ABSTRACT

Battery operated computer systems, such as notebook computers, need support logic with a combination of high-speed and low power. High-speed logic is required to support high-speed microprocessors. Low power is required to maximize battery life. Three volt LVTTL logic families such as IDT’s FCT, LVC & ALVC, have been introduced to supply these needs. The 3V logic families have the same TTL I/O specifications as their 5V relatives (5VTTL) but with a 3.3V VCC instead of 5V. Many systems have a mixture of 5V TTL and 3V TTL components, and conversion between the two types is required to prevent damage to the 3V components even though their logic levels are compatible. The IDT’s QS3861 QuickSwitch bus switches can be used to provide this conversion automatically without requiring control logic or introducing propagation delay.

BACKGROUND

A common problem in low power system design is a requirement for a mixture of 5V and 3V logic because some functions are not yet available in 3V form. An example of such a system is shown in Figure 1. The CPU and DRAM use 3.3V supply, while the EPROM and I/O devices use 5V supply. A 5V to 3V converter is shown in Figure 1 because the 5V TTL cannot, in general, drive the 3V TTL even though their logic levels are compatible. A 5V CMOS driver will drive the bus to 5V at a logic HIGH. Even low voltage swing TTL devices such as the FCT family have TTL HIGH output voltages above 4.0V. The 3V LVTTL devices cannot withstand more than approximately 3.3V on their I/O pins. If an I/O pin of a 3V LVTTL device is driven above its 3.3V Vcc, the P Channel device in the output driver will conduct causing current flow from the bus to the 3.3V Vcc through the device. The resulting high-current flow can cause destruction of the 3V TTL device output through latchup effects. The function of the 5V to 3V converter is to limit the voltage seen by the 3V TTL device to acceptable levels, typically no more than the 3.3V supply 0.5V.
A 5V TTL to 3V LVTTL converter could consist of specialized buffers and transceivers which accept 5V TTL levels on one side and 3V TTL levels on the other. These parts add propagation delay to the signal path, and require data direction control and power sequencing.

Fortunately a simpler solution exists for 5V and 3V translation. The QuickSwitch® bus switch family. These devices can be used to provide bidirectional 5V to 3V conversion with no added propagation delay or direction control. Under the appropriate conditions, the QuickSwitch will accept 5V TTL signals on the driving side while limiting the voltage output to 3.3V on the driven side. Also, the QuickSwitch is equivalent to a 5 Ohm resistor when on, so that it adds no significant propagation delay to signals passing through it. To understand this, we will examine the QuickSwitch® and its operation.

THE QUICKSWITCH CMOS BUS SWITCH

The basic element of the QuickSwitch is a fast, low ON resistance, low capacitance, high-current capacity switch. The combination of low ON resistance and low capacitance is provided by the IDT's high-performance CMOS process. Each switch consists of an N channel MOS transistor driven by a CMOS logic gate, as shown in Figure 2.

When the switch is enabled, the gate of the N channel transistor is at VCC (5V) and the device is on, with a typical on resistance of 5 Ohm. When disabled, the gate of the switch is at 0V and the switch is off. OFF state leakage is in the form of diode leakage to the substrate (ground) and is typically 10nA at room temperature. OFF state capacitance across the switch itself is small because the input and output pins are shielded to some degree by the gate, which is grounded.

These devices have an ON resistance of less than 5 Ohm for input voltages near ground. The resistance rises somewhat as the I/O voltage rises from a TTL LOW of 0.0V to a TTL HIGH of 2.4V. In this region the A and B pins are solidly connected. As the switch input voltage rises, the output follows closely. At approximately 4V at the input, the output reaches its highest voltage. For input voltages higher than 4V, the output will remain clamped at 4V. This is shown in the VOUT vs. VIN charts in Figures 3 and 4.

Figure 2. QuickSwitch Block Diagram
QUICKSWITCH VOUT VS. VCC

The QuickSwitch output voltage for an input voltage equal to Vcc is approximately 1.0V below Vcc. This voltage drop varies from 1.0V at light loading (μA) to 1.5V at heavier loading (mA). Increasing or decreasing Vcc will increase or decrease the output voltage by the same amount, as shown in the plot below. In this plot, the “Delta V” curves show the difference between the output and Vcc, i.e., the voltage drop across the switch. The output limit of 1.0V below Vcc is because an N channel transistor is used as the switch which turns off as its gate to source voltage falls below this value.

![Figure 3. QuickSwitch VOUT vs. VIN](image)

![Figure 4. QuickSwitch VOUT and Voltage Drop vs. VCC at VIN = VCC](image)
QUICKSWITCH AS A 5V TTL TO 3V TTL CONVERTER

The output limiting characteristics of the QuickSwitch can be used to make a very efficient 5V TTL to 3V TTL converter. By supplying 4.3V to the Vcc pin of a QuickSwitch device such as the QS3861, the driven output will be limited to 3.3V maximum, even under light loading. A 4.3V Vcc can be created by adding a diode, such as a 1N4148 between the 5V supply and the device. The diode will provide approximately 0.70V drop, supplying the QS3861 with a Vcc of 4.3V. A 10kOhm resistor is added between the diode’s cathode and ground to provide a current path for the diode.* This is shown below.

The QS3861 devices provide 10 bits of conversion per device. A bus with a 24-bit address bus, a 16-bit data bus, and up to 10 control lines would require five devices. Note that the conversion is bidirectional and automatic. If either side is driven to 5V, the driven side will be limited to 3.3V.

*IDT also offers some devices such as QS3384 which have an internal current path from Vcc to ground. These devices have a specified maximum power supply current of 1.5mA and do not require the external bias resistor shown in Figure 5.

Figure 5. System with QS3861 as 5V TTL to 3V TTL Converter

© 2019 Renesas Electronics Corporation
PERFORMANCE OF THE QUICKSWITCH
5V TTL TO 3V TTL CONVERTER

Figures 6 and 7 show the performance of the QS3861 QuickSwitch as a 5V TTL to 3V TTL converter. Figures 6A and 6B show VOH versus IOH for 3.3V and 5.0V inputs respectively. Figure 7 shows the input and output waveforms for a 5V pulse driving a standard 50pF 500 Ohm load through the QS3861.

![Graph 6A](image)

Figure 6A. VOH vs. IOH for QS3861 with Vcc = 4.3V & VIN = 3.3

![Graph 6B](image)

Figure 6B. VOH vs. IOH for QS3861 with Vcc = 4.3V & VIN = 5.0V
CONCLUSION

IDT’s QuickSwitch devices offer a simple, effective solution for operating 5V TTL and 3.3V LVTTL devices in mixed supply systems. The QuickSwitch provides voltage conversion without adding propagation delay.

POSTSCRIPT

Since the initial publication of this application note, several products have been added to facilitate voltage translation. These include 16-bit, 24-bit and 32-bit wide switches and a variety of multiplexers and bus exchangers. Please see IDT’s web page, www.IDT.com for details.

Figure 7. Input to Output Delay of QS3861 at Vcc = 4.3V
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
- "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.