Introduction

This application note addresses the possible self oscillation of the differential input due to external termination in certain board level design. Examples of solutions to prevent this type of oscillation are provided. The IDT Netcom product differential clock input is designed to receive signals from high speed differential clock drivers for examples LVDS, LVPECL, LVHSTL, SSTL, and HCSL drivers. To prevent input oscillation when the input pins are floating, the true clock input CLK has a built-in ~51KΩ pull-up resistor and the complement clock input nCLK has a built-in 51KΩ pull-down (or both pull-up and pull-down resistor). Therefore, the CLK pin is held at logic low and the nCLK pin is held at logic high. Using these high impedance internal pull-down/pull-up resistors does not affect the external termination values required by the various driver types.

In general, high speed differential clock drivers require matched load termination near the differential input. The termination generates equal DC potential at the differential input when the clock signal is absent due to tri-stated outputs or floating inputs. This equal potential can cause oscillation at high frequencies which will be prevented by placing a small DC offset input voltage between CLK and nCLK. Several termination examples of self oscillation prevention for various types of termination are provided.

LVDS Interface

A general LVDS interface is shown in Figure 1. In a 100Ω differential transmission line environment, LVDS drivers require a matched load termination of 100Ω across the CLK/nCLK pair. In this case, the LVDS output forces CLK to a logic high and the complementary LVDS output forces nCLK to a logic low, or vice versa. The load termination typically provides sufficient voltage difference to prevent oscillation.

If the CLK/nCLK inputs are driven by a tri-stated output, the 100Ω is negligible compared to the 51KΩ pull-up and pull-down resistors. The voltage drop across R1 is very close to 0V. Therefore, high frequency oscillation at the input circuitry can occur when the driver is tri-stated. This oscillation can be prevented by introduce the DC offset between the CLK and nCLK inputs without affecting the matched load. Figure 2 shows how to add the external pull-up resistor R2 and the external pull-down resistor R3 to increase the DC voltage between CLK and nCLK. Effectively, this prevents oscillation. However, setting this swing too wide will increase the offset between the CLK and nCLK signals during normal operation when the clock signal is present. General equations to determine the R1, R2 and R3 values are provided below. The board designer should consider these trade-offs when choosing the voltage across R1.

R1, R2 and R3 can be determined by using the following equations:

\[R2 = R3 = \text{Zo\textsubscript{diff}} \times \frac{\text{VDD}}{2 \times \text{VR1}} \]
\[R1 = \text{VR1} \times \frac{(2 \times R2)}{(ext{VDD} - \text{VR1})} \]

where,

- \(\text{Zo\textsubscript{diff}} \) is the differential characteristic impedance of the transmission line.
- \(\text{VR1} \) is the DC voltage drop across R1.

For example, if the DC voltage across R1 is 100mV and the differential characteristic of the transmission line is 100Ω, then the following values for R1, R2, and R3 are chosen.

\(\text{Zo\textsubscript{diff}} = 100\Omega, \text{VR1} = 50\text{mV}, \text{VDD} = 3.3\text{V} \)

From equation (1), \(R2 = R3 = 100\Omega \times 3.3\text{V} / (2 \times 50\text{mV}) = 3.3\text{K\Omega} \).

Substitute R2 to equation (2), \(R1 = 50\text{mV} \times (2 \times 3.3\text{K\Omega}) / (3.3\text{V} - 50\text{mV}) = 101.5\Omega \).
LVPECL Interface

A general 3.3V LVPECL driver to differential input interface is shown in Figure 3. In a 50Ω single ended or 100Ω differential transmission line environment, LVPECL drivers require a matched load termination of 50Ω to VCC-2V = 1.3V for each output. In this case, the LVPECL driver output forces CLK to logic high and the complementary LVPECL output forces nCLK to logic low or vice versa. The CLK and nCLK typically have sufficient potential difference to prevent oscillation.

For the CLK/nCLK inputs driven by a tri-state output, the bias resistor will generate the same potential of 1.3V at both CLK and nCLK pins. The voltage between CLK and nCLK is very close to 0V. As a result, high frequency oscillation at the input circuitry can occur when the driver is tri-stated. This oscillation will be prevented by placing a minimum peak-to-peak input voltage between the CLK and nCLK inputs which does not affect the matched load. Figure 4 shows the method for changing the bias resistor values at the CLK input. General equations to determine the R3 and R1 values are provided below. Effectively, this prevents oscillation. However, setting this swing too wide will increase the offset between the CLK and nCLK signals. The board designer should consider these trade-offs when choosing the voltage between CLK and nCLK.

R1 and R3 can be determined by using the following equations:

\[
R3 = \frac{Z_o \times VDD}{VDD - 2 - Voffset} \quad (3)
\]

\[
R1 = \frac{R3 \times Z_o}{R3 - Z_o} \quad (4)
\]

where,
Zo is characteristic impedance of the transmission line.
Voffset is the DC voltage between CLK and nCLK.

For example, if the DC voltage between CLK and nCLK is set to 100mV and the characteristic impedance of the transmission line is 50Ω, then the values for R3 and R1 are as follows:

\[
R_3 = 50Ω \times \frac{3.3V}{(3.3V - 2V - 100mV)} = 137Ω \\
R_1 = 50Ω \times \frac{137Ω}{(137Ω - 50Ω)} = 78Ω
\]

Figure 5 shows general termination for an LVPECL driver with AC coupling. When the clock signal is absent, the bias resistors R1, R2, R3 and R4 will create an equal DC potential for the CLK and nCLK input pair. To prevent oscillation, the small offset described above can be introduced by using equations (3) and (4). An example is shown in Figure 6.

Figure 3. General LVPECL to Differential Input Interface

Figure 4. LVPECL Driver with Tri-state to Differential Input Interface. Add a small offset between CLK and nCLK to prevent oscillation.
Figure 5. General LVPECL Driver with AC couple to Differential Input Interface

![Figure 5](image1)

Figure 6. LVPECL Driver AC couple to Differential Input Interface with a small offset at the CLK and nCLK to prevent oscillation.

![Figure 6](image2)

LVHSTL Interface

Figure 7 and Figure 8 show general and AC coupled terminations for an open source LVHSTL interface. Typically, open source LVHSTL drivers do not have tri-state capability. The driver will force one side high and the other side low during reset. If the clock signal is absent for the interface with AC coupling (as shown in Figure 8), oscillation may occur. A small offset between the CLK and nCLK pair can be introduced using equations (3) and (4). An example of this interface is shown in Figure 9.

![Figure 7](image3)

![Figure 8](image4)
Figure 7. General LVHSTL to Differential Input Interface

![General LVHSTL to Differential Input Interface](image1)

1.8V
LVHSTL
Zo = 50 ohm
CLK
nCLK
3.3V
R1
50
R2
50
Zo = 50 ohm

Figure 8. General LVHSTL Driver to Differential Input Interface with AC Coupling

![General LVHSTL Driver to Differential Input Interface with AC Coupling](image2)

1.8V
LVHSTL
Zo = 50 ohm
CLK
nCLK
3.3V
R1
84
R2
84
R3
125
R4
125
C1
125
C2
125
R5
60
R6
60
R5, R6 locate near the driver pin.
Conclusion

The application note shows how the introduction of a small DC offset voltage between CLK and nCLK was used to prevent oscillation when the input clock signal is absent and the input is floating. Wider DC offset input voltage provides more margin to prevent oscillation. However, setting this DC offset too wide will increase the offset between the true and complementary input signals during normal operation. Board designers should consider these trade-offs when choosing the DC offset voltage.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.