General Description

The 5T9304I differential clock buffer is a user-selectable differential input to four LVDS outputs. The fanout from a differential input to four LVDS outputs reduces loading on the preceding driver and provides an efficient clock distribution network. The 5T9304I can act as a translator from a differential HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML, or LVDS input to LVDS outputs. A single-ended 3.3V / 2.5V LVTTL input can also be used to translate to LVDS outputs. The redundant input capability allows for an asynchronous change-over from a primary clock source to a secondary clock source. Selectable reference inputs are controlled by SEL.

The 5T9304I outputs can be asynchronously enabled/disabled. When disabled, the outputs will drive to the value selected by the GL pin. Multiple power and grounds reduce noise.

Features

- Guaranteed low skew: 50ps (maximum)
- Very low duty cycle distortion: 125ps (maximum)
- Propagation delay: 1.9ns (maximum)
- Up to 450MHz operation
- Selectable inputs
- Hot insertable and over-voltage tolerant inputs
- 3.3V/2.5V LVTTL, HSTL eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML or LVDS input interface
- Selectable differential inputs to four LVDS outputs
- 2.5V V_{DD}
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Applications

- Clock distribution

Pin Assignment

| Pin Assignment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| GND | 1 | | | | | | | | | | | | | | | | | | | | | | | |
| PD | 2 | | | | | | | | | | | | | | | | | | | | | | | |
| RESERVED | 3 | | | | | | | | | | | | | | | | | | | | | | | |
| V_{DD} | 4 | | | | | | | | | | | | | | | | | | | | | | | |
| Q1 | 5 | | | | | | | | | | | | | | | | | | | | | | | |
| Q2 | 6 | | | | | | | | | | | | | | | | | | | | | | | |
| Q3 | 7 | | | | | | | | | | | | | | | | | | | | | | | |
| Q4 | 8 | | | | | | | | | | | | | | | | | | | | | | | |
| V_{DD} | 9 | | | | | | | | | | | | | | | | | | | | | | | |
| SEL |10 | | | | | | | | | | | | | | | | | | | | | | | |
| GL |11 | | | | | | | | | | | | | | | | | | | | | | | |
| A1 |12 |13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24 |

5T9304I

24-Lead TSSOP, E-Pad
4.40mm x 7.8mm x 0.925mm
G Package
Top View
Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 12, 22</td>
<td>GND</td>
<td>Power</td>
<td>Power supply return for all power.</td>
</tr>
<tr>
<td>2</td>
<td>PD</td>
<td>Input</td>
<td>Power-down control. Shuts off entire chip. If LOW, the device goes into low power mode. Inputs and outputs are disabled. Both Qx and Qx outputs will pull to VDD. Set HIGH for normal operation.(3)</td>
</tr>
<tr>
<td>3</td>
<td>RESERVED</td>
<td>Reserved</td>
<td>Reserved pin.</td>
</tr>
<tr>
<td>4, 9, 16, 21</td>
<td>VDD</td>
<td>Power</td>
<td>Power supply for the device core and inputs.</td>
</tr>
<tr>
<td>5, 7, 18, 20</td>
<td>Q1, Q2, Q4, Q3</td>
<td>Output</td>
<td>Complementary differential clock outputs.</td>
</tr>
<tr>
<td>6, 8, 17, 19</td>
<td>Q1, Q2, Q4, Q3</td>
<td>Output</td>
<td>Differential clock outputs.</td>
</tr>
<tr>
<td>10</td>
<td>SEL</td>
<td>Input</td>
<td>Gate control for differential outputs Q1 and Q1 through Q4 and Q4. When G is LOW, the differential outputs are active. When G is HIGH, the differential outputs are asynchronously driven to the level designated by GL(2).</td>
</tr>
<tr>
<td>11</td>
<td>G</td>
<td>Input</td>
<td>Gate control for differential outputs Q1 and Q1 through Q4 and Q4. When G is LOW, the differential outputs are active. When G is HIGH, the differential outputs are asynchronously driven to the level designated by GL(2).</td>
</tr>
<tr>
<td>15</td>
<td>GL</td>
<td>Input</td>
<td>Specifies output disable level. If HIGH, Qx outputs disable HIGH and Qx outputs disable LOW. If LOW, Qx outputs disable LOW and Qx outputs disable HIGH.</td>
</tr>
</tbody>
</table>

