Introduction

This application note details the calculations required to set the registers of the IDT5P49V5901. For the device pin out, block diagram, I2C interface, power up sequence, OTP programming and register map, please consult the IDT document VersaClock 5® - 5P49V5901 Programming Guide.

PLL Pre-Divider Options

The reference presented to the fractional PLL can be either directly connected, divided by two or divided by the any value from the range of three to 127 as set in the register Ref_Div[6:0]. The phase detector of the PLL has a maximum frequency of 50 MHz, therefore the default is to bypass the pre-divider by setting Bypss_prediv = 1. For the functionality of Sel_prediv2 and bypass_prediv bits, see Figure 1.

Figure 1. PLL Pre-Divider Options

PLL Fractional Feedback Divider

The PLL feedback divider M is composed of a 12 bit integer portion, FB_intdiv[11:0] and a 24 bit fractional portion, FB_frcdiv[23:0].

\[ M = INT(M) + FRAC(M) = \frac{F_{VCO}}{F_{REF2PLL}} \]  

Convert FRAC(M) to hex with Eq.2 where ROUND2INT means to round to the nearest integer. The round-off error of M in ppm is the VCO frequency error in ppm.

\[ FB_{frcdiv}[23:0] = DEC2HEX(ROUND2INT[2^{24} * FRAC(M)]) \]  

Fractional Output Dividers and Spread Spectrum

Spread spectrum capability is contained within the Fractional-N output dividers associated with each output clock. When applied, triangle wave modulation of any spread spectrum amount, SS%AMT, from ±0.25% to ±2.5% center spread and -0.5% to -5% down spread between 30 and 63kHz may be generated, independent of the output clock frequency. Five variables define Spread Spectrum in FODx (see Table 1).
Table 1: Spread Spectrum Variables in FODx

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Register Length</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODx_sscex</td>
<td>Spread spectrum control enable</td>
<td>1</td>
<td>If ODx_sscex = 0, contents of ODx_period and ODx_step are Don't Care.</td>
</tr>
<tr>
<td>ODx_intdiv</td>
<td>Integer portion of the FODx</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>divider, N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODx_period</td>
<td>Spread spectrum modulation</td>
<td>13</td>
<td>Defined as half the reciprocal of the modulation frequency and measured in cycles of the FODx output frequency. See Eq 5 below.</td>
</tr>
<tr>
<td></td>
<td>period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODx_step</td>
<td>Modulation step size</td>
<td>24</td>
<td>Sets the time rate of change or time slope of the output clock frequency.</td>
</tr>
<tr>
<td>ODx_offset</td>
<td>Spread spectrum modulation</td>
<td>30</td>
<td>ODx_offset is the actual spread spectrum offset subtracted from the Fractional portion of the FODx divider N. It is the fractional portion of the FODx divider and accounts for the fact that there is no ODx_frcdiv in the memory map.</td>
</tr>
<tr>
<td></td>
<td>offset, which defines down spread or center spread</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To calculate the spread spectrum registers, first determine the value in decimal of the FOD output divider, N, for the nominal output frequency without spread spectrum. The VCO frequency is divided by two to account for a fixed divide by 2 between the VCO output and the input to the FOD. Convert the integer portion into hex to define ODx_intdiv.

\[
N(\text{dec}) = \text{INT}(N) + \text{FRAC}(N) = \left( \frac{F_{\text{VCO}}}{2} \right) / F_{\text{OUT}} \tag{3}
\]

\[
\text{ODx_intdiv}[11:0] = \text{DEC2HEX}(\text{INT}(N)) \tag{4}
\]

If no spread is to be applied to FODx (ODx_sscex = 0) then ODx_period and ODx_step registers are Don't Care and it is permissible to skip to Eq. 9. Convert FRAC(N) to 30 bits in accordance with Eq. 10.

When the ODx_period and ODx_step registers are calculated below, ODx_period and ODx_step are explicitly set to 0 if ODx_sscex will always be 0. This is done for reasons of style, it reinforces the fact that there is no spread spectrum invoked when ODx_sscex = 0. If down spread is to be turned on by just setting ODx_sscex = 1, then ODx_period and ODx_step must be calculated and registered. See Eq. 9 to see why changing only ODx_sscex works only for down spread.

