Tsi RapidIO Switch Device Differences

80B803A_AN004_02

August 5, 2009

6024 Silver Creek Valley Road San Jose, California 95138
Telephone: (408) 284-8200 • FAX: (408) 284-3572
Printed in U.S.A.
©2009 Integrated Device Technology, Inc.
1. **Tsi RapidIO Switch Device Differences**

This document describes the key differences between IDT’s third, fourth, and fifth-generation RapidIO switches. The following topics are discussed:

- “Overview” on page 3
- “Hardware Differences” on page 4
- “Register Differences” on page 5
- “Errata Fixes” on page 10

Revision History

80B803A_AN004_02, Formal, August 2009

There have been no technical changes to this document. The formatting was updated to reflect IDT.

80B803A_AN004_01, Formal, January 2009

This was the first version of the *Tsi RapidIO Switch Device Differences Application Note*.

1.1 **Overview**

IDT continues to increase the features and functionality of its RapidIO switches with each successive generation. IDT’s fourth-generation (Tsi620) and fifth-generation (Tsi577) RapidIO switches incorporate a number of improvements over IDT’s third-generation switches (see Table 1). This document describes the key improvements between these generations.

Table 1: IDT’s RapidIO Switches

<table>
<thead>
<tr>
<th>Switch</th>
<th>Switch Generation</th>
<th>RapidIO Interface Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsi572</td>
<td>Third</td>
<td>Two 4x mode ports or Four 1x mode ports Up to eight 1x mode ports</td>
</tr>
<tr>
<td>Tsi574</td>
<td>Third</td>
<td>Four 4x mode ports Up to eight 1x mode ports</td>
</tr>
<tr>
<td>Tsi576</td>
<td>Third</td>
<td>Two 4x mode ports + Eight 1x mode ports Up to 12 1x mode ports</td>
</tr>
<tr>
<td>Tsi578</td>
<td>Third</td>
<td>Eight 4x mode ports Up to 16 1x mode ports</td>
</tr>
</tbody>
</table>
1.2 Hardware Differences

There are four main hardware differences between the third-generation RapidIO switches and the new generations. The first two differences (P_CLK and CLK_SEL) were first implemented in the Tsi620, and then ported to the Tsi577. The other two differences are specific to the Tsi577 and Tsi620.

1.2.1 P_CLK Signal Not Required

All of the third-generation RapidIO switches require a P_CLK signal, which is used to drive the internal register bus, some RapidIO timeout counters, and the low-speed interfaces such as I2C. In some cases, supplying the P_CLK signal required additional board components.

The fourth and fifth generations of RapidIO switches do not require a P_CLK signal. Instead, the frequency of the RapidIO reference clock signal, S_CLK_p/n, is divided down internally to drive the functionality that P_CLK previously offered.

1.2.2 CLK_SEL Signal Added

While the third-generation RapidIO switches make use of a variety of RapidIO reference clock frequencies, including 156.25 MHz and 125 MHz, there is no method for these devices to communicate the reference frequency to software.

The fourth and fifth generations of RapidIO switches have a CLK_SEL signal that indicates whether a 156.25 MHz or 125 MHz reference clock is in use. The CLK_SEL signal is incorporated into the SerDes clocking scheme, which allows the same register values to select a specific lane rate, regardless of reference clock frequency.

The registers affected by the new CLK_SEL signal include:

- Tsi577
 - GLOB_PWRUP_STAT[CLK_SEL]
 - SMACx_DLOOP_CLK_SEL[IO_SPEED]
- Tsi620
 - CG_RIO_PWRUP_STATUS[SP_REF_CLK]
 - SMACx_DLOOP_CLK_SEL[IO_SPEED]
1.2.3 Tsi577 4x/4 1x Ports

In all third-generation RapidIO switches, and the Tsi620, a 4x RapidIO port can be divided into two 1x RapidIO ports. If only one of the 1x ports is needed, it must be the evenly numbered port since powering down the evenly numbered port also disables the odd numbered port.

In contrast, the Tsi577 allows a 4x port to be divided into four 1x RapidIO ports. Any unused 1x ports can be powered down without affecting the operation of other ports. The Tsi577 registers are backward compatible with software designed for third-generation switches.