NOTES:
1. Inputs are capable of translating the following interface standards:
 - Single-ended 3.3V and 2.5V LVTTL levels
 - Differential HSTL and eHSTL levels
 - Differential LVEPECL (2.5V) and LVPECL (3.3V) levels
 - Differential LVDS levels
 - Differential CML levels
2. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt pulses or be able to tolerate them in downstream circuitry.
3. It is recommended that the outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after asserting PD.
4. The user must take precautions with any differential input interface standard being used in order to prevent instability when there is no input signal.

Table 2. Pin Characteristics (TA = +25°C, F = 1.0MHz)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Input Capacitance</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTE: This parameter is measured at characterization but not tested.
Function Tables

Table 3A. Gate Control Output Table

<table>
<thead>
<tr>
<th>Control Output</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 Toggling</td>
</tr>
<tr>
<td>0</td>
<td>1 LOW</td>
</tr>
<tr>
<td>1</td>
<td>0 Toggling</td>
</tr>
<tr>
<td>1</td>
<td>1 HIGH</td>
</tr>
</tbody>
</table>

Table 3B. Input Selection Table

<table>
<thead>
<tr>
<th>Selection SEL pin</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A2, A2</td>
</tr>
<tr>
<td>1</td>
<td>A1, A1</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage, VDD</td>
<td>-0.5V to + 3.6V</td>
</tr>
<tr>
<td>Input Voltage, VI</td>
<td>-0.5V to + 3.6V</td>
</tr>
<tr>
<td>Output Voltage, VO</td>
<td>-0.5 to VDD + 0.5V</td>
</tr>
<tr>
<td>Storage Temperature, TSTG</td>
<td>-65°C to 150°C</td>
</tr>
<tr>
<td>Junction Temperature, TJ</td>
<td>150°C</td>
</tr>
</tbody>
</table>

Recommended Operating Range

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>Ambient Operating Temperature</td>
<td>-40</td>
<td>25</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>VDD</td>
<td>Internal Power Supply Voltage</td>
<td>2.3</td>
<td>2.5</td>
<td>2.7</td>
<td>V</td>
</tr>
</tbody>
</table>
DC Electrical Characteristics

Table 4A. LVDS Power Supply DC Characteristics\(^{(1)}\), \(V_{DD} = 2.5V \pm 0.2V\), \(T_A = -40°C\) to \(85°C\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical(^{(2)})</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{DDQ})</td>
<td>Quiescent (V_{DD}) Power Supply Current</td>
<td>(V_{DD} = \text{Max.},) All Input Clocks = LOW(^{(2)}); Output enabled</td>
<td></td>
<td>240 mA</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{TOT})</td>
<td>Total Power (V_{DD}) Supply Current</td>
<td>(V_{DD} = 2.7V; F_{\text{REFERENCE}}) Clock = 450MHz</td>
<td></td>
<td>250 mA</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{PD})</td>
<td>Total Power Down Supply Current</td>
<td>(PD = \text{LOW})</td>
<td></td>
<td>5 mA</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTE 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions.

NOTE 2. The true input is held LOW and the complementary input is held HIGH.

