Description

The ICS343 is a low cost, triple-output, field programmable clock synthesizer. The ICS343 can generate three output frequencies from 250 kHz to 200 MHz, using up to three independently configurable PLLs. The outputs may employ Spread Spectrum techniques to reduce system electro-magnetic interference (EMI).

Using IDT’s VersaClock™ software to configure the PLL and output, the ICS343 contains a One-Time Programmable (OTP) ROM to allow field programmability. Using Phase-Locked Loop (PLL) techniques, the device runs from a standard fundamental mode, inexpensive crystal, or clock. It can replace multiple crystals and oscillators, saving board space and cost.

The device also has a power down feature that tri-states the clock outputs and turns off the PLLs when the PDTS pin is taken low.

The ICS343 is also available in factory-programmed custom versions for high-volume applications.

Features

• 8-pin SOIC package (Pb-free)
• Highly accurate frequency generation
 • M/N Multiplier PLL: M = 1...2048, N = 1...1024
• Output clock frequencies up to 200 MHz
• Spread spectrum capability for lower system EMI
 • Center or Down Spread up to 4% total
 • Selectable 32 kHz or 120 kHz modulation
• Input crystal frequency from 5 to 27 MHz
• Input clock frequency from 2 to 50 MHz
• Operating voltage of 3.3 V, using advanced, low power CMOS process
• For one output clock, use the ICS341. For two output clocks, see the ICS342. For more than three outputs, see the ICS345 or ICS348.

Block Diagram

![Block Diagram of ICS343](image-url)
Pin Assignment

8-pin (150 mil) SOIC

Output Clock Selection Table

<table>
<thead>
<tr>
<th>Output Frequency</th>
<th>CLK2</th>
<th>CLK2</th>
<th>CLK3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>User</td>
<td>User</td>
<td>User</td>
</tr>
<tr>
<td>Spread Amount</td>
<td>Configurable</td>
<td>Configurable</td>
<td>Configurable</td>
</tr>
</tbody>
</table>

Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Pin Type</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1/ICLK</td>
<td>XI</td>
<td>Connect this pin to a crystal or external clock input.</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>Power</td>
<td>Connect to +3.3 V.</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Power</td>
<td>Connect to ground.</td>
</tr>
<tr>
<td>4</td>
<td>CLK1</td>
<td>Output</td>
<td>Clock output. Weak internal pull-down when tri-state.</td>
</tr>
<tr>
<td>5</td>
<td>CLK3</td>
<td>Output</td>
<td>Clock output. Weak internal pull-down when tri-state.</td>
</tr>
<tr>
<td>6</td>
<td>CLK2</td>
<td>Output</td>
<td>Clock output. Weak internal pull-down when tri-state.</td>
</tr>
<tr>
<td>7</td>
<td>PDTS</td>
<td>Input</td>
<td>Powers down entire chip. Tri-states CLK outputs when low. Internal pull-up.</td>
</tr>
<tr>
<td>8</td>
<td>X2</td>
<td>XO</td>
<td>Connect this pin to a crystal, or float for clock input.</td>
</tr>
</tbody>
</table>

External Components

Series Termination Resistor
Clock output traces over one inch should use series termination. To series terminate a 50Ω trace (a commonly used trace impedance), place a 33Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω.

Decoupling Capacitor
As with any high-performance mixed-signal IC, the ICS343 must be isolated from system power supply noise to perform optimally.

A decoupling capacitor of 0.01µF must be connected between VDD and the PCB ground plane.

Crystal Load Capacitors
The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device. Crystal capacitors must be connected from each of the pins X1 and X2 to ground.

The value (in pF) of these crystal caps should equal \((C_L - 6 \text{ pF})\times 2\). In this equation, \(C_L\) = crystal load capacitance in pF. Example: For a crystal with a 16 pF load capacitance, each crystal capacitor would be 20 pF \([(16-6) \times 2] = 20\).

PCB Layout Recommendations
For optimum device performance and lowest output phase noise, the following guidelines should be observed.

1) The 0.01µF decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible. No vias should be used between the decoupling capacitor and VDD pin. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.

2) The external crystal should be mounted just next to the device with short traces. The X1 and X2 traces should not be routed next to each other with minimum spaces, instead they should be separated and away from other traces.
3) To minimize EMI, the 33Ω series termination resistor (if needed) should be placed close to the clock output.

4) An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers. Other signal traces should be routed away from the ICS343. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

ICS343 Configuration Capabilities

The architecture of the ICS343 allows the user to easily configure the device to a wide range of output frequencies, for a given input reference frequency.

The frequency multiplier PLL provides a high degree of precision. The M/N values (the multiplier/divide values available to generate the target VCO frequency) can be set within the range of M = 1 to 2048 and N = 1 to 1024.

The ICS343 also provides separate output divide values, from 2 through 20, to allow the two output clock banks to support widely differing frequency values from the same PLL.

