Introduction

The PCI Express® architecture is designed to natively support both hot-add and hot-removed (“hot-plug”) of adapters and provides a “toolbox” of mechanisms that allow different user/operator models to be supported using a self-consistent infrastructure. IDT PCIe® switches support hot-plug on all of its downstream ports. There are software and hardware elements required to support the Hot Plug environment. The major software elements include the User Interface, Hot-Plug Service, Hot Plug System Driver, and Device Driver. As for major hardware elements, Hot-Plug Controller, Card Slot Power Switching logic, Card Reset logic, Power Indicator, Attention Indicator Attention Button, and Card Present Detect Pins are included.

IDT PCIe switches utilize an external SMBus/I²C-bus I/O expander connect to the master SMBus interface for hot-plug related signals associated with downstream ports as illustrated in Figure 1.

I/O Expander Initialization

The PES24N3A utilizes an external SMBus/I2C-bus I/O expander connected to the master SMBus interface for hot-plug related signals associated with downstream ports. These I/O expander and Hot-Plug functions are disabled in default mode. Therefore, they must be enabled and initialized prior to the bus enumeration from the root complex via a serial EEPROM. Table 1 provides the registers required to prepare the PES24N3A Port 2 for a hot-plug process. Refer to the PCIBrowser Manual on how to modify the PES24N3A registers and program an EEPROM.

Figure 1 Hot-Plug Block Diagram

This application note describes how to prepare the EBPES24N3A evaluation board (using the PES24N3A PCIe switch) for a hot-add and hot-removed on one of its downstream ports. A similar process can be applied to the second downstream port on other IDT PCIe switches.
Notes

<table>
<thead>
<tr>
<th>Offset</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000404</td>
<td>0x00000008</td>
<td>SWCTL - Set Unlock Register</td>
</tr>
<tr>
<td>0x00000408</td>
<td>0x14140000</td>
<td>Disable MRL automatic power off</td>
</tr>
<tr>
<td>0x00000418</td>
<td>0x00000007</td>
<td>GPIOFUNC - Enable I/O Expander 0 to generate reset output for downstream port 2</td>
</tr>
<tr>
<td>0x00002040</td>
<td>0x4161C010</td>
<td>PCIECAP - Set Slot Implement bit</td>
</tr>
<tr>
<td>0x00002054</td>
<td>0x0020007F</td>
<td>PCIESCAP - Set attention button present bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set power control present bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set MRL Sensor present bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set attention indicator present bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set power indicator present bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set hot-plug surprise bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set hot-plug capable bit</td>
</tr>
<tr>
<td>0x0000058</td>
<td>0x000001DF</td>
<td>Port2 PCIESCTL - Enable attention press button</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable power fault detect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable MRL sensor change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable presence detect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable command complete interrupt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turn off attention indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turn on power indicator</td>
</tr>
<tr>
<td>0x00000434</td>
<td>0x00000040</td>
<td>Set I/O Expander 0 Address</td>
</tr>
<tr>
<td>0x00000404</td>
<td>0x00000000</td>
<td>SWCTL - Reset UnLock Register</td>
</tr>
</tbody>
</table>

Table 1 Hot-Plug EEPROM Image

Modifications to the EB24N3A evaluation board are listed in Table 2.

<table>
<thead>
<tr>
<th>Ref Designator</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W13</td>
<td>Open</td>
<td>Use Hot-Plug controller to generate +12V and +3.3V to downstream Port 2</td>
</tr>
<tr>
<td>R134</td>
<td>Remove</td>
<td>Disable Hot Plug controller auto force on</td>
</tr>
<tr>
<td>R133</td>
<td>Install</td>
<td>Use Port 2 Power Good to enable hot-plug controller output</td>
</tr>
</tbody>
</table>

Table 2 Hot-Plug Setting
Hot-Removed and Hot-Add Procedures

It should be noted that the procedures described in the following sections assume that the Hot-Plug System Driver is responsible for configuring a newly-installed device. The PCIBrowser will be used instead of the Hot-Plug System Driver to manually turn the slot power OFF/ON and to scan for newly-installed devices via the Windows Device Manager.

Turning Slot Off

The following steps are required to turn Off a slot that is currently On:
1. Deactivate the link
2. Assert the PERST# signal to the slot.
3. Turn off REFCLK to the slot.
4. Remove power from the slot.
Notes

Turning Slot On

The following steps are required to turn On a slot that is currently Off:

1. Apply power to the slot.
2. Turn on REFCLK to the slot.
3. Deassert the PERST signal to the slot.

Hot-Removed Procedure

A number of steps must occur to prepare the software and hardware for safe removal of the card and to control indicators that provide visual evidence of the request to remove the card. The sequence of events is as follows:

1. Initiate the card removal request by depressing the slot’s "attention button x3". The PCI Express Slot Status is updated and an interrupt is generated to the root complex.
2. Use PCIBrowser to verify the Attention Button request by reading the PCI Express Slot Status register (PCIESSTS). Bit zero should be set to “1”.
3. Software commands the Hot Plug Controller to turn the slot Off. This can be achieved by using the PCIBrowser to write a “1” to the PCC bit in the PCIe Slot Control Register. The on-board hot plug control logic will assert PERST# signal, turn Off the REFCLK, and remove power from the slot.

Hot-Add Procedure

The procedure for installing a new card basically reverses the steps listed above for Hot-Removed. The steps taken to insert and enable a card are as follows:

1. Install the card.
2. Notify the hot-add service that the card has been installed by pressing the "attention button x3". The PCI Express Slot Status is updated and an interrupt is generated to the root complex.
3. Software commands the Hot Plug Controller to turn the slot On. This can be achieved by using the PCIBrowser to write a “0” to the PCC bit in the PCIe Slot Control Register. The on-board hot plug control logic will deassert PERST# signal, turn On the REFCLK, and turn power On from the slot.
4. Once link training is complete, the OS commands the Platform Configuration Routine to configure the card function by assigning the necessary resources.

Allocating Resources to Downstream Bridges

When Windows XP encounters multiple downstream bridges (as might be common when a PCIe switch is hot-plugged into a PCIe hot-plug port), all of the memory and I/O resources that are available in the upstream port are allocated to the first downstream bridge that is enumerated, which leaves no resources to assign to additional parallel downstream bridges. Functions attached to those bridges are inoperable because no resources are assigned to them. Figure 2 illustrates this situation.
Figure 2 Bridge Resource Assignments Behind a PCIe Switch

As shown in Figure 2, all of the resources available in the upstream bridge (and elsewhere, as this is a bridge characteristic) are assigned to the downstream port on the left of the diagram. No resources are assigned to the downstream port on the right of the diagram. To prevent this, the hot-plug module must be inserted before the system is powered On. As firmware enumerates the PCIe tree, resources are assigned to all functions that are present, thus enabling the previously nonfunctional devices.

If a PCIe hot-plug module is removed after firmware has enumerated and assigned resources to the hot-plugged bridge configuration registers, Windows XP does not alter the resources that were assigned to the system board's downstream hot-plug port. But if the same module is removed and re-inserted during the same power-up session, it demonstrates the same starvation of resources as described above.

Resources

IDT 89HPES24N3A User Manual
IDT 89EBPES24N3A Evaluation Board Manual
PCI Express Browser User Manual
Firmware Support for PCI Express Hot-Plug and Windows
PCI Express Base Specification Revision 1.1
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of semiconductor products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.