Table 4B. LVCMOS/LVTTL DC Characteristics\(^{(1)}\), \(V_{DD} = 2.5V \pm 0.2V\), \(T_A = -40°C\) to \(85°C\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical(^{(2)})</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{IH})</td>
<td>Input High Current</td>
<td>(V_{DD} = 2.7V)</td>
<td></td>
<td>±5 µA</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input Low Current</td>
<td>(V_{DD} = 2.7V)</td>
<td></td>
<td>±5 µA</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(V_{IK})</td>
<td>Clamp Diode Voltage</td>
<td>(V_{DD} = 2.3V, I_{IN} = -18mA)</td>
<td>-0.7</td>
<td>-1.2 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>DC Input Voltage</td>
<td>(V_{DD} = 2.7V)</td>
<td>-0.3</td>
<td>3.6 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>DC Input High Voltage</td>
<td>(V_{DD} = 2.7V)</td>
<td>1.7</td>
<td>3.6 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>DC Input Low Voltage</td>
<td>(V_{DD} = 2.7V)</td>
<td>0.7</td>
<td>3.6 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{THI})</td>
<td>DC Input Threshold Crossing Voltage</td>
<td>(V_{DD})</td>
<td></td>
<td>1.65 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{REF})</td>
<td>Single-Ended Reference Voltage(^{(3)})</td>
<td>(3.3V) LVTTL, (2.5V) LVTTL</td>
<td>1.65</td>
<td>1.25 V</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1. See Recommended Operating Range table.

NOTE 2. Typical values are at \(V_{DD} = 2.5V, +25°C\) ambient.

NOTE 3. For \(A[1:2]\) single-ended operation, \(A[1:2]\) is tied to a DC reference voltage.

Table 4C. Differential DC Characteristics\(^{(1)}\), \(V_{DD} = 2.5V \pm 0.2V\), \(T_A = -40°C\) to \(85°C\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical(^{(2)})</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{IH})</td>
<td>Input High Current</td>
<td>(V_{DD} = 2.7V)</td>
<td></td>
<td>±5 µA</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input Low Current</td>
<td>(V_{DD} = 2.7V)</td>
<td></td>
<td>±5 µA</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(V_{IK})</td>
<td>Clamp Diode Voltage</td>
<td>(V_{DD} = 2.3V, I_{IN} = -18mA)</td>
<td>-0.7</td>
<td>-1.2 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>DC Input Voltage</td>
<td>(V_{DD} = 2.7V)</td>
<td>-0.3</td>
<td>3.6 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{DIF})</td>
<td>DC Differential Voltage(^{(3)})</td>
<td>(V_{DD} = 2.7V)</td>
<td>0.1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>DC Common Mode Input Voltage</td>
<td>(V_{DD} = 2.7V)</td>
<td>0.05</td>
<td>(V_{DD}) V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1. See Recommended Operating Range table.

NOTE 2. Typical values are at \(V_{DD} = 2.5V, +25°C\) ambient.

NOTE 3. \(V_{DIF}\) specifies the minimum input differential voltage \((V_{TR} - V_{CP})\) required for switching where \(V_{TR}\) is the “true” input level and \(V_{CP}\) is the “complement” input level. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.

NOTE 4. \(V_{CM}\) specifies the maximum allowable range of \((V_{TR} + V_{CP})/2\).
Table 4D. LVDS DC Characteristics\(^{(1)}\), \(V_{\text{DD}} = 2.5V \pm 0.2V\), \(T_{\text{A}} = -40^\circ\text{C} \text{ to } 85^\circ\text{C}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical(^{(2)})</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{OT}(+)})</td>
<td>Differential Output Voltage for the True Binary State</td>
<td></td>
<td>247</td>
<td>454</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OT}(-)})</td>
<td>Differential Output Voltage for the False Binary State</td>
<td></td>
<td>247</td>
<td>454</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{\text{OT}})</td>
<td>Change in (V_{\text{OT}}) Between Complementary Output States</td>
<td></td>
<td></td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OS}})</td>
<td>Output Common Mode Voltage (Offset Voltage)</td>
<td></td>
<td>1.125</td>
<td>1.2</td>
<td>1.375</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta V_{\text{OS}})</td>
<td>Change in (V_{\text{OS}}) Between Complementary Output States</td>
<td></td>
<td></td>
<td>50</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{OS}})</td>
<td>Outputs Short Circuit Current (V_{\text{OUT}+}) and (V_{\text{OUT}-} = 0V)</td>
<td></td>
<td>12</td>
<td>24</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{OSD}})</td>
<td>Differential Outputs Short Circuit Current (V_{\text{OUT}+} = V_{\text{OUT}-})</td>
<td></td>
<td>6</td>
<td>12</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1. See Recommended Operating Range table.
NOTE 2. Typical values are at \(V_{\text{DD}} = 2.5V\), +25°C ambient.

