td>
<td></td>
</tr>
</tbody>
</table>

Corporate Headquarters
6024 Silver Creek Valley Road
San Jose, CA 95138
www.IDT.com

Sales
1-800-345-7015 or 408-284-8200
Fax: 408-284-2775
www.IDT.com/go/sales

Tech Support
www.IDT.com/go/support

Disclaimer Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.IDT.com/go/glossary. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved.