INTRODUCTION

The SuperJET system interface discussed in this document is based on IDT’s 8 channel SuperJET transceiver (82P2288). These interface options are also applicable to the quad (82P2284), dual (82P2282) and single (82P2281) transceiver products. The SuperJET family of devices provides a wide variety of different modes on the system interface so that it can easily and gluelessly work with microprocessors, FPGAs, Time Slot Interchange Devices, Mappers, and other devices.

The purpose of this application note is to go over many of the different modes which the system interface can be programmed and the effect it has on the I/O direction, transmit edges, sample edges, clocks and signal priority.

![Figure 1. SuperJET Signal Names and Terminology](image)

IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. The ST-BUS® is a trademark of Zarlink Corp.
1 SYSTEM INTERFACE PIN SUMMARY

1.1 IN NON-MULTIPLEXED MODE

Refer to Table 1 for the receive system interface pin and Table 2 for the transmit system interface pin.

Table 1: Receive System Interface Pin Names in Non-Multiplexed Mode

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSDn</td>
<td>Receive Side System Data</td>
</tr>
<tr>
<td>RSIGn</td>
<td>Receive Side System Signaling</td>
</tr>
<tr>
<td>RSFSn</td>
<td>Receive Side System Frame Pulse</td>
</tr>
<tr>
<td>RSCKn</td>
<td>Receive Side System Clock</td>
</tr>
</tbody>
</table>

Table 2: Transmit System Interface Pin Names in Non-Multiplexed Mode

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSDn</td>
<td>Transmit Side System Data</td>
</tr>
<tr>
<td>TSIGn</td>
<td>Transmit Side System Signaling</td>
</tr>
<tr>
<td>TSFSn</td>
<td>Transmit Side System Frame Pulse</td>
</tr>
<tr>
<td>TSCKn</td>
<td>Transmit Side System Clock</td>
</tr>
</tbody>
</table>

1.2 IN MULTIPLEXED MODE

Refer to Table 3 for the receive system interface pin and Table 4 for the transmit system interface pin.

Table 3: Receive System Interface Pin Names in Multiplexed Mode

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSD</td>
<td>Multiplexed Receive Side System Data</td>
</tr>
<tr>
<td>MRSIG</td>
<td>Multiplexed Receive Side System Signaling</td>
</tr>
<tr>
<td>MRSFS</td>
<td>Multiplexed Receive Side System Frame Pulse</td>
</tr>
<tr>
<td>MRSCCK</td>
<td>Multiplexed Receive Side System Clock</td>
</tr>
</tbody>
</table>

Table 4: Transmit System Interface Pin Names in Multiplexed Mode

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSD</td>
<td>Multiplexed Transmit Side System Data</td>
</tr>
<tr>
<td>MTSIG</td>
<td>Multiplexed Transmit Side System Signaling</td>
</tr>
<tr>
<td>MTSFS</td>
<td>Multiplexed Transmit Side System Frame Pulse</td>
</tr>
<tr>
<td>MTSCCK</td>
<td>Multiplexed Transmit Side System Clock</td>
</tr>
</tbody>
</table>
2 BACKPLANE CLOCK MODE

The system interface can be set in Non-Multiplexed mode or Multi-
plexed mode.

In Non-Multiplexed mode, the system interface can work in Master
mode (the system interface clock and frame pulse output from the
device) or Slave mode (the system interface clock and frame pulse input to
the device).

In Multiplexed mode, the system interface can only work in Slave
mode.

Refer to Table 5 and Table 6 for the clock / data rate in different
operation modes. The related registers configuration is listed in Table 7.

Table 5: System Interface Clock & Data Rate in E1 Mode

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Clock Rate</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Multiplexed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master</td>
<td>Single Clock</td>
<td>2.048 MHz</td>
</tr>
<tr>
<td>Slave</td>
<td>Single Clock</td>
<td>2.048 MHz</td>
</tr>
<tr>
<td></td>
<td>Double Clock</td>
<td>4.096 MHz</td>
</tr>
<tr>
<td>Multiplexed</td>
<td>Slave</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single Clock</td>
<td>8.192 MHz</td>
</tr>
<tr>
<td></td>
<td>Double Clock</td>
<td>16.384 MHz</td>
</tr>
</tbody>
</table>