AC Electrical Characteristics

Table 5A. HSTL Differential Input AC Characteristics, \(V_{\text{DD}} = 2.5V \pm 0.2V\), \(T_{\text{A}} = -40^\circ\text{C} \text{ to } 85^\circ\text{C}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{DIF}})</td>
<td>Input Signal Swing(^{(1)})</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{X}})</td>
<td>Differential Input Signal Crossing Point(^{(2)})</td>
<td>750</td>
<td>mV</td>
</tr>
<tr>
<td>(D_{\text{H}})</td>
<td>Duty Cycle</td>
<td>50</td>
<td>%</td>
</tr>
<tr>
<td>(V_{\text{THI}})</td>
<td>Input Timing Measurement Reference Level(^{(3)})</td>
<td>Crossing Point</td>
<td>V</td>
</tr>
<tr>
<td>(t_{\text{R}} / t_{\text{F}})</td>
<td>Input Signal Edge Rate(^{(4)})</td>
<td>2</td>
<td>V/ns</td>
</tr>
</tbody>
</table>

NOTE 1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the \(V_{\text{DIF}}\) (AC) specification under actual use conditions.
NOTE 2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the \(V_{\text{X}}\) specification under actual use conditions.
NOTE 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
NOTE 4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.

Table 5B. eHSTL AC Differential Input Characteristics, \(V_{\text{DD}} = 2.5V \pm 0.2V\), \(T_{\text{A}} = -40^\circ\text{C} \text{ to } 85^\circ\text{C}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{DIF}})</td>
<td>Input Signal Swing(^{(1)})</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{X}})</td>
<td>Differential Input Signal Crossing Point(^{(2)})</td>
<td>900</td>
<td>mV</td>
</tr>
<tr>
<td>(D_{\text{H}})</td>
<td>Duty Cycle</td>
<td>50</td>
<td>%</td>
</tr>
<tr>
<td>(V_{\text{THI}})</td>
<td>Input Timing Measurement Reference Level(^{(3)})</td>
<td>Crossing Point</td>
<td>V</td>
</tr>
<tr>
<td>(t_{\text{R}} / t_{\text{F}})</td>
<td>Input Signal Edge Rate(^{(4)})</td>
<td>2</td>
<td>V/ns</td>
</tr>
</tbody>
</table>

NOTE 1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the \(V_{\text{DIF}}\) (AC) specification under actual use conditions.
NOTE 2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the \(V_{\text{X}}\) specification under actual use conditions.
NOTE 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
NOTE 4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.
Table 5C. LVEPECL (2.5V) and LVPECL (3.3V) Differential Input AC Characteristics, $V_{DD} = 2.5V \pm 0.2V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DIF}</td>
<td>Input Signal Swing$^{(1)}$</td>
<td>732</td>
<td>mV</td>
</tr>
<tr>
<td>V_X</td>
<td>Differential Input Cross Point Voltage$^{(2)}$</td>
<td>1082</td>
<td>mV</td>
</tr>
<tr>
<td>V_{THI}</td>
<td>Differential Input Cross Point Voltage$^{(2)}$</td>
<td>1880</td>
<td>mV</td>
</tr>
<tr>
<td>D_H</td>
<td>Duty Cycle</td>
<td>50</td>
<td>%</td>
</tr>
<tr>
<td>t_R / t_F</td>
<td>Input Signal Edge Rate$^{(4)}$</td>
<td>Crossing Point</td>
<td>V/ ns</td>
</tr>
</tbody>
</table>

NOTE 1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.