Each output frequency can be represented as:

\[\text{OutputFreq} = \frac{\text{REFFreq} \cdot M}{\text{OutputDivide} \cdot N} \]

IDT VersaClock Software

IDT applies years of PLL optimization experience into a user-friendly software that accepts the user’s target reference clock and output frequencies and generates the lowest jitter, lowest power configuration, with only a press of a button. The user does not need to have prior PLL experience or determine the optimal VCO frequency to support multiple output frequencies.

VersaClock software quickly evaluates accessible VCO frequencies with available output divide values and provides an easy to understand, bar code rating for the target output frequencies. The user may evaluate output accuracy, performance trade-off scenarios in seconds.

Spread Spectrum Modulation

The ICS343 utilizes frequency modulation (FM) to distribute energy over a range of frequencies. By modulating the output clock frequencies, the device effectively lowers energy across a broader range of frequencies; thus, lowering a system’s electro-magnetic interference (EMI). The modulation rate is the time from transitioning from a minimum frequency to a maximum frequency and then back to the minimum.

Spread Spectrum Modulation can be applied as either “center spread” or “down spread”. During center spread modulation, the deviation from the target frequency is equal in the positive and negative directions. The effective average frequency is equal to the target frequency. In applications where the clock is driving a component with a maximum frequency rating, down spread should be applied. In this case, the maximum frequency, including modulation, is the target frequency. The effective average frequency is less than the target frequency.

The ICS343 operates in both center spread and down spread modes. For center spread, the frequency can be modulated between +/- 0.125% to +/-2.0%. For down spread, the frequency can be modulated between -0.25% to -4.0%.

Both output frequency banks will utilize identical spread spectrum percentage deviations and modulation rates, if a common VCO frequency can be identified.

Spread Spectrum Modulation Rate

The spread spectrum modulation frequency applied to the output clock frequency may occur at a variety of rates. For applications requiring the driving of “down-circuit” PLLs, Zero Delay Buffers, or those adhering to PCI standards, the spread spectrum modulation rate should be set to 30-33 kHz. For other applications, a 120 kHz modulation option is available.

Using VersaClock Products with an Input Clock Source

In order to ensure proper startup with an input clock rather than a crystal, the supply voltage must be within the operating range (3.3V ±10%) and the input signal must be stable and free from glitching. The input clock must provide pulses of at least 20ns, and no more than 500ns, for at least 160 clock cycles without any interruptions to the clock or power during this period. It may take up to 4ms for output frequencies to reach their target frequency values.

An alternative method is to have the PDTS pin asserted low while power supplies and clock sources stabilize. Once the power supply and input clock source are constant and within the acceptable frequency range, bring PDTS high. This approach is preferred if the clock source is derived from another PLL, or the source oscillator produces unpredictable output pulses prior to stabilization. No considerations need to be taken when using a crystal input source with VersaClock products.
Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS343. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, VDD</td>
<td>Referenced to GND</td>
<td></td>
<td></td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Inputs</td>
<td>Referenced to GND</td>
<td>-0.5</td>
<td>VDD+ 0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Clock Outputs</td>
<td>Referenced to GND</td>
<td>-0.5</td>
<td>VDD+ 0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
<td>-65</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>Max 10 seconds</td>
<td></td>
<td></td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Recommended Operation Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Operating Temperature (ICS343M)</td>
<td>0</td>
<td>+70</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Ambient Operating Temperature (ICS343MI)</td>
<td>-40</td>
<td>+85</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Power Supply Voltage (measured in respect to GND)</td>
<td>+3.15</td>
<td>+3.3</td>
<td>+3.45</td>
<td>V</td>
</tr>
<tr>
<td>Power Supply Ramp Time</td>
<td></td>
<td></td>
<td>4</td>
<td>ms</td>
</tr>
</tbody>
</table>
DC Electrical Characteristics

Unless stated otherwise, $V_{DD} = 3.3V \pm 5\%$, Ambient Temperature -40 to +85°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>V_{DD}</td>
<td>Configuration Dependent - See VersaClock™ Estimates</td>
<td>3.15</td>
<td>3.3</td>
<td>3.45</td>
<td>V</td>
</tr>
<tr>
<td>Operating Supply Current</td>
<td>I_{DD}</td>
<td>Three 33.333 MHz outputs, $PDTS = 1$, No load</td>
<td></td>
<td></td>
<td>14</td>
<td>mA</td>
</tr>
<tr>
<td>Input High Voltage, $PDTS$</td>
<td>V_{IH}</td>
<td>$PDTS = 0$</td>
<td>20</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Input Low Voltage, $PDTS$</td>
<td>V_{IL}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input High Voltage</td>
<td>V_{IH}</td>
<td>V_{IH}, V_{IL}, V_{OH}, V_{OL}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>V_{IL}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output High Voltage (CMOS High)</td>
<td>V_{OH}</td>
<td>$I_{OH} = -4 mA$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output High Voltage</td>
<td>V_{OH}</td>
<td>$I_{OH} = -12 mA$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>V_{OL}</td>
<td>$I_{OL} = 12 mA$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>I_{OS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Output Impedance</td>
<td>Z_{O}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Pull-up Resistor</td>
<td>R_{PUP}</td>
<td>$PDTS$ pin</td>
<td>250</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Internal Pull-down Resistor</td>
<td>R_{PD}</td>
<td>CLK output</td>
<td>525</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{IN}</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