Table 6: System Interface Clock & Data Rate in T1/J1 Mode

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Clock Rate</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Multiplexed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master</td>
<td>T1 Mode T1 Rate</td>
<td>Single Clock</td>
</tr>
<tr>
<td>Slave</td>
<td>T1 Mode T1 Rate</td>
<td>Single Clock</td>
</tr>
<tr>
<td></td>
<td>T1 Mode E1 Rate</td>
<td>Single Clock</td>
</tr>
<tr>
<td></td>
<td>T1 Mode E1 Rate</td>
<td>Double Clock</td>
</tr>
<tr>
<td>Multiplexed</td>
<td>Slave</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1 Mode E1 Rate</td>
<td>Single Clock</td>
</tr>
<tr>
<td></td>
<td>Double Clock</td>
<td>16.384 MHz</td>
</tr>
</tbody>
</table>

Table 7: Related Registers Configuration

<table>
<thead>
<tr>
<th>Operation</th>
<th>Configuration Registers for Receive Path</th>
<th>Configuration Registers for Transmit Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Multiplexed / Multiplexed mode selection</td>
<td>RMUX (b3, X10H)</td>
<td>TMUX (b0, X10H)</td>
</tr>
<tr>
<td>Master / Slave mode selection</td>
<td>RMODE (b0, X47H)</td>
<td>TMODE (b0, X43H)</td>
</tr>
<tr>
<td>Single / Double clock selection</td>
<td>CMS (b1, X46H)</td>
<td>CMS (b2, X42H)</td>
</tr>
<tr>
<td>T1 mode E1 rate mapping mode selection</td>
<td>MAP[1:0] (b2~1, X47H)</td>
<td>MAP[1:0] (b2~1, X43H)</td>
</tr>
<tr>
<td>Frame pulse active level selection</td>
<td>FSINV (b4, X46H)</td>
<td>FSINV (b1, X42H)</td>
</tr>
</tbody>
</table>
3 T1 TO E1 / E1 TO T1 MAPPING IN T1 MODE E1 RATE

In Receive side, T1/J1 format will map to E1 format. See Figure 2 to Figure 4.

In Transmit side, E1 format will map to T1/J1 format. See Figure 5 to Figure 7.

There are three mapping modes:
- G.802 mode;
- One Filler Every Four Channels mode;
- Continuous Channels mode.

![Figure 2. T1/J1 To E1 Format Mapping - G.802 Mode](image)

![Figure 3. T1/J1 To E1 Format Mapping - One Filler Every Four Channels Mode](image)

![Figure 4. T1/J1 To E1 Format Mapping - Continuous Channels Mode](image)
Figure 5. E1 To T1/J1 Format Mapping - G.802 Mode

2.048 Mb/s	TS0	TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8	TS9	TS10	TS11	TS12	TS13	TS14	TS15	TS16	TS17	TS18	TS19	TS20	TS21	TS22	TS23	TS24	TS25	TS26	TS27~TS31	TS0	TS1			
1.544 Mb/s	F	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10	CH11	CH12	CH13	CH14	CH15	CH16	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24	F	CH1	CH2	CH3	CH4	CH5	CH6	CH7

The 1st bit discarded.

Figure 6. E1 To T1/J1 Format Mapping - One Filler Every Four Channels Mode

2.048 Mb/s	TS0	TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8	TS9	TS10	TS11	TS12	TS13	TS14	TS15	TS16	TS17	TS18	TS19	TS20	TS21	TS22	TS23	TS24	TS25	TS26	TS27~TS31	TS0	TS1			
1.544 Mb/s	F	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10	CH11	CH12	CH13	CH14	CH15	CH16	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24	F	CH1	CH2	CH3	CH4	CH5	CH6	CH7

The 8th bit discarded.

Figure 7. E1 To T1/J1 Format Mapping - Continuous Channels Mode

2.048 Mb/s	TS0	TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8	TS9	TS10	TS11	TS12	TS13	TS14	TS15	TS16	TS17	TS18	TS19	TS20	TS21	TS22	TS23	TS24	TS25	TS26	TS27~TS31	TS0	TS1			
1.544 Mb/s	F	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10	CH11	CH12	CH13	CH14	CH15	CH16	CH17	CH18	CH19	CH20	CH21	CH22	CH23	CH24	F	CH1	CH2	CH3	CH4	CH5	CH6	CH7
4 OPERATION OF SINGLE CLOCK MODE

4.1 CLOCK/DATA SAMPLE/UPDATE

The FE bit selects the active edge of (M)RSCKn/(M)TSCKn to update/sample the pulse on (M)RSFSn/(M)TSFSn. The DE bit selects the active edge of (M)RSCKn/(M)TSCKn to update/sample the data on (M)RSDn/(M)TSDn and (M)RSIGn/(M)TSIGn.

