INTRODUCTION

In today’s telecommunication systems, ensuring no traffic loss is becoming increasingly important. More and more, people are relying on internet to conduct financial transactions, make telephone calls and perform video conferencing. Loss of data could have a devastating effect including the losing or delaying of a critical financial transaction, hearing annoying flickering noises on the telephone lines, or viewing lousy video clips.

To combat these problems, redundancy protection must be built into the systems carrying this traffic. Although there are many types of redundancy protection schemes, linear 1+1 hardware protection implementation with the IDT82P2281/2/4/8 T1/E1/J1 Long Haul / Short Haul Transceivers is the subject of this application note. As will be shown in this document, the Transceiver enables system design to achieve high reliability, low switching latency and ease of service.

The foregoing sections will discuss the implementation of T1/E1/J1 1+1 relay-less hitless protection switching (HPS) using the Transceiver series from IDT. Section 1 will discuss how the Transceiver is used in such applications. It begins by explaining the concept of 1+1 relay-less hitless protection. Then it describes implementation of redundancy protection using the IDT82P2281/2/4/8. After describing the receive line interface design, it will detail the transmit side. For both the transmit and receive line interfaces, internal and external line impedance matching will be discussed in detail. Section 2 will briefly touch on the principle of hot-switch and hot-swap. Section 3 provides some general design guidelines. Following the discussion of test results using the IDT82P2288 evaluation board in Section 4 is the conclusion of the report described in Section 5.

![Figure 1. System Application Diagram](image-url)
IDT82P2281/2/4/8 1 + 1 RELAY-LESS HITLESS PROTECTION SWITCHING

1.1 WHAT IS T1/E1/J1 1 + 1 RELAY-LESS HITLESS PROTECTION SWITCHING

T1/E1/J1 1+1 relay-less hitless protection switch or relay-less HPS is a means to provide 100% linear redundancy for T1/E1/J1. In the T1/E1/J1 1+1 redundancy scheme, there are two identical cards: a primary and secondary or protection card. The primary card is active and the secondary card is always in hot standby. They share the same line interface. If the primary card fails, the traffic is switched to the secondary card.

In the older generation of T1/E1/J1 line cards, the primary and secondary cards share the same line by use of multiple mechanical relays. When the primary card fails, the switching from the primary to the secondary card relies on mechanical relays. Mechanical relays are not only costly but have a lot of drawbacks as well. First, the relays require drivers to switch them. This implies bigger bill of materials and results in higher system cost as well as potentially more reliability issues from the relays and drivers. Secondly, the relays are big and take up a lot of room on PCB. Depending on the types of relay, each could take up to an area of 10 mm². As traffic volume grows, more channels or line cards are required to handle heavier traffic load. The mechanical relays result in bigger and more costly boxes. Finally, mechanical relays have higher switching latency. Depending on the relays, it could take up to tens of milliseconds to switch the relays. During this time, there are enough bit errors to jeopardize mission-critical traffic.

In the relay-less hitless protection switching T1/E1/J1 line cards, switching traffic from the primary to backup card is accomplished by the monolithic Transceiver. Relays are eliminated from the system resulting in a fewer components, higher reliability, better performing and cost effective system. The IDT82P2281/2/4/8 is the latest T1/E1/J1 silicon from IDT to enable low latency relay-less redundancy applications.

1.2 TRANSCEIVER

The IDT82P2281/2/4/8 T1/E1/J1 Long Haul / Short Haul Transceiver products consist of IDT82P2281 (single), IDT82P2282 (dual), IDT82P2284 (quad) and IDT82P2288 (octal). They have fast high-impedance output line drivers, arbitrary waveform generator at the transmit output, and internal/external line impedance matching capability. The transmit high impedance driver enables 1+1 redundancy applications without extra mechanical relays and still achieves excellent analog performance. Likewise, the receiver input has high-impedance and enables parallel connection with the backup receiver input without affecting the receive traffic.

Figure 1 illustrates the implementation of the IDT82P2281/2/4/8 in 1+1 relay-less hitless protection switching. It shows a typical multi-service chassis populated with T1/E1/J1 line cards. There are 2xN line cards, control card, backplane connector and I/O cards as detailed in the follows:

- 1st to Nth active cards - These are T1/E1/J1 primary cards populated with multiple IDT82P2281/2/4/8.
- 1st to Nth protection cards - These are T1/E1/J1 secondary cards populated with multiple IDT82P2281/2/4/8 and are in hot standby. Each line card has a backup line card and connects to the same traces to the backplane.
- I/O cards - These cards consist of transformer and metallic line protection devices, plugged into the backplane and are shared among the primary and secondary cards.
- Control card - If one of the active cards failed, the control card detects it, high-impedances the active card and turns on the backup card. The IDT82P2281/2/4/8 has fast high-impedance output driver to ensure hitless switching during hot-switch.
- Other Plugging Cards - These cards represent other functional cards specified by the multi-service chassis.
1.3 RECEIVE LINE SCHEMATIC

Figure 2 describes the receive line interface circuit for the IDT82P2281/2/4/8 in a 1+1 HPS implementation. The example shown in this figure consists of the primary, secondary and interface card all connecting to the same backplane. Only one transformer is required to be shared between the working and redundant cards. The recommended AC coupling capacitors are either 0.22 µF or 0.47 µF. The termination resistor R_r is recommended in Table 1. The 470 Ω resistors are recommended for DC current isolation. Furthermore, to meet some of the surge requirements of GR1089, a primary protection circuit with a transient voltage suppressor and a secondary surge protection provided by the diodes is recommended. Table 1 provides the component values and manufacturers tested by IDT to meet the above requirements.