1.2.4 Tsi620 FPGA Interface

The Tsi620 incorporates an FPGA Interface that is based on the XGMII standard. The FPGA Interface is a parallel interface that supports the RapidIO protocol. In effect, the FPGA Interface implements the RapidIO link without a SerDes, which allows the use of less expensive FPGAs.

1.3 Register Differences

There are a few register differences between the third-generation and the fourth/fifth generations of RapidIO switches. Drivers written for third-generation RapidIO switches, however, will operate correctly on the latest switch generations. The fourth- and fifth-generation switches contain additional registers, and offer some functionality enhancements.

Many of the register enhancements in the Tsi577 (fifth generation) were first implemented in the Tsi620 (fourth generation).

Various registers were added to the fourth- and fifth-generation switches. These registers, however, do not impact the compatibility of the latest generation devices with the third-generation. The new grouping of registers include the following:

- “Per Port Copies of Global Registers” on page 6
- “Global Power-up Status Registers” on page 8
1.3.1 Per Port Copies of Global Registers

In the fourth/fifth generation of MAC interfaces, some global registers also have local copies in each RapidIO port. These registers allow read/write access to the per port copies of the global registers.

Per port copies of global registers are used to check/correct register values after a port is powered down and back up. They are not intended to be the standard method for programming these registers. However, if users prefer to include the local copies of the registers into their programming model, they are not prohibited from doing so.

New registers include the following:

- **RapidIO Port x Multicast Write ID 0/1/2/3/4/5/6/7**
 - Description: These registers are per port copies of the RapidIO Multicast Write ID x register, where “x” is 0/1/2/3/4/5/6/7. The RapidIO Multicast Write ID x register contains the Multicast ID for which the associated multicast mask registers are applicable. The switch supports eight multicast groups, therefore, the Multicast ID registers for each multicast group must contain unique values. These registers are located in every switch port.
 - RapidIO Port x Multicast Write ID 0 Offsets: 16000, 16100, ...16F00
 - RapidIO Port x Multicast Write ID 1 Offsets: 16004, 16104, ...16F04
 - RapidIO Port x Multicast Write ID 2 Offsets: 16008, 16108, ...16F08
 - RapidIO Port x Multicast Write ID 3 Offsets: 1600C, 1610C, ...16F0C
 - RapidIO Port x Multicast Write ID 4 Offsets: 16010, 16110, ...16F10
 - RapidIO Port x Multicast Write ID 5 Offsets: 16014, 16114, ...16F14
 - RapidIO Port x Multicast Write ID 6 Offsets: 16018, 16118, ...16F18
 - RapidIO Port x Multicast Write ID 7 Offsets: 1601C, 1611C, ...16F1C

- **RapidIO Port x Switch Port Link Timeout Control CSR**
 - Description: This register is the per port copy of the RapidIO Switch Port Link Time Out Control CSR.
 - Offsets: 16020, 16120, ...16F20

- **RapidIO Port x Port Write Target Device ID CSR**
 - Description: This register is the per port copy of the RapidIO Port Write Target Device ID CSR.
 - Offsets: 16028, 16128, ...16F28

- **RapidIO Port x Packet Time-to Live CSR**
 - Description: This register is the per port copy of the RapidIO Packet Time-to Live CSR.
 - Offsets: 1602C, 1612C, ...16F2C

- **RapidIO Port x Switch Port General Control CSR**
— Description: This register is the per port copy of the RapidIO Switch Port General Control CSR.
 — Offsets: 1613C, 1623C, ...16F3C

• RapidIO Port x Component Tag CSR
 — Description: This register is the per port copy of the RapidIO Component Tag CSR
 — Offsets: 1606C, 1616C, ...16F6C

• RapidIO Port x Route LUT Attributes (Default Port) CSR
 — Description: This register is the per port copy of the RapidIO Route LUT Attributes (Default Port) CSR
 — Offsets: 16078, 16178, ...16F78

• RapidIO Port x Logical and Transport Layer Error Enable CSR
 — Description: This register is the per port copy of the RapidIO Logical and Transport Layer Error Enable CSR
 — Offsets: 1607C, 1617C, ...16F7C
1.3.2 Global Power-up Status Registers

In many cases it is useful for configuration software to know the power-up status configuration of a switch. This allows communication of the device’s location within a system, and customization of the device’s initialization based on its location.