Figure 8 shows how to set FE and DE in Receive System Interface Slave mode. In this mode, RSCKn/MRSCK and RSFSn/MRSFS input clock and frame pulse from external, and RSDn/MRSD output data. If the RSCKn/MRSCK rising edge samples the RSFSn/MRSFS at middle, then set FE to ‘1’. If the RSCKn/MRSCK falling edge samples the RSFSn/MRSFS at middle, then set FE to ‘0’. If set DE to ‘1’, the RSDn/MRSD will be updated after RSCKn/MRSCK rising edge. If set DE to ‘0’, the RSDn/MRSD will be updated after RSCKn/MRSCK falling edge.

![Figure 8. Receive Clock Slave Mode (Single Clock)](image-url)
Figure 9 shows how to set FE and DE in Receive System Interface Master mode. In this mode, RSCKn and RSFSn output clock and frame pulse, and RSDn output data. If set FE to ‘1’, RSFSn will be updated after RSCKn rising edge. If set FE to ‘0’, RSFSn will be updated after RSCKn rising edge. If set DE to ‘1’, RSDn will be updated after RSCKn falling edge. If set DE to ‘0’, RSDn will be updated after RSCKn falling edge.

Figure 9. Receive Clock Master Mode (Single Clock)
Figure 10 shows how to set FE and DE in Transmit System Interface Slave mode. In this mode, TSCKn/MTSCK and TSFSn/MTSFS input clock and frame pulse from external, and TSDn/MTSD input data from external. If the TSCKn/MTSCK rising edge samples TSFSn/MTSFS at middle, then set FE to ‘1’. If the TSCKn/MTSCK falling edge samples TSFSn/MTSFS at middle, then set FE to ‘0’. If the TSCKn/MTSCK rising edge samples TSDn/MTSD at middle, then set DE to ‘1’. If the TSCKn/MTSCK falling edge samples TSDn/MTSD at middle, then set DE to ‘0’.

![Figure 10. Transmit Clock Slave Mode (Single Clock)](image-url)
Figure 11 shows how to set FE and DE bits in Transmit System Interface Master mode. In this mode, TSCKn and TSFSn output clock and frame pulse, and TSDn input data. If set FE to ‘1’, TSFSn will be updated after TSCKn rising edge. If set FE to ‘0’, TSFSn will be updated after TSCKn falling edge. If the TSCKn rising edge samples TSDn at middle, then set DE to ‘1’. If the TSCKn falling edge samples TSDn at middle, then set DE to ‘0’.

Figure 11. Transmit Clock Master Mode (Single Clock)
4.2 TIMESLOT/CHANNEL OFFSET & BIT OFFSET

Timeslot/channel offset and bit offset are both supported in all operation modes. Figure 12 and Figure 13 show some examples of TS/CH offset and bit offset in receive system interface.

\[
BOFF[2:0] = 010, \ TSOFF[6:0] = 0000000
\]

\[
\begin{align*}
\text{RSCKn/MRSCK (FE=DE=1)} \\
\text{RSGn/MRSIG} \\
\text{TSFSn/MTSFS} \\
\text{RSDn/MRSD}
\end{align*}
\]

Figure 12. TS/CH Offset & Bit Offset - Example 1

\[
BOFF[2:0] = 001, \ TSOFF[6:0] = 0010000
\]

\[
\begin{align*}
\text{RSCKn/MRSCK (FE=DE=1)} \\
\text{RSGn/MRSIG} \\
\text{TSFSn/MTSFS} \\
\text{RSDn/MRSD}
\end{align*}
\]

Figure 13. TS/CH Offset & Bit Offset - Example 2

In Multiplexed mode, the TS/CH offset of each link should be set to different value to avoid data conflict. For example:
- Set TSOFF of Link 5 to 0;
- Set TSOFF of Link 6 to 1;
- Set TSOFF of Link 7 to 2;
- Set TSOFF of Link 8 to 3;
5 OPERATION OF DOUBLE CLOCK MODE

The SuperJET device can operate with either a single-bit / single-clock mode of operation or a single-bit / double-clock mode of operation. In the double clock mode of operation, the FE bit determines if the frame sync is sampled on the rising edge (FE = 1) or falling edge (FE = 0). Since each "bit cycle" now contains four edges the EDGE bit and DE bit together select one of the four edges to sample data.

