Introduction

System reliability is one of the most emphasized qualities of any telecommunication applications. Redundancy is utilized to improve telecommunication systems' reliability. When a card or a port fails, a redundant card or port shall be switched into the system without interrupting system data continuity. IDT SuperJet and ULIU products have integrated internal termination resistance inside the chips for universal T1/E1/J1 impedance matching, and yet a fixed external resistor is required to complete the termination circuit. This document attempts to provide help for system designers to implement redundancy using IDT products.

Summary

Redundancy is a much requested feature in telecom applications. IDT’s recently released HD-LIU family products have built in fully internal termination features that enable total relay-less redundancy for HPS applications. However, earlier released ULIU (universal LIU) and transceiver (SuperJet) devices require an external resistor for different termination schemes. This note provides some recommendations for redundancy implementations for designs that employ SuperJet transceivers and ULIU devices.

Redundancy Schemes

Based on different system conditions, different redundancy schemes are proposed. In each redundancy scheme proposal, it is assumed that transmit direction will be put in High-Z state for redundant card. Therefore, the following diagram figures show only the receive direction of the line.

(1) Systems with a Separate I/O Card for Magnetic

Figure 1 shows a scheme used for designs that allow a separate I/O card on which magnetic component and an external resistor reside.

Figure 1. System Redundancy with Separate I/O Card (Rr = 120Ω)

In this configuration, primary card is in normal operation while Standby card is configured to be in high-impedance state. When primary card fails, standby card will be switched to “working mode” from high-impedance state within 2μs.

The switch-over applies to both transmit and receive.
(2) Systems with Y-cable Patch Panel

In some other systems, there is no separate I/O card. Magnetic component (transformer) will reside in the same board with the transceiver or LIU chip. If so, there are two different ways to handle the external termination resistor. Figure 2 illustrates a scheme where TIP/RING leads are connected after the transformer forming a Y-shaped cable connection. In this case, a Y-cable patch-panel is expected.

Figure 2. Redundancy Scheme with Individual Magnetic and Shared Termination Resistor by Y-cable Patch-panel (Rr = 120Ω)

In normal applications, it is recommended that the external termination resistor be as close to the chip as possible. However, with proper layout placement and impedance control, and Y-cable length being less than 1ft, both lab test and simulation indicate acceptable results.

(3) Systems without an I/O card or Y-cable Patch Panel

Figure 3 shows a scheme where neither a separate I/O card, nor a Y-cable patch-panel exists. An external resistor lies between the chip and the transformer for both primary card and Standby card. Because TIP/RING leads for two cards are connected together after the transformer, two resistors are essentially in parallel thus changing the impedance matching. Therefore, the resistor on Standby card needs to be switched out. A solid-state analog switch can be used to switch the resistor in or out, as shown in Figure 3.
In Figure 3, primary card is in normal operation with 120Ω resistor switched in the circuit. Standby card, on the other hand, is in high impedance state, and its resistor is switched out of the circuit by the analog switch. Upon primary card failure, Standby card will return to normal operation (from high-impedance state) and its external resistor is switched in. The opposite will occur in primary card.

(4) Systems without an I/O card or Y-cable Patch Panel that Require “Sniffing”

Sometimes there requires an application where a “sniffing” feature (a standby card also serves as a line condition monitor) is preferred from a redundant system. As shown in Figure 4, an application proposal is made to achieve just that by using analog switches and attenuation resistors. In Figure 4, analog switches are configured as such that the primary card is operational in normal mode while standby card, while serving as a redundant card upon the failure of primary card, is monitoring the line condition through a 432Ω resistor simulating a high-impedance bridging circuit commonly used in a digital cross-connect settings. The 432Ω resistor is used to avoid interfering signals in primary card. SuperJet has built in a Monitor Gain circuit which is able to amplify the attenuated signal by 22dB/26dB/32dB configurable by software.
Appendix

A solid state analog switch can adequately fit into this requirement with the following features:

1. Tiny, compatible packages, i.e. SC70/SOT-23, normally 2x2mm, with single supply.
2. Sub-ohm resistance when ON; Very high resistance when OFF.
3. Extremely fast switching speed, normally 25~40 nanoseconds.
4. In this application, power consumption can be as low as 10mW

Table 1: A Sampling of Off-the-Shelf Analog Switches

<table>
<thead>
<tr>
<th>Part #/Vendor</th>
<th>Ron (Ohm)</th>
<th>Switching Speed</th>
<th>Package Size</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vishay, DG3001</td>
<td>0.4</td>
<td>47ns</td>
<td>1.5mmx1mm</td>
<td>3.3V</td>
</tr>
<tr>
<td>Vishay DT2715</td>
<td>0.4</td>
<td>25ns</td>
<td>SC70, 2x2mm</td>
<td>3.3V</td>
</tr>
<tr>
<td>Maxim MAX4715</td>
<td>0.4</td>
<td>18ns</td>
<td>SC70, 2x2mm</td>
<td>3.3V</td>
</tr>
<tr>
<td>Maxim MAX4626</td>
<td>0.9</td>
<td>50ns</td>
<td>SOT23-5</td>
<td>3.3V</td>
</tr>
<tr>
<td>NEC PS7802</td>
<td>1.1</td>
<td>0.1ms</td>
<td>4.2mmx2.5mm</td>
<td>3.3V</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0.1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.