Note 1: Example with 25 MHz crystal input with three outputs of 33.3 MHz, no load, and $V_{DD} = 3.3 V$.
AC Electrical Characteristics

Unless stated otherwise, \(\text{VDD} = 3.3\text{V} \pm 5\%\), Ambient Temperature -40 to +85°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Frequency</td>
<td>(F_{\text{IN}})</td>
<td>Fundamental Crystal</td>
<td>5</td>
<td>27</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input Clock</td>
<td>2</td>
<td>50</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Output Frequency</td>
<td></td>
<td></td>
<td>0.25</td>
<td>200</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Output Rise Time</td>
<td>(t_{\text{OR}})</td>
<td>20% to 80%, Note 1</td>
<td>1</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Output Fall Time</td>
<td>(t_{\text{OF}})</td>
<td>80% to 20%, Note 1</td>
<td>1</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Duty Cycle</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>51</td>
<td>%</td>
</tr>
<tr>
<td>Output Frequency Synthesis</td>
<td></td>
<td>Configuration Dependent</td>
<td></td>
<td>TBD</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-up time</td>
<td></td>
<td>PLL lock time from power-up, Note 3</td>
<td>4</td>
<td>10</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDTS goes high until stable CLK output, Spread Spectrum Off, Note 3</td>
<td>0.2</td>
<td>2</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDTS goes high until stable CLK output, Spread Spectrum On, Note 3</td>
<td>4</td>
<td>7</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>One Sigma Clock Period Jitter</td>
<td></td>
<td>Configuration Dependent</td>
<td>50</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>Maximum Absolute Jitter</td>
<td>(t_{\text{ja}})</td>
<td>Deviation from Mean, Configuration Dependent</td>
<td>±200</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Measured with 15 pF load.
Note 2: Duty Cycle is configuration dependent. Most configurations are minimum 45% and maximum 55%.
Note 3: ICS test mode output occurs for first 170 clock cycles on CLK3 for each PLL powered up.

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance Junction to Amb</td>
<td>(\theta_{\text{JA}})</td>
<td>Still air</td>
<td>150</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 m/s air flow</td>
<td>140</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 m/s air flow</td>
<td>120</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance Junction to Case</td>
<td>(\theta_{\text{JC}})</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.35</td>
<td>1.75</td>
<td>.0532</td>
<td>.0688</td>
</tr>
<tr>
<td>A1</td>
<td>0.10</td>
<td>0.25</td>
<td>.0040</td>
<td>.0098</td>
</tr>
<tr>
<td>B</td>
<td>0.33</td>
<td>0.51</td>
<td>.013</td>
<td>.020</td>
</tr>
<tr>
<td>C</td>
<td>0.19</td>
<td>0.25</td>
<td>.0075</td>
<td>.0098</td>
</tr>
<tr>
<td>D</td>
<td>4.80</td>
<td>5.00</td>
<td>.1890</td>
<td>.1968</td>
</tr>
<tr>
<td>E</td>
<td>3.80</td>
<td>4.00</td>
<td>.1497</td>
<td>.1574</td>
</tr>
<tr>
<td>e</td>
<td>1.27</td>
<td>BASIC</td>
<td>.050</td>
<td>BASIC</td>
</tr>
<tr>
<td>H</td>
<td>5.80</td>
<td>6.20</td>
<td>.2284</td>
<td>.2440</td>
</tr>
<tr>
<td>h</td>
<td>0.25</td>
<td>0.50</td>
<td>.010</td>
<td>.020</td>
</tr>
<tr>
<td>L</td>
<td>0.40</td>
<td>1.27</td>
<td>.016</td>
<td>.050</td>
</tr>
<tr>
<td>α</td>
<td>0°</td>
<td>8°</td>
<td>0°</td>
<td>8°</td>
</tr>
</tbody>
</table>

“LF” suffix to the part number denotes Pb-Free configuration and, RoHS compliant.
The 343M-XXLF and 343MI-XXLF are factory programmed versions of the 343MPLF and 343MIPLF. A unique “-XX” suffix is assigned by the factory for each custom configuration, and a separate data sheet is kept on file. For more information on custom part numbers programmed at the factory, please contact your local IDT sales and marketing representative.

While the information presented herein has been checked for both accuracy and reliability, IDT assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Originator</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>09/06/13</td>
<td>S. Zheng</td>
<td>Added brief applications section/verbiage “Using VersaClock Products with an Input Clock Source” on page 3.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.