From the Computing and Multimedia Division of Integrated Device Technology, Inc.

Overview

High performance clock buffers are widely used in digital consumer and communications applications for distribution of clock signals. A critical parameter for these buffers is Additive phase noise that can degrade system performance and reliability. This application note briefly explains the theory behind measuring additive phase noise for IDT clock buffers and summarizes the additive phase jitter results for several widely used IDT clock buffers. Other AC parameters of interest for buffers are input to output propagation delay and output to output skew. For tighter skew requirements refer to the application note on zero delay buffers.

Introduction

In synchronous systems where timing and performance of the system is dependent on the clock, integrity of the clock signal is important. Designers must optimize board layout, use clean power supplies and follow recommended decoupling and termination schemes for the outputs in order to meet the EMI and timing budgets for their application.

IDT has a large variety of low skew clock distribution devices to meet all your application needs. Figure 1 shows a typical set top box application where an IDT clock buffer is used to distribute 33 MHz PCI clocks to multiple PCI slots.

![Figure 1. Set Top Box Application Diagram using IDT Clock Buffer](image-url)
Phase Noise Measurement

Phase Noise is the frequency domain representation of fluctuations in the phase of a waveform due to jitter. It is measured using a Phase Noise Analysis system such as Aeroflex and is usually expressed in dBc/Hz at various offsets from the carrier frequency.

Figure 2 shows a simplified block diagram of the Aeroflex PN-9000 system. The PN-9000 demodulates the phase fluctuations of the source under measurement by means of a quadrature locked low noise reference signal. A balanced mixer functions as a phase comparator and produces a signal which comprises of the time representation of the phase fluctuations of the source. The reference is held in phase quadrature with respect to the DUT output frequency by means of the control voltage produced by the phase locked loop. A low noise amplifier with auto-gain feature will adjust the noise level to the optimum dynamic range of the digitizing board. The FFT calculation is done on a companion board located in the computer to which the PN9000 system is connected to and the resulting phase noise is displayed on the monitor hooked up to the computer.
Setup for Measuring Phase Noise using Aeroflex PN9000
Additive Phase Noise

Any component in a signal chain has some amount of noise at its output that is generated internally (not including the contribution due to the external reference noise at the input). It is useful to measure the phase noise at the output of a device in such a way that the phase noise of any external source is cancelled out. The phase noise so measured is specified as the additive phase noise of the device. It is the amount of phase noise that the device (clock buffer in our case) adds to the signal chain.

IDT clock buffers have ultra low additive phase jitter thereby allowing system designers to distribute multiple copies of a clean clock to other devices on their system. The clock signal integrity is maintained thereby eliminating the need for additional jitter cleaning components. By considering the phase noise contribution due to the buffer alone, it is then possible to foretell the degree to which the buffer impacts the total system phase noise when used in conjunction with components such as oscillators and clock sources, each of which contribute to the phase noise of the total system. In many cases, the phase noise of one element in the chain dominates the system phase noise.

Additive Phase Noise Measurement

The measurement setup for additive phase noise (Figure 3) differs a little bit from the phase noise setup that we saw in Figure 1. The PN9000 RF Synthesizer is programmed to output a frequency that is equal to the DUT (IDT clock buffer) input frequency. The Synthesizer output frequency is then passed through a power splitter. One of the outputs of the splitter is fed into a manual phase shifter while the other is the input to the DUT. The output of the DUT is connected to RF IN port and the output of the manual phase shifter is connected to the LO IN port. The phase quadrature between the LO and RF inputs is ensured by setting the phase correctly using the external manual phase shifter. The assumption in this case is that the PN9000 reference synthesizer has a very low phase noise and its contribution to the overall DUT phase noise is negligible. This ensures that the measured phase noise will be purely due to the DUT.
Additive Phase Jitter (RMS) Results

Measurements for additive phase jitter (RMS) were taken on six of the most widely used IDT Clock Buffers at three frequencies: 25 MHZ, 100 MHz and 125 MHz. All measurements contained in this report are taken at room temperature. All devices unless stated otherwise are operated at VDD = 3.3 V (Figure 2, 3, 4, 5). Measurements for additive phase jitter over a VDD range of 1.8 V - 3.3 V have been taken for ICS524 clock buffer (Figure 6). Table 1 summarizes additive phase jitter measurement results for various IDT clock buffers at different input frequencies. Table 2 shows the summary of additive phase jitter results taken on ICS524 clock buffer over the device operating voltage range.
Figure 4. Additive Phase Noise Measurements 25 MHz

Figure 5. Additive Phase Noise Measurements 100 MHz
Figure 6. Additive Phase Noise Measurements 125 MHz

Figure 7. Additive Phase Noise Measurement of ICS524 Over VDD Range of 1.8 V - 3.3 V
Additive Phase Jitter (RMS) Summary of Results

Figures 4, 5, 6 and 7 plot the single sideband phase noise distribution for the buffers. The maximum offset from the carrier frequency for the measurements is limited by the range of the instrument. The total noise power of the sidebands can be determined by integrating the phase noise plot over the frequency band of interest. The RMS phase jitter values reported in figures (4, 5, 6, 7) and tables (1, 2) are in femto seconds.

\[
N = \text{Noise Power} = \int_{F_1}^{F_2} L(f) \, df
\]

- \(F_1 = \text{Lower Frequency of Interest}\)
- \(F_2 = \text{Upper Frequency of Interest}\)
- \(L(f) = \text{phase noise distribution function}\)

\[
\text{RMS Phase Jitter (radians)} = (10^{N/10})^{0.5} \times 2
\]

\[
\text{RMS Phase Jitter (secs)} = \text{Jitter (radians)} / (2\times\pi\times F_C)
\]

\(F_C = \text{Carrier Frequency}\)

Table 1: Additive Jitter of IDT Clock Buffers Over Frequency Range

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Range</th>
<th>Device</th>
<th>IDT2305NZ</th>
<th>ICS651</th>
<th>ICS553</th>
<th>IDT74FCT3807</th>
<th>5V551</th>
<th>5V2305</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>10 Hz - 10 MHz</td>
<td>25</td>
<td>314.53 fs</td>
<td>340.9 fs</td>
<td>332.23 fs</td>
<td>373.83 fs</td>
<td>331.83 fs</td>
<td>368.45 fs</td>
</tr>
<tr>
<td>100</td>
<td>10 Hz - 10 MHz</td>
<td>100</td>
<td>362.41 fs</td>
<td>385.36 fs</td>
<td>390.51 fs</td>
<td>383.26 fs</td>
<td>378.82 fs</td>
<td>401.07 fs</td>
</tr>
<tr>
<td>125</td>
<td>10 Hz - 100 MHz</td>
<td>125</td>
<td>423.78 fs</td>
<td>436.89 fs</td>
<td>463.96 fs</td>
<td>429.67 fs</td>
<td>420.11 fs</td>
<td>477.87 fs</td>
</tr>
</tbody>
</table>

Table 2: Additive Jitter of ICS524 Over Voltage Range

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Range</th>
<th>Device</th>
<th>ICS524</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>10 Hz - 10 MHz</td>
<td>25</td>
<td>354.78 fs</td>
</tr>
<tr>
<td>1.8 V</td>
<td>346.41 fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 V</td>
<td>346.41 fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 V</td>
<td>338.92 fs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Conclusion

The additive phase-noise measurement results presented in the application note confirm ultra low additive phase jitter across IDT family of clock buffers. The additive phase jitter varies minimally over the buffer input frequency range and operating voltage range.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations, etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.) and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.