1.3.2.1 Ts620

The Ts620 incorporates two global power-up status registers (for more information about these registers, see the Ts620 User Manual). This register shows the status of the Ts620 RapidIO power-up configuration.

<table>
<thead>
<tr>
<th>Register name: CG_RIO_PWRUP_STATUS</th>
<th>Reset value: Undefined</th>
<th>Register offset: 0x034</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits</td>
<td>7 6 5 4 3 2 1 0</td>
<td>31:24 SP_MAST_EN SP_HOST SP_TX_SWAP SP_RX_SWAP SP_REF_CLK SP_IO_SPEED</td>
</tr>
<tr>
<td>23:16</td>
<td>Reserved</td>
<td>23:16 Reserved</td>
</tr>
<tr>
<td>15:08</td>
<td>Reserved</td>
<td>15:08 Reserved</td>
</tr>
<tr>
<td>07:00</td>
<td>Reserved</td>
<td>07:00 Reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Register name: CG_PWRUP_STATUS</th>
<th>Reset value: Undefined</th>
<th>Register offset: 0x038</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits</td>
<td>7 6 5 4 3 2 1 0</td>
<td>31:24 Reserved PCI_HOLD_BOOT PCI_ARBEN PCI_RSTDIR PCI_M66EN PCI_PLL_BYPASS</td>
</tr>
<tr>
<td>23:16</td>
<td>Reserved</td>
<td>23:16 Reserved</td>
</tr>
<tr>
<td>15:08</td>
<td>Reserved</td>
<td>15:08 Reserved</td>
</tr>
<tr>
<td>07:00</td>
<td>Reserved</td>
<td>07:00 Reserved</td>
</tr>
</tbody>
</table>

Reserved
1.3.2.2 Tsi577

The Tsi577 has one register that contains the power-up configuration of the switch (for more information about this register, see the Tsi577 User Manual).

<table>
<thead>
<tr>
<th>Register name: GLOB_PWRUP_STAT</th>
<th>Reset value: Undefined</th>
<th>Register offset: 1AC10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits</td>
<td>0 1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>00:07</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>08:15</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>16:23</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>24:31</td>
<td>Reserved</td>
<td>CLK_SEL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Description</th>
<th>Type</th>
<th>Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:30</td>
<td>Reserved</td>
<td>N/A</td>
<td>R</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>CLK_SEL</td>
<td>Clock Select. 1 = 125-MHz Reference clock 0 = 156.25-MHz Reference clock The reset value of this field is dependent upon the SP_CLK_SEL signal.</td>
<td>R</td>
<td>undefined</td>
</tr>
</tbody>
</table>

1.3.2.3 Congestion Detection Enhancement (Tsi577 only)

In the Tsi577, the receiver and transmitter queue threshold control registers are enhanced to allow the detection of continuous congestion events that occur over a longer period than what third-generation switches can detect.

Third-generation switches can detect continuous congestion for up to 210 microseconds. The Tsi577 can detect continuous congestion for up to 107 milliseconds, which allows detection and diagnosis of system failures.
1.4 **Errata Fixes**

The Tsi577 and Tsi620 incorporate fixes for a subset of errata that are applicable to IDT’s third-generation switches.

Table 2: Errata Fixed in Fourth- and Fifth-generation Switches

<table>
<thead>
<tr>
<th>Errata</th>
<th>Fixed in Tsi620</th>
<th>Fixed in Tsi577</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Base Device ID Register Locks with 0xFFFF</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Multicast Control Symbol Loss</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Exceeding Error Threshold Limit</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Performance Statistics Counter Outbound Measure</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Error Rate Counter Limitation</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>4x Port in 1x Mode Transmission on Lane 0 and Lane 2 Issue</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Lookup Table Parity Data Not Logged</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Port N Logical Errors Not Captured when PW_DIS = 1</td>
<td>-</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.