WHAT IS A ZERO DELAY BUFFER?

A zero delay buffer is a device that can fan out one clock signal into multiple clock signals, with zero delay and very low skew between the outputs. This device is well-suited for a variety of clock distribution applications requiring tight input-output and output-output skews. A simplified diagram of a zero delay buffer is shown in figure 1. A zero delay buffer is built with a PLL that uses a reference input and a feedback input. The feedback input is driven by one of the outputs. The phase detector adjusts the output frequency of the VCO so that its two inputs have no phase or frequency difference. The PLL control loop zero delay is achieved by aligning phase between input clock and output clock.

WHAT IS THE IDT2305, IDT2308 AND IDT2309?

The IDT2305 is high speed phase lock loop (PLL) clock buffer. IDT2305 accepts one reference input and drives out five low skew clocks.

The IDT2308 is a high-speed phase-lock loop (PLL) clock multiplier. It is designed to address high speed clock distribution and multiplication applications. IDT2308 has two banks of four outputs, each controlled by two select addresses. By proper selection of input addresses, one or both banks can be put in tri-state mode. IDT2308 is available in six unique configurations for both prescaling and multiplication of the input REF Clock. The PLL is closed externally to provide flexibility by allowing the user to control the delay between the input and output clocks.

The IDT2309 is a 16-pin version of the IDT2305. IDT2309 accepts one reference input and drives two banks of four low skew clocks. All parts have on-chip PLLs which lock to an input clock on the REF pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad.

BLOCK DIAGRAM FOR 2305
BLOCK DIAGRAM FOR 2308

BLOCK DIAGRAM FOR 2309
FUNCTION TABLE - 2308 (1)

<table>
<thead>
<tr>
<th>S2</th>
<th>S1</th>
<th>CLKA</th>
<th>CKLB</th>
<th>Output Source</th>
<th>PLL Shut Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>Tri-State</td>
<td>Tri-State</td>
<td>PLL</td>
<td>Y</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>Driven</td>
<td>Tri-State</td>
<td>PLL</td>
<td>N</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>Driven</td>
<td>Driven</td>
<td>REF</td>
<td>Y</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Driven</td>
<td>Driven</td>
<td>PLL</td>
<td>N</td>
</tr>
</tbody>
</table>

NOTE:
1. H = HIGH Voltage Level
2. L = LOW Voltage Level

AVAILABLE OPTIONS - 2308

<table>
<thead>
<tr>
<th>Device</th>
<th>Feedback From</th>
<th>Bank A Frequency</th>
<th>Bank B Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDT2308-1</td>
<td>Bank A or Bank B</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>IDT2308-1H</td>
<td>Bank A or Bank B</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>IDT2308-2</td>
<td>Bank A</td>
<td>Reference</td>
<td>Reference/2</td>
</tr>
<tr>
<td>IDT2308-2</td>
<td>Bank B</td>
<td>2 x Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>IDT2308-3</td>
<td>Bank A</td>
<td>2 x Reference</td>
<td>Reference or Reference (1)</td>
</tr>
<tr>
<td>IDT2308-3</td>
<td>Bank B</td>
<td>4 x Reference</td>
<td>2 x Reference</td>
</tr>
<tr>
<td>IDT2308-4</td>
<td>Bank A or Bank B</td>
<td>2 x Reference</td>
<td>2 x Reference</td>
</tr>
<tr>
<td>IDT2308-5H</td>
<td>Bank A or Bank B</td>
<td>Reference/2</td>
<td>Reference/2</td>
</tr>
</tbody>
</table>

NOTE:
1. Output phase is indeterminant (0° or 180° from input clock).

REF to CLKA/CLKB Delay vs. Output Load Difference Between CLKA/CLKB Pins

ZERO DELAY AND SKEW CONTROL - 2308

To close the feedback loop of the 2308, the FBK pin can be driven from any of the eight available output pins. The output driving the FBK pin will be driving a total load of 5pF plus any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the input-output delay.

For applications requiring the zero input-output delay, all outputs including the one providing feedback should be equally loaded. If input-output delay adjustments are required, use the Output Load Difference chart above to calculate loading differences between the feedback output and remaining outputs. Ensure the outputs are loaded equally for zero output-output skew.
FUNCTION TABLE - 2309\(^{(1)}\)

<table>
<thead>
<tr>
<th>S2</th>
<th>S1</th>
<th>CLKA</th>
<th>CLKB</th>
<th>CLKOUT(^{(1)})</th>
<th>Output Source</th>
<th>PLL Shut Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>Tri-State</td>
<td>Tri-State</td>
<td>Driven</td>
<td>PLL</td>
<td>Y</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>Driven</td>
<td>Tri-State</td>
<td>Driven</td>
<td>PLL</td>
<td>N</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>Driven</td>
<td>Driven</td>
<td>Driven</td>
<td>REF</td>
<td>Y</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Driven</td>
<td>Driven</td>
<td>Driven</td>
<td>PLL</td>
<td>N</td>
</tr>
</tbody>
</table>

NOTE:
1. H = HIGH Voltage Level
 L = LOW Voltage Level
2. This output is driven and has an internal feedback for the PLL. The load on this output can be adjusted to change the skew between REF and the output.

