IDT has developed a patented technique to integrate a Voltage Controlled Crystal Oscillator (VCXO) function into clock synthesizer products. The VCXO oscillator circuit, in conjunction with an external crystal, allows the output clocks to be pulled (varied up or down in frequency) more than 100 parts per million (±100ppm or 0.01%), under control of an analog input voltage. The MK27XX and MK37XX series of products integrate a VCXO oscillator and a PLL, creating a cost effective VCXO clock solution. Our communication synchronization products (MK2049, MK2058, MK2059, MK2069, ICS726A) use the integrated VCXO as a circuit block, and this information applies to these products also.

Crystal Selection

The crystal is the frequency reference of the VCXO and the overall performance of the circuit depends on the characteristics of it. It is important that the crystal meets all required specifications if the VCXO is expected to work reliably. IDT works with crystal vendors to define, build, and certify crystals that meet these requirements, and the crystal vendors maintain an inventory of these devices in stock. Please see our web site for recommended part numbers.

Using a packaged clock oscillator to drive these VCXO products will not work correctly. The clock will be generated, but the frequency cannot be pulled because the VCXO circuit has no control over the oscillator frequency.

Crystal Specifications

The crystals defined for use with VCXO products have specifications common to all crystals, and additional requirements to insure VCXO performance. All crystals have specifications for:

1. Frequency tolerance (often called Calibration Accuracy). This is the allowable frequency error from a specified center frequency of the crystal at 25 c. This parameter is specified with a maximum and minimum frequency deviation, expressed in percent (%) or parts per million (ppm). It is typically +/-20ppm for IC VCXO crystal designs. The source of this error term is principally variation in the manufacturing process.

2. Temperature stability. This is the change in frequency allowed as temperature is varied from 25 c to the temperature extremes, hot and cold. This variation is characteristic of a quartz crystal, and the slope and magnitude is controlled by the type of crystal cut and the crystal lattice angle at which the crystal is cut. This parameter is specified with a maximum and minimum frequency deviation, expressed in percent (%) or parts per million (ppm). It is typically +/-30ppm for IC VCXO designs.

3. Load capacitance. This is the capacitance, specified in picofarads (pF), which the oscillator circuit presents to the crystal for the crystal to resonate on frequency. Load Capacitance is comprised of a combination of the circuits’ discrete load capacitance, stray board capacitance, and capacitance internal to the device. Because this includes the stray capacitance of the circuit board, we recommend that pads for small capacitors (CT in figure 1) be provided in your layout to make small adjustments to the total capacitance. Details are given in the Layout Considerations section.

4. Equivalent Series Resistance. This is a term that represents (in ohms) all the losses within the crystal. If this value is too high, the oscillator may have startup problems.

5. Aging. This specifies the amount that the frequency is allowed to drift, long term, and is typically 5ppm in the first year, and logarithmically declines each year.
Additional requirements for VCXO crystals

The ratio C_0/C_1 is inversely proportional to pullability; lower ratios indicate a more pullable crystal. Crystals intended for use with IDT VCXOs must have C_0/C_1 ratio no higher than 250 if they are to meet minimum pull requirements.

Crystals can be made to resonate either at the fundamental frequency, or on the third, fifth, or even higher overtone. VCXO crystals are always fundamental mode, because overtone modes are much less pullable and require additional oscillator circuitry for proper operation.

The third overtone mode is not necessarily at exactly three times the fundamental frequency. The mechanical properties of the quartz element dictate the position of the overtones relative to the fundamental, and in a VCXO circuit, the third overtone is not typically exactly three times the fundamental, or the oscillator circuit may excite both the fundamental and overtone modes simultaneously. This will cause a nonlinearity in the transfer curve such as the one in Figure 3. This potential problem is why VCXO crystals are required to be tested for absence of any activity inside a +/-100 ppm window at three times the fundamental frequency.

Crystals for VCXO applications are always parallel resonant because series resonant oscillators cannot be pulled. The designation for the lattice angle of these
crystals is AT-cut. Do not use BT cut crystals for IDT VCXO products.