Below are two drawings showing two possible frame selections and the data sample edges for those cycles. It should be noted that double clock mode is not supported in Master Mode or in the T1/J1 rate (1.544Mbps clock and data) in Slave Mode.

<table>
<thead>
<tr>
<th>CMS</th>
<th>RSCKn</th>
<th>MRSCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.048 MHz</td>
<td>8.192 MHz</td>
</tr>
<tr>
<td>1</td>
<td>4.096 MHz</td>
<td>16.384 MHz</td>
</tr>
</tbody>
</table>

Table 8: CMS in RBIF Operation (b1, X46H) & in TBIF Operation (b2, X42H)

<table>
<thead>
<tr>
<th>EDGE Bit</th>
<th>Edge Selection of RSCKn / MRSCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>first active edge</td>
</tr>
<tr>
<td>1</td>
<td>second active edge</td>
</tr>
</tbody>
</table>

Table 9: EDGE in RBIF Bit Offset (b3, X4AH) & in TBIF Option (b3, X45H)

<table>
<thead>
<tr>
<th>EDGE Bit</th>
<th>FE = DE</th>
<th>FE ≠ DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1st Edge</td>
<td>2nd Edge</td>
</tr>
<tr>
<td>1</td>
<td>3rd Edge</td>
<td>4th Edge</td>
</tr>
</tbody>
</table>

Table 10: Edge Selection Based on EDGE, FE & DE Bits
6 SUPERJET ST-BUS® EXAMPLE

6.1 RECEIVE DIRECTION

Frame pulse is sampled on the falling edge of clock, so:
FE (b2, X46H) = 0;
Frame pulse active state is low, so:
FSINV (b4, X48H) = 1;
Data is transmitted on the falling clock edge, so:
DE (b3, X46H) = 0;
So for ST-BUS® we want double clock, so:
EDGE (b3, X4AH) = 0;
CMS (b1, X46H) = 1.

RSFSn/MRSFS input

RSCKn/MRSCK input

RSDn/MRSD output

Figure 16. Receive Slave Mode

Figure 17. ST-BUS® Receive Timing aka System Side RX

Table 11: Receive Slave & Multiplexed Modes

<table>
<thead>
<tr>
<th>Input of SuperJET</th>
<th>Output from SuperJET</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSFSn / MRSFS</td>
<td>input to SuperJET</td>
</tr>
<tr>
<td>RSCKn / MRSCK</td>
<td>input to SuperJET</td>
</tr>
<tr>
<td>RSDn / MRSD</td>
<td>output from SuperJET</td>
</tr>
</tbody>
</table>

Frame pulse is sampled on the falling edge of clock, so:
FE (b2, X46H) = 0;
Frame pulse active state is low, so:
FSINV (b4, X48H) = 1;
Data is transmitted on the falling clock edge, so:
DE (b3, X46H) = 0;
So for ST-BUS® we want double clock, so:
EDGE (b3, X4AH) = 0;
CMS (b1, X46H) = 1;
RSCKn = 4.096 MHz;
MRSCK = 16.384 MHz.
Summary:
FE (b2, X46H) = 0;
FSINV (b4, X48H) = 1;
DE (b3, X46H) = 0;
EDGE (b3, X4AH) = 0;
CMS (b1, X46H) = 1.
6.2 TRANSMIT DIRECTION

Figure 18. Transmit Slave Mode

<table>
<thead>
<tr>
<th>System Side</th>
<th>SuperJET</th>
<th>Line Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSDn</td>
<td>TSCKn</td>
<td>TTIPn</td>
</tr>
<tr>
<td>TSFSn</td>
<td>TSFSn</td>
<td>TRINGn</td>
</tr>
<tr>
<td>TSIgn</td>
<td>TSIgn</td>
<td></td>
</tr>
<tr>
<td>RSIn</td>
<td>RSIn</td>
<td></td>
</tr>
<tr>
<td>RSCKn</td>
<td>RSCKn</td>
<td></td>
</tr>
<tr>
<td>RSDn</td>
<td>RSDn</td>
<td></td>
</tr>
<tr>
<td>RSFSn</td>
<td>RSFSn</td>
<td></td>
</tr>
</tbody>
</table>