NOTE 2. A 1082mV LVEPECL (2.5V) and 1880mV LVPECL (3.3V) crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under actual use conditions.

NOTE 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.

NOTE 4. The input signal edge rate of 2V/ ns or greater is to be maintained in the 20% to 80% range of the input waveform.

Table 5D. LVDS Differential Input AC Characteristics, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DIF}</td>
<td>Input Signal Swing$^{(1)}$</td>
<td>400</td>
<td>mV</td>
</tr>
<tr>
<td>V_X</td>
<td>Differential Input Cross Point Voltage$^{(2)}$</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>D_H</td>
<td>Duty Cycle</td>
<td>50</td>
<td>%</td>
</tr>
<tr>
<td>V_{THI}</td>
<td>Differential Input Cross Point Voltage$^{(2)}$</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>t_R / t_F</td>
<td>Input Signal Edge Rate$^{(4)}$</td>
<td>Crossing Point</td>
<td>V/ ns</td>
</tr>
</tbody>
</table>

NOTE 1. The 400mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.

NOTE 2. A 1.2V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VX specification under actual use conditions.

NOTE 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.

NOTE 4. The input signal edge rate of 2V/ ns or greater is to be maintained in the 20% to 80% range of the input waveform.

Table 5E. AC Differential Input Characteristics$^{(1)}$, $V_{DD} = 2.5V \pm 0.2V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DIF}</td>
<td>AC Differential Voltage$^{(2)}$</td>
<td>0.1</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_X</td>
<td>Differential Input Cross Point Voltage</td>
<td>0.05</td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Common Mode Input Voltage Range$^{(3)}$</td>
<td>0.05</td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>-0.3</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1. The output will not change state until the inputs have crossed and the minimum differential voltage range defined by V_{DIF} has been met or exceeded.

NOTE 2. V_{DIF} specifies the minimum input voltage ($V_{TR} - V_{CP}$) required for switching where V_{TR} is the “true” input level and V_{CP} is the “complement” input level. The AC differential voltage must be achieved to guarantee switching to a new state.

NOTE 3. V_{CM} specified the maximum allowable range of ($V_{TR} + V_{CP}$) /2.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{sk(o)}$</td>
<td>Same Device Output Pin-to-Pin Skew $^{(2)}$</td>
<td></td>
<td>50</td>
<td>125</td>
<td>300</td>
<td>ps</td>
</tr>
<tr>
<td>$t_{sk(p)}$</td>
<td>Pulse Skew $^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{sk(pp)}$</td>
<td>Part-to-Part Skew $^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>Propagation Delay, Low-to-High</td>
<td>A Crosspoint to Q_n, $\overline{Q_n}$ Crosspoint</td>
<td>1.7</td>
<td>1.9</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>Propagation Delay, High-to-Low</td>
<td></td>
<td>1.7</td>
<td>1.9</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>f_0</td>
<td>Frequency Range $^{(6)}$</td>
<td></td>
<td>450</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PGE}</td>
<td>Output Gate Enable Crossing VTHI-to-Q_n/Qn Crosspoint</td>
<td></td>
<td>3.5</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PGD}</td>
<td>Output Gate Enable Crossing VTHI-to-Q_n/Qn Crosspoint Driven to Designated Level</td>
<td></td>
<td>3.5</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PWRDN}</td>
<td>PD Crossing V_{THI} to Q_n = V_{DD}, $\overline{Q_n}$ = V_{DD}</td>
<td></td>
<td>100</td>
<td>µS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PWRUP}</td>
<td>Output Gate Disable Crossing V_{THI} to Q_n/Qn Driven to Designated Level</td>
<td></td>
<td>100</td>
<td>µS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_R / t_F</td>
<td>Output Rise/Fall Time $^{(6)}$</td>
<td>20% to 80%</td>
<td>125</td>
<td>700</td>
<td>ps</td>
<td></td>
</tr>
</tbody>
</table>

NOTE. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 fpsm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1. AC propagation measurements should not be taken within the first 100 cycles of startup.