Absolute Pull Range

VCXOs are usually used as a narrowband local frequency source that is locked to some external frequency reference. The VCXO must have sufficient accuracy and pullability to be able to lock to that reference, and Absolute Pull Range is the measure of that ability. All the frequency errors of the VCXO are subtracted from the nominal pull range, and the remaining range can be guaranteed over all conditions. Here is an example using the standard specifications for the recommended crystals:

115 ppm guaranteed pull range for the IDT VCXO circuit with a minimum pull (C0/C1=250) crystal
-20 ppm subtract initial accuracy
-30 ppm subtract temperature stability
-20 ppm subtract aging
-10 ppm subtract for circuit variation

35 ppm Absolute Pull Range

The VCXO will be able to output a frequency +/- 35ppm under all conditions, which is sufficient for applications such as MPEG transport (32 ppm), SONET (20 ppm), PDH communication links (32 ppm), and others. If your application requires more APR, the best approach is to respecify the crystal to reduce the error terms. Contact IDT for advice.

Packaging and Assembly Considerations

The special requirements of a VCXO crystal are best met with a full size AT-cut round quartz crystal blank. Unfortunately, this blank will only fit into the traditional full size HC/49U metal can or the smaller UM1. These packages are available with wire leads for through hole mounting, or a third lead may be added to the top of the crystal can and the three leads may then be formed into a surface mount gull wing device. Smaller surface mount packages, including HC49/US (the “short” can), require a smaller piece of quartz (often called AT strip resonators). The resulting mechanical limitations of

Figure 4- The HC/49U or UM1 crystal can be ordered with gull-wing leads for surface mounting.

...
Printed Circuit Board Layout

Any external parasitic capacitance will reduce the pull range of the VCXO. In order to maximize the range, it is important to minimize parasitic capacitance related to X1 and X2 on the PCB. The ground and power planes should be cut out under the X1 and X2 pins and the crystal. For example, on the MK277X, this cutout should extend under the chip to the right hand side pins 16-20, and down to pin 6. In addition, all signal lines should be routed away from this area to reduce noise pickup.

The crystal must be mounted as close to the device as possible. For maximum flexibility, and since no two board designs are the same, two pads should be included for the connection of optional centering capacitors (CT) from each of the X1 and X2 pins and ground. The value of these capacitors is usually 0-4 pF and needs to be determined only once for each board layout.

The filter components shown in Figure 6 convert a PWM output into the 0 to 3V analog voltage necessary to drive pin 5. Do not run any other traces underneath the device (other than traces from the device).

Decoupling and Output Termination

The layout of Figure 6 shows two 0.1μF decoupling capacitors connected between pins 6 and 7 and 14 and 15 for the MK277X. These capacitors must be placed as close to the chip as possible. This is the minimum recommended configuration, and will give good results in most applications. For noisy power supplies, an additional 0.1μF can be placed on pin 4, and a 10μF capacitor can be added in parallel.

A series termination resistor of 33Ω may be used for each clock output to match a 50Ω transmission line. This also should be placed close to the device.
Determining Value of Fixed Centering Capacitors

VCXO parts from IDT require that locations be provided to tune the load capacitance of the pullable crystal. This tuning serves to center the crystal’s operating frequency relative to the VCXO, thereby increasing the range of frequencies that can be locked-to by the VCXO over that of an untuned board.

The IDT applications department can perform this procedure. Send us two PC boards (stuffed or unstuffed) and we will calculate the value of the capacitors needed.

Many boards will not need any tuning capacitors, but for consistent long-term performance of a system, two load capacitor pads should be put into every design. What follows is the general procedure for tuning these load capacitors to match the specific board layout. Typically, the required capacitors will range from 0 to 4 pF.

Procedure
To determine the need for and value of these capacitors, you will need a PC board of your final layout, a frequency counter capable of less than 1 ppm resolution and accuracy, two power supplies, and some samples of the crystals which you plan to use in production, along with measured initial accuracy for each crystal at the specified crystal load capacitance, C_L. In practice, this measurement can be performed at the crystal manufacturer by obtaining datalogged crystals, or by using a crystal tester.