Figure 19. ST-BUS® Transmit Timing aka System Side TX

Table 12: Transmit Slave & Multiplexed Modes

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSFSn / MTSFS</td>
<td>input to SuperJET</td>
</tr>
<tr>
<td>TSCKn / MTSCK</td>
<td>input to SuperJET</td>
</tr>
<tr>
<td>TSDn / MTSD</td>
<td>input to SuperJET</td>
</tr>
</tbody>
</table>

Frame pulse is sampled on the falling edge of clock, so:
FE (b3, X42H) = 0;
Frame pulse active state is low, so:
FSINV (b1, X42H) = 1;
Data is sampled on the rising clock edge, so:
DE (b4, X42H) = 1;
So for ST-BUS® we want double clock, so:
EDGE (b3, X45H) = 0;
CMS (b2, X42H) = 1;
TSCKn = 4.096 MHz;
MTSCK = 16.384 MHz.
Summary:
FE (b3, X42H) = 0;
FSINV (b1, X42H) = 1;
DE (b4, X42H) = 1;
EDGE (b3, X45H) = 0;
CMS (b2, X42H) = 1.
7 SUPETJET GCI EXAMPLE

7.1 RECEIVE DIRECTION

Frame pulse is sampled on the falling edge of clock, so:
FE (b2, X46H) = 0;
Frame pulse active state is high, so:
FSINV (b4, X48H) = 0;
Data is transmitted on the falling clock edge, so:
DE (b3, X46H) = 0;
So for GCI we want double clock, so:
EDGE (b3, X4AH) = 0;
CMS (b1, X46H) = 1.
RSCKn = 4.096 MHz;
MRSCK = 16.384 MHz.

Summary:
FE (b2, X46H) = 0;
FSINV (b4, X48H) = 0;
DE (b3, X46H) = 0;
EDGE (b3, X4AH) = 0;
CMS (b1, X46H) = 1.

Table 13: Receive Slave & Multiplexed Modes

<table>
<thead>
<tr>
<th>Input to SuperJET</th>
<th>Output from SuperJET</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSFSn / MRSFS</td>
<td>RSDn / MRSD</td>
</tr>
<tr>
<td>RSCKn / MRSCK</td>
<td></td>
</tr>
</tbody>
</table>

Figure 20. Receive Slave Mode

Figure 21. Receive Timing aka System Side RX
7.2 TRANSMIT DIRECTION

Figure 22. Transmit Slave Mode

- **System Side**
 - TSDn
 - TSFSn
 - TIgn

- **SuperJET**
 - TSCKn
 - TSFSn
 - TSIgn

- **Line Side**
 - TTIPn

Frame pulse is sampled on the falling edge of clock, so:
FE (b3, X42H) = 0;
Frame pulse active state is high, so:
FSINV (b1, X42H) = 0;
Data is sampled on the falling clock edge, so:
DE (b4, X42H) = 0;
So for GCI we want double clock, so:
EDGE (b3, X45H) = 1;
CMS (b2, X42H) = 1.

Figure 23. GCI Transmit Timing aka System Side TX

Table 14: Transmit Slave & Multiplexed Modes

<table>
<thead>
<tr>
<th>TSFSn / MTSFS</th>
<th>input to SuperJET</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSCKn / MTSCK</td>
<td>input to SuperJET</td>
</tr>
<tr>
<td>TSDn / MTSD</td>
<td>input to SuperJET</td>
</tr>
</tbody>
</table>

Frame pulse is sampled on the falling edge of clock, so:
FE (b3, X42H) = 0;
Frame pulse active state is high, so:
FSINV (b1, X42H) = 0;
Data is sampled on the falling clock edge, so:
DE (b4, X42H) = 0;
So for GCI we want double clock, so:
EDGE (b3, X45H) = 1;
CMS (b2, X42H) = 1.

TSCKn = 4.096 MHz;
MTSCK = 16.384 MHz.
Summary:
FE (b3, X42H) = 0;
FSINV (b1, X42H) = 0;
DE (b4, X42H) = 0;
EDGE (b3, X45H) = 1;
CMS (b2, X42H) = 1.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.