82P338XX/9XX

Introduction
The IDT82P338XX/9XX Synchronization Management Unit (SMU) for IEEE 1588 and Synchronous Ethernet (SyncE) provides tools to manage timing references. It has several different modes to align the output clocks, to control the skew, clock sources and timing paths for IEEE 1588 / Precision Time Protocol (PTP) and Synchronous Ethernet (SyncE) based clocks.

![Block Diagram](image)

Figure 1: 82P338XX/9XX Block Diagram

Procedure to program clock phase skew
The 82P338XX/9XX enables the capability to manage phase skew of a physical clock at it's inputs, outputs and/or input-to-output. This application note describes the procedure to program the 82P338XX/9XX skews from its power-up default state; and it describes how to dynamically adjust skews needed for certain applications, such as 'snapping' a 1PPS clock representing a 1588 PTP clock. It also presents the measured skew offsets of 82P338XX/9XX for a typical configuration example.

Overview of clock skew capability
Per-Input skew control

![Block Diagram](image)

Figure 2: 82P338XX/9XX Input Clock & System Skew Block Diagram
Each input provides a means to apply an independent phase skew offset to the reference clock. This skew is applied when the reference input is selected by the DPLL, after the phase detector. The value is a signed 7-bit digital value with units of 0.61ns, providing a range from [+77.5 ns, -78.1ns] of skew control.

![IN03 Clock Configuration](image)

Figure 3: 82P33831 Timing Commander Input Clock Skew Settings

Since this offset is applied after the phase detector, any changes to the skew will be filtered and phase limited by the DPLL.

Input-to-output skew control

Each DPLL provides a means to apply a system level phase skew offset to the clock. This skew is applied at the phase detector, and represents a phase offset of the feedback clock (internal or external) from the selected input reference clock. The value is a signed 28-bit digital value with units of 0.0745ps, providing a range from [+20µs, -20µs] of skew control.
Since this offset is applied after the phase detector, any changes to the skew will be filter and phase limited by the DPLL.

This 28-bit register is also used to apply the phase offset value when operating in Write Phase DCO mode.
Per-Output skew control

Figure 5: 82P338XX/9XX Output Clock Skew Block Diagram

Each output (OUT01~081) provides a means to apply an independent phase skew offset of the synthesized clock. This skew represents a phase offset from the DPLL, which means any changes to the skew will cause a ‘snap’ of the output clock edge. There are three (3) adjustments available: up to two coarse adjustments in the positive direction, and one fine adjustment (APLL synthesized clock only) in the negative direction; which provides +/-180° of skew control.

The output skew adjustment is analogue based, providing very precise adjustments that are based on the APLL VCO or DFS engine clock edges.

1 OUT08 for 82P33x10/x14, OUT07 for 82P33x31
The first coarse value is a 5-bit value with units determined by either the APLL VCO frequency or the clock frequency from the DFS engine. For the example above using an APLL with VCO=622.08MHz, the unit would be \(\frac{1}{622.08\text{MHz}} = 1.6075\text{ns} \). The max value that can be programmed is determined by the first stage divider value (M) minus 1. For the example above, the maximum value would be 31 for up to +49.8328\(\mu \text{s} \) of skew adjustment.

The second coarse value is a 27-bit value with units determined by the clock frequency from the first stage divider. For the example above using a \(/32 \) on the APLL clock (19.44MHz), the unit would be \(\frac{1}{19.44\text{MHz}} = 51.4403\text{ns} \). The max value that can be programmed is determined by the second stage divider value (N) minus 1. For the example above, the maximum value would be 2429 for up to +124.9486\(\mu \text{s} \) of skew adjustment.

The total range with the two coarse adjustments would be \([0, +124.9984]\ \mu\text{ s}\).
Figure 7: Output Clock Coarse Skew Setting Example

The fine value is a 3-bit value with units determined by the APLL VCO frequency * 8. Only a clock from the APLL has a fine skew adjustment. For the example above using an APLL with VCO=622.08MHz, the unit would be 1/(622.08M*8)= 200.9ps. The max value is 7 for a range of [0, -1.4066]ns of skew adjustment.

