Brief Description

The ZSSC3122 is a CMOS integrated circuit for accurate capacitance-to-digital conversion and sensor-specific correction of capacitive sensor signals. Digital compensation of sensor offset, sensitivity, and temperature drift is accomplished via an internal digital signal processor running a correction algorithm with calibration coefficients stored in a non-volatile EEPROM.

The ZSSC3122 is configurable for capacitive sensors with capacitances up to 10pF and a sensitivity of 125aF/LSB. It is compatible with both single capacitive sensors (both terminals must be accessible) and differential capacitive sensors. Measured and corrected sensor values can be output as I2C, SPI, PDM, or alarms.

The I2C interface can be used for a simple PC-controlled calibration procedure to program a set of calibration coefficients into an on-chip EEPROM. The calibrated ZSSC3122 and a specific sensor are mated digitally: fast, precise, and without the cost overhead of trimming by external devices or laser.

Available Support

- ZSSC3122 SSC Evaluation Kit available: SSC Evaluation Board, samples, software, documentation.
- Support for industrial mass calibration available.
- Quick circuit customization option for large production volumes.

Features

- Maximum target input capacitance: 10pF
- Sampling rates as fast as 0.7ms at 8-bit resolution; 1.6ms at 10-bit; 5.0ms at 12-bit; 18.5ms at 14-bit
- Digital compensation of sensor: piece-wise 1st and 2nd order sensor compensation or up to 3rd order single-region sensor compensation
- Digital compensation of 1st and 2nd order temperature gain and offset drift
- Internal temperature compensation reference (no external components)
- Programmable capacitance span and offset
- Layout customized for die-die bonding with sensor for low-cost, high-density chip-on-board assembly
- Accuracy as high as ±0.25% FSO@ -20 to 125°C, 3V, 5V, Vsupply ±10% (see data sheet section 1.3 for restrictions)
- Minimized calibration costs: no laser trimming, one-pass calibration using a digital interface
- Excellent for low-power battery applications
- Two interface options
 - I2C or SPI interface—easy connection to a microcontroller
 - PDM outputs (Filtered Analog Ratiometric) for both capacitance and temperature
- Up to two alarms that can act as full push-pull or open-drain switches
- Supply voltage: 1.8 to 5.5V
- Typical current consumption 650μA down to 60μA depending on configuration
- Typical Sleep Mode current: ≤ 1μA at 85°C
- Operation temperature: −20°C to +125°C
- Die or TSSOP14 package

Application Circuit: Digital Output, Alarms

![Application Circuit Diagram]
ZSSC3122 Block Diagram

Application: Analog Output

VDD (1.8V to 5.5V) 0.1µF Vcore VSS

0.1µF

GND

0.1µF

VDD Vcore VSS

0.1µF

GND

0.1µF

0.1µF

Application: Differential Capacitance Input

VDD (1.8V to 5.5V) 0.1µF

0.1µF

VDD Vcore VSS

0.1µF

GND

0.1µF

0.1µF

Cap. Analog Output

Temp Analog Output

PDM_C PDM_T

Alarm_High

Alarm_Low

Ready

PDM

iC / SPI

Low Alarm

High Alarm

SS

Alarm_Low

IDT

Corporate Headquarters

6024 Silver Creek Valley Road
San Jose, CA 95138
www.IDT.com

Sales

1-800-345-7015 or 408-284-8200
Fax: 408-284-2775
www.IDT.com/go/sales

Tech Support

www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as ‘IDT’) reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support applications or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved.

© 2018 Integrated Device Technology, Inc. 2 June 8, 2018