1.3.1 INTERNAL

The IDT82P2281/2/4/8 provides internal and external line impedance matching capability. The device integrates active components to match T1/E1/J1 and high impedance by programming the R_TERM[2:0] bits. In HPS, it is recommended to use the external impedance mode of the device, where the receive input impedance is 120 kΩ. The high input impedance ensures no signal degradation in hot-switch or hot-swap. With the external impedance mode, a single 120 Ω resistor is sufficient to satisfy 100, 110 and 120 Ω requirements for T1/E1/J1 twisted pairs applications; for coax application, the recommended termination resistor is 75 Ω. Although the internal impedance mode is an option for the receive input, it is not recommended for HPS. The internal impedance mode could potentially alter the input signal and result in bit errors.

<table>
<thead>
<tr>
<th>Components</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>470 Ω</td>
</tr>
<tr>
<td>C</td>
<td>0.22 µF or 0.47 µF</td>
</tr>
<tr>
<td>SD</td>
<td>TECCOR P0640SC</td>
</tr>
<tr>
<td>D1, D2, D3, D4</td>
<td>International Rectifier, IR10BG040</td>
</tr>
<tr>
<td>T1</td>
<td>1:1 turn ratio. 0553-0013-AC (Belfuse), T1108 (Pulse)</td>
</tr>
<tr>
<td>R_r</td>
<td>T1/E1/J1 - 120 Ω; Coax - 75 Ω</td>
</tr>
</tbody>
</table>

![Figure 2. Receive Line Interface Schematic](image-url)
1.4 TRANSMIT LINE SCHEMATIC

Figure 3 delineates the transmit line interface circuit for the IDT82P2281/2/4/8 in 1+1 HPS implementation. Primary, secondary and interface cards are connected to the same backplane. Only a single 1:2 turn ratio transformer and a single Cp capacitor are shared between the working and protection cards. The Cp value affects the pulse shape and return loss. The value can be adjusted to match different load conditions. The DC decoupling capacitors with a value of 0.47 µF are recommended to prevent DC bias difference between cards. Table 2 provides the list of component values and manufacturers tested by IDT for the above requirements.

1.4.1 INTERNAL

Internal line impedance matching is recommended as it requires fewest components. With the internal impedance matching, the primary card is programmed to be in active or normal mode, while the secondary card is programmed to be in high impedance mode.

Table 2: TX Components

<table>
<thead>
<tr>
<th>Components</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.47 µF</td>
</tr>
<tr>
<td>Cp</td>
<td>560 pF, 50 V (Adjustable from 0 ~ 1200 pF)</td>
</tr>
<tr>
<td>SD</td>
<td>TECCOR P0640SC</td>
</tr>
<tr>
<td>T1</td>
<td>1:2 turn ratio, 0553-0013-HC (Belfuse), T1108 (Pulse)</td>
</tr>
<tr>
<td>D1, D2, D3, D4</td>
<td>International Rectifier, IR10BQ040</td>
</tr>
</tbody>
</table>

Figure 3. Transmit Line Interface Schematic
2 HOT-SWITCH AND HOT-SWAP

2.1 WHAT IS HOT-SWITCH

Hot-switch refers to the switching from an active card to a backup card or vice versa. The critical parameter in switching is the latency. GR253 and ITU-T G.783 require the total latency of less than 60 ms. The IDT82P2281/2/4/8 incurs a latency of no more than 10 µs during hot-switch. This gives the Transceiver over 100 times of the required margin for system implementation.

The IDT82P2281/2/4/8 provides both hardware and software modes for hot-switch: In hardware mode, switching the THZ pin high or low will put the device into high-impedance or active mode respectively. In software mode, writing a 1 or 0 to the THZ bit in the TCF1 register will put the output driver to high-impedance or active mode respectively. Lab tests show that there is less than 1 bit error for every 20 hot-switches using the THZ pin.

2.2 WHAT IS HOT-SWAP

Hot-swap refers to the plugging and unplugging of line cards in a powered backplane. When a card fails, a new replacement card is installed. The failed card must be removed and a new card is plugged in while the system is still running. The IDT82P2281/2/4/8 provides high transmit and receive impedance to enable hot-swap while still maintaining excellent transmit output pulse templates and producing no bit error. It should be noted that to ensure good system performance, the pins plugged into the backplane should be staggered as follows:
- Ground pins are the first to make contact (longer pin);
- VCC pins are the next to make contact;
- TTIP/TRING, RTIP/RRING and I/O pins are the last to make contact.