Figure 8: Output Clock Fine Skew Setting Example

Power-up Default State

Upon power-up, if there is no external EEPROM available, then the 82P338XX/9XX loads its register configurations from the metal defaults. With the qualification and locking to any input reference clock, the 82P338XX/9XX will exhibit typical delays as shown in Table 1.
Table 1: Input-to-Output Delay for 82P338XX/9XX with Power-Up Default Configuration

Looking at a specific output clock, the 82P338XX/9XX will exhibit typical delays as shown in Table 2.

<table>
<thead>
<tr>
<th>Output</th>
<th>Min (ns)</th>
<th>Max (ns)</th>
<th>Range (ns<sub>pp</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Input to Any APLL Output</td>
<td>10</td>
<td>19</td>
<td>9 (+/-4.5 around mean)</td>
</tr>
<tr>
<td>Any input to [M]FRSYNC Output</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

NOTES

1. The measurements in the above table take into account any delays in the clock path from any input to any output; through either DPLL1 or DPLL2 and either APLL1 or APLL2.
2. The measurements in the above table are over operational temperature, varying power supply and repeated power on/off cycle.
3. Measurements are taken using an ideal REF input and an ideal System clock to account for only internal delays in the device.

Table 2: Input-to-Output Delay for 82P338XX/9XX

For the associated output clock pair, the 82P338XX/9XX will exhibit delays as shown in Table 3.

<table>
<thead>
<tr>
<th>Output</th>
<th>Min (ns<sub>ps</sub>)</th>
<th>Max (ns<sub>ps</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output to Output, APLL LVCMOS (OUT01 to OUT02, OUT07 to OUT08*)</td>
<td>-110</td>
<td>110</td>
</tr>
<tr>
<td>Output to Output, LVPECL/LVDS (OUT03 to OUT04, OUT05 to OUT06)</td>
<td>-85</td>
<td>85</td>
</tr>
</tbody>
</table>

NOTES

* OUT08 for 82P33x10/x13/x14 only

Table 3: Output-to-Output Delay for 82P338XX/9XX
Programming Output Skew for SETS Application
For SETS applications, the input to output delay is typically not a factor as measurements are taken at the T0 output. However, a general rule is to try maintain a less than 10ns variation on the output in relationship to the input reference clock (excluding LPF response).

For this reason, Table 1 can be used to determine an initial skew offset by taking the Minimum number and writing an applicable coarse phase offset value. In this case, a value of 10ns would be used.

Programming Output Skew for T-GM(-P) Application
For T-GM(-P) applications, the input to output delay is critical to minimize any additional Time Error on the synthesized clocks in relationship to the PRTC. In this case, Table 2 should be used to determine an initial skew offset by taking the mean value and writing an applicable coarse & fine phase offset value. For example, if a 1PPS pulse is configured for OUT01 (LVCMOS), then a value of 16ns would be used. If a 125MHz clock is configured for OUT03 (LVPECL), then a value of 14ns would be used.

One note is if [M]FRSYNC is being used to represent the frame or sync pulse, in this case you may want to use the minimum value to make sure that the output clock never leads the [M]FRSYNC pulse.

Programming Output Skew for DCO (1588) Application
For DCO applications, the input to output delay is not applicable, as the "phase detector" is now at the timestamper; meaning that the synthesized clock from the 82P338XX/9XX now represents the "feedback" clock. However, when representing the PTP clock with a 1PPS output, there will be a need to snap the edge of the 1PPS clock to represent the nanosecond rollover (since pulling in +/-500ms via DCO would take too long).

For example, at start-up, all the clocks will be arbitrarily aligned to the internal 1PPS clock. This means that the 1PPS output may be up to +/-500ms off from the GM reference clock. To snap this phase, the output divider control may be used once the DCO has been syntonized to the GM clock (i.e. frequency locked).

For example, if a 1PPS pulse is to be moved by +125ms, then the following coarse & fine offsets can be used.
Figure 9: 1PPS Output Clock Snap Example

For questions related to device configurations, please contact IDT application support at support-sync@idt.com.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - **"Standard"**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - **"High Quality"**: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated or administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.