To determine the value of the crystal capacitors:
1. Connect VDD of the part to either 5.0V or 3.3V (depending on part and system requirements). Connect the loop filter voltage to the second power supply. Adjust the voltage for the loop filter to 0V. Measure and record the frequency of the clock output.
2. Adjust the voltage on the loop filter to 3.0V (for a 5 V part) or 3.3V (for a 3.3V part). Measure and record the frequency of the same output (this is f_{high}).

To calculate the centering error:
Centering error

$$10^6 \cdot \frac{(f_{\text{high}} - f_{\text{target}}) + (f_{0V} - f_{\text{target}})}{2 \times f_{\text{target}}} = \text{error}_{\text{xtal}}$$

Where:
- f_{target} = nominal crystal frequency
error_{xtal} = actual initial accuracy (in ppm) of the crystal being measured

If the centering error is less than +/- 15 ppm, no adjustment is needed. If the centering error is more than 15 ppm negative, the PC board has too much stray capacitance and will need to be redone with a new layout to reduce stray capacitance. (The crystal may be re-specified to a higher load capacitance instead. Contact IDT for details.) If the centering error is more than 15 ppm positive, add identical fixed centering capacitors from each crystal pin to ground. The value for each of these caps (in pF) is given by:

\[\text{External Capacitor} = 2 \times \frac{\text{centering error}}{\text{trim sensitivity}} \]

Trim sensitivity is a parameter which can be supplied by your crystal vendor or calculated using the following formula:

\[\text{trim sensitivity} = \frac{10^6 \times C_1}{2 \times (C_0 + C_L)^2} \]

If you do not know the value, assume it is 30 ppm/pF. After any changes, repeat the measurement to verify that the remaining error is acceptably low (less than ±15 ppm).

CL Tuning for 0ppm at VIN=VDD/2

For applications that require VCXO pull curve to be centered at VDD/2, follow external CL tuning procedure below:

1. Set \(V_{IN} = 1.65 \text{ V} \), measure reference output frequency. Record the measured frequency.

 Calculate centering ppm error,
 \[\text{ppm error} = \left(\frac{f_{VDD/2} - f_{\text{target}}}{f_{\text{target}}} \right) \times 10^6 \]

2. If the error is ±15ppm, no adjustment is needed. If the frequency is -15 ppm or lower, there is no solution except to redo the board layout to reduce stray capacitance.

3. If the centering error is more than 15 ppm positive, add tuning capacitors from each crystal pin (X1/X2) to ground. The value for each of these caps (in pF) is given by:

\[\text{External Capacitor} = 2 \times \frac{\text{ppm error}}{\text{trim sensitivity}} \]

Where

\[\text{trim sensitivity} = \frac{10^6 \times C_1}{2 \times (C_0 + C_L)^2} \]

4. After calculating the external load caps using the procedure above, and installing them on the board, you can measure the frequency at \(V_{IN} = 0.0 \text{ V} \) and \(V_{IN} = 3.3 \text{ V} \). To determine the min and max of the pull range, calculate the ppm error at the measured frequencies (\(f_{0.0 \text{ V}} \) and \(f_{3.3 \text{ V}} \)) and target frequency.

Example calculation

Using a 19.44 MHz pullable crystal, specified at 14 pF load capacitance. With its rated 14 pF load, this crystal is measured to have an output of 19.4405 MHz (26 ppm initial error, positive).

For a MK2058-01, the frequency, using a 0 and 3.3V input on pin 5, for mode SEL[2:0] = 111, the output is measured to be 19.4420 and 19.4410, respectively (in this example, the input frequency and output frequency happen to be the same), yielding a centering error of:

\[\text{Centering error} = 51 \text{ ppm} \]

Assuming a trim sensitivity of 30 ppm/pF, The external capacitors to ground should be:

\[\text{External capacitor} = 2 \times 51 / 30 = 3.4 \text{ pF} \]

Rounding to the nearest standard value, two 3.3 pF capacitors should be used.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 * "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 * "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes. "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microprocessor software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.