ZERO DELAY AND SKEW CONTROL - 2305 AND 2309

For zero output-to-output skew, all outputs must be equally loaded. The feedback loop doesn't dynamically adjust the skew between CLKOUT and the other outputs. All must have the same load on them to achieve zero output-to-output skew. ZERO DELAY BUFFER TIMING DIAGRAMS shows how output loading affects output-to-output skew. Feedback is assumed to be driven by CLKOUT. If the outputs are less loaded than CLKOUT, they will lead. If other outputs are more loaded than CLKOUT, they will lag CLKOUT. CLKOUT and rest of the outputs all start at the rising edge at the same time.

All outputs should be uniformly loaded in order to achieve zero I/O delay. Since the CLKOUT pin is the internal feedback for the PLL, its relative loading can affect and adjust the input/output delay. For designs utilizing zero I/O delay, all outputs, including CLKOUT, must be equally loaded. Even if the output is not used, it must have a capacitive load equal to that on the other outputs in order to obtain true zero I/O delay.
In figure 1, CLK1 has a larger load. The PLL adjusts itself to position the zero skew between REF and the feedback pin. REF and CLK1 both cut across $V_{DD}/2$ at the same time. However, since the other output clocks are less loaded, their rise time is faster than CLK1. Consequently, they advance the REF by a certain amount that is controlled by the loads.

In figure 2, CLK1 has less load than other outputs. The PLL adjusts itself so that both REF and the feedback clock cross $V_{DD}/2$ at the same time. However, since the rest of the clocks have heavier loads, they are delayed by a certain amount that is controlled by the loads.
APPLICATIONS

Example for 2305 Zero Delay Buffer

Example for 2308 Zero Delay Buffer
POWER DOWN

The 2305, 2308, and 2309 provide auto power down features that shut off the PLL, tri-state outputs, and place the device into a low current state if the reference clock stops. The power down mode can also be entered by tristating the input reference driver and allowing the internal pull down resistor to pull the input low.

LEAD OR LAG ADJUSTMENTS

Lead or lag adjustment can be achieved by the property of PLLs. The PLL senses the phase of the CLKOUT pin at a threshold of Vdd/2 and compares it to the REF pin at the same Vdd/2 threshold. All outputs start their transition at the same time (including CLKOUT). Changing the load on an output changes its rise time, therefore also changing how long it takes the output to get to Vdd/2 threshold. With the help of these properties, we can try to adjust the time when the output reaches Vdd/2 threshold relative to when the REF input reaches Vdd/2 threshold. The CLKOUT output cannot be adjusted. The outputs can lead by loading the CLKOUT more heavily than the other outputs and vice versa.

SUGGESTED LAYOUT RECOMMENDATIONS FOR 2305, 2308, AND 2309

For best performance, good supply decoupling is essential. Place decoupling capacitors as close to the Vdd and GND pins of the zero delay buffer as possible. In a noisy environment, adding a ferrite bead in series with the Vdd supply line to the zero delay buffer will help. Decoupling capacitors should be low inductance surface mount ceramic types. Their electrical value is not critical; any value within the range 0.01uF to 0.1uF is suitable. To use two paralleled capacitors, use different electrical values for each in order to minimize the effects of any parasitic resonance between the trace inductance and the decoupling capacitors.

Dedicate one layer of the PCB to be ground plane, and connect all GND pins directly to this ground plane with vias placed as close as possible to the package pins. Ensure that the device which generates the REF input to the zero delay buffer is also connected to the ground plane with a via close to its GND pin, and that the devices driven by the zero delay buffer are connected to the ground plane with a via close to their GND pins.

Keep all I/O traces as short as possible. These are actually transmission lines, and unless the user has the luxury of being able to add a terminating resistor at the load end, the waveform will be progressively degraded by reflections from the end of the trace as the trace length is increased. If timing skew between outputs is more important than waveform integrity, equalize the trace lengths from each zero delay buffer output to its load, even if that means increasing the length of some traces. If the phase error between the REF input and the output is important, ensure that all outputs are loaded equally. Note that the FBK input capacitance will be added to whichever output is used for feedback.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.