3 GENERAL DESIGN GUIDELINES

- Surge immunity protection should be placed close to the connector, where the source of disturbance is.
- Power supply decoupling caps should be placed as close to the power and ground pins of the chip as possible.
- Simple inductor or beads and capacitors filter is recommended for power supply switching noise isolation.
- Route digital signals away from the analog signals to avoid them from crossing each other.
- Avoid power and ground planes near high voltage area as noise from high voltage area may couple noise to the power/ground planes. (Recommend to void power and ground planes underneath the RJ48 or BNC connectors).
- EMI filtering should currently be sufficient. However, if additional EMI requirement has to be met, common mode choke may be added near the connectors.
- Avoid long trace as they may reduce the transmit output amplitude. For T1/E1/J1 type of signals, less than 30 cm is recommended.

4 RESET REQUIREMENT

After power up, the device must be reset before operation. However, the master clock must be available during reset.

Table 3 lists the time in which reset is completed in different cases.

<table>
<thead>
<tr>
<th>Different Cases</th>
<th>Completed Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware reset after power up</td>
<td>12</td>
</tr>
<tr>
<td>Hardware reset during normal operation</td>
<td>2</td>
</tr>
<tr>
<td>Software reset after mode setting change</td>
<td>2</td>
</tr>
</tbody>
</table>
5 TEST RESULT

5.1 SUMMARY OF IDT82P2288 HPS TEST RESULT

Table 4 summarizes the test result conducted by IDT Telecom Laboratory. The 1+1 Relay-less HPS was tested using a modified IDT82P2288 octal Transceiver evaluation board. In addition to bit error rate, pulse templates, and return loss tests, additional tests to mimic hot-switch and hot-swap conditions are also performed.

Table 4: HPS Performance Test Result

<table>
<thead>
<tr>
<th>#</th>
<th>Test</th>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T1/E1 Power Failure Test</td>
<td>0 bit error / 48 hours</td>
<td>2^23-1 PRBS, ESF for T1
2^23-1 PRBS, PCM32CRC for E1
Primary card transmits live traffic
Secondary powered on/off
Duration = 48 hr
Test configuration: Test setup #1</td>
</tr>
<tr>
<td>2</td>
<td>T1/E1 Hot-Switch Stress Test</td>
<td>< 1 error for every 20 switches
2^23-1 PRBS, ESF for T1
2^23-1 PRBS, PCM32CRC for E1
Switch data between primary and secondary card
Duration = 8 hr
Test configuration: Test setup #2</td>
<td></td>
</tr>
</tbody>
</table>
5.2 T1/E1 TRANSMIT PULSE MASKS

Figure 4 ~ Figure 7 show the captured T1 and E1 pulse masks meeting T1.102 and G.703 templates. Although only 0 ft waveforms are shown, the IDT82P2281/2/4/8 passed all pulse templates LBO. User can verify the other LBO by setting bits PULSE[3:0] of register TCF1.

![Figure 4. T1 Pulse Mask - Primary Card Transmits, Secondary Card in Stand By, for Test Setup #2](image1)

![Figure 5. T1 Pulse Mask - Primary Card Transmits, Secondary Card in Stand By, for Test Setup #1](image2)
Figure 6. E1 Pulse Mask - Primary Card Transmits, Secondary Card in Stand By, for Test Setup #2

Figure 7. E1 Pulse Mask - Primary Card Transmits, Secondary Card in Stand By, for Test Setup #1
5.3 RECEIVE RETURN LOSS

Table 5: E1 / 120 Ω (Impedance - Internal Mode, Rr = 120 Ω)

<table>
<thead>
<tr>
<th>Frequency (KHz)</th>
<th>51</th>
<th>90</th>
<th>102</th>
<th>1000</th>
<th>1024</th>
<th>2000</th>
<th>2048</th>
<th>2500</th>
<th>3000</th>
</tr>
</thead>
</table>

5.4 TRANSMIT RETURN LOSS

Table 6: E1 / 120 Ω (Impedance - Internal Mode, Cp = 560 pF)

<table>
<thead>
<tr>
<th>Frequency (KHz)</th>
<th>51</th>
<th>90</th>
<th>102</th>
<th>1000</th>
<th>1024</th>
<th>2000</th>
<th>2048</th>
<th>2500</th>
<th>3000</th>
</tr>
</thead>
</table>
5.5 TEST SETUP

Figure 8 ~ Figure 9 show the test setups of different HPS tests conducted by IDT Telecom Laboratory.

Figure 8. Test Setup #1 (Power Failure Test Setup)

Figure 9. Test Setup #2 (Hot-Switch Test Setup)

6 CONCLUSION

The IDT82P2281/2/4/8 T1/E1/J1 Long Haul / Short Haul Transceivers are highly integrated Transceivers that enables 1+1 relay-less hitless protection. As shown by IDT laboratory test result, the integrated features maintain outstanding signal integrity in HPS application and provide excellent design margin to achieve high system availability, reliability and serviceability.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics products" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.