Consider one cycle of down spread triangular modulation; the output divider, N, is ramped up linearly from the non-spread value of N followed by a linear ramp back down to the non-spread value of N. N is always greater than or equal to the non-spread value of N, therefore the output frequency is always less than or equal to the non-spread frequency.

As normally defined, ODx_period (dec) would be 1/ Fss, but the modulation period is defined instead as ½*1/ Fss for the most direct calculation of ODx_step as will be seen below. An added benefit is that the up ramp and the down ramp are guaranteed to be symmetric. Note that ODx_period does not have units of time; it is the dimensionless number of FOUT periods that fit in a half period of Fss.

\[
\text{ODx_period}(\text{dec}) = \begin{cases} 
0 & \text{if } \text{ssce} = 0 \\
1 * \frac{F_{\text{OUT}}}{F_{\text{SS}}} & \text{if } \text{ssce} = 1 
\end{cases} \tag{5}
\]

\[
\text{ODx_period}[12:0] = \text{DEC2HEX}((\text{ROUND2INT}(\text{ODx_period}(\text{dec})))) \tag{6}
\]
Calculate the step size.

\[
ODx\_step(\text{dec}) = \begin{cases} 
0 & \text{if } ssce = 0 \\
SS\%AMT \times N / ODx\_period & \text{if } ssce = 1 
\end{cases}
\]  

(7)

\[
ODx\_step[23:0] = \text{DEC2HEX(ROUND2INT}(2^{24} \times ODx\_step(\text{dec})))
\]  

(8)

Since the spread spectrum ramp as implemented only decreases the frequency of FOUT, then the actual offset for down spread is zero. But if the spread is to be centered, an offset equal to half the peak modulation, \(SS\%AMT \times N\), is to be subtracted from the value of FRAC(N).

\[
ODx\_offset(\text{dec}) = \begin{cases} 
FRAC(N) & \text{if } ssce = 0 \text{ or Down spread} \\
FRAC(N) - \frac{SS\%AMT \times N}{2} & \text{if } ssce = 1 \text{ and Center spread} 
\end{cases}
\]  

(9)

\[
ODx\_offset[29:0] = \text{DEC2HEX(ROUND2INT}(2^{24} \times ODx\_offset(\text{dec})))
\]  

(10)

If FRAC(N) is a small positive value, it is possible that after the center spread offset is subtracted ODx\_offset will be negative. In this case, retain only the lower 30 bits of the 32 bit hex value and assign them to ODx\_offset[29:0].

In this manner it can be seen that ODx\_offset is the value of FRAC(N), appropriately adjusted should center spread be enabled.
Skew

Skew is not implemented with a parallel load of the count of the output divider as is commonly done with non-fractional divides. Instead, skew is accomplished by increasing the value of the fractional output divider for only the very first clock cycle. The divide is increased by the number of VCO cycles required to delay the completion of the first output clock cycle by the desired skew. For the second and all subsequent output cycles, hardware changes the output divider to the value for the proper steady state output frequency.

To illustrate, suppose there are two output clocks defined as four cycles of $F_{VCO}/2$ per FOD output clock cycle, that is $N = 4$. OUT2 is to be delayed by 90 degrees relative to OUT1 and the power-on reset phase aligns the output clocks out of reset.

### Table 2: OUT1 and OUT2 Clock Cycle Duration Measured in $F_{VCO}/2$ Cycles

<table>
<thead>
<tr>
<th></th>
<th>FOD Cycle 1</th>
<th>FOD Cycle 2</th>
<th>FOD Cycle 3</th>
<th>FOD Cycle n</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>OUT2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

The integer and fractional components of skew are calculated as follows.

\[
INT(\text{Skew})(\text{dec}) = INT\left(1 + \frac{\text{Degrees of Skew}}{360}\right) \times N - INT(N) \tag{11}
\]

\[
ODx_{\text{intskew}}[11:0] = \text{DEC2HEX}(INT(\text{Skew})) \tag{12}
\]

\[
FRAC(\text{Skew})(\text{dec}) = \left[1 + \frac{\text{Degrees of Skew}}{360}\right] \times N - INT(N) - INT(\text{skew}) \tag{13}
\]

\[
ODx_{\text{frcskew}}[5:0] = \text{DEC2HEX}(INT[2^6 \times FRAC(\text{Skew})]) \tag{14}
\]
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

   "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

   "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or damage to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.IDT.com/go/support

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.