NOTE 2. Skew measured between Crosspoint of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device.

NOTE 3. Skew measured is the difference between propagation delay times t_{PHL} and t_{PLH} of any differential output pair under identical input and output interfaces, transitions and load conditions on any one device.

NOTE 4. Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two devices, given identical transitions and load conditions at identical V_{DD} levels and temperature.

NOTE 5. All parameters are tested with a 50% input duty cycle.

NOTE 6. Guaranteed by design but not production tested.
Applications Information

EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 1. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 1. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)
Differential AC Timing Waveforms

Output Propagation and Skew Waveforms

NOTE 1: Pulse skew is calculated using the following expression:

\[t_{sk(p)} = |t_{PHL} - t_{PLH}| \]

Note that the \(t_{PHL} \) and \(t_{PLH} \) shown above are not valid measurements for this calculation because they are not taken from the same pulse.

NOTE 2: AC propagation measurements should not be taken within the first 100 cycles of startup.

Differential Gate Disabled/Endable Showing Runt Pulse Generation

NOTE 1: As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user’s responsibility to time the \(\bar{G} \) signal to avoid this problem.
NOTE 1: It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after asserting PD.

NOTE 2: The Power Down Timing diagram assumes that GL is HIGH.

NOTE 3: It should be noted that during power-down mode, the outputs are both pulled to VDD. In the Power Down Timing diagram this is shown when Qn/Qn goes to VDIFF = 0.
Test Circuit for Differential Input

Table 6A. Differential Input Test Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>V_{DD} = 2.5,\text{V} \pm 0.2,\text{V}</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{THI}</td>
<td>Crossing of A and \overline{A}</td>
<td>V</td>
</tr>
</tbody>
</table>
Test Circuit for DC Outputs and Power Down Tests

![Test Circuit for DC Outputs and Power Down Tests](image)

Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing

![Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing](image)

Table 6B. Differential Input Test Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>$V_{DD} = 2.5V \pm 0.2V$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_L</td>
<td>$g^{(1)}$</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>$g^{(1,2)}$</td>
<td>pF</td>
</tr>
<tr>
<td>R_L</td>
<td>50</td>
<td>Ω</td>
</tr>
</tbody>
</table>

NOTE 1: Specifications only apply to “Normal Operations” test condition. The T_{IA/I_A} specification load is for reference only.

NOTE 2: The scope inputs are assumed to have a 2pF load to ground. $T_{IA/I_A} - 644$ specifies 5pF between the output pair. With $C_L = 8pF$, this gives the test circuit appropriate 5pF equivalent load.
Package Outline and Package Dimensions

Package Outline - G Suffix for 24 Lead TSSOP, E-Pad

Table 6. Package Dimensions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.10</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
</tr>
<tr>
<td>b</td>
<td>0.19</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>b1</td>
<td>0.19</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td>0.09</td>
<td>0.20</td>
</tr>
<tr>
<td>c1</td>
<td>0.09</td>
<td>0.127</td>
<td>0.16</td>
</tr>
<tr>
<td>D</td>
<td>7.70</td>
<td>7.90</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>6.40 Basic</td>
<td>6.65 Basic</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>4.30</td>
<td>4.40</td>
<td>4.50</td>
</tr>
<tr>
<td>e</td>
<td>0.65 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.50</td>
<td>0.60</td>
<td>0.70</td>
</tr>
<tr>
<td>P</td>
<td>5.0</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>3.0</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0°</td>
<td>0°</td>
<td>8°</td>
</tr>
<tr>
<td>bbb</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordering Information

Table 8. Ordering Information

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Package</th>
<th>Process</th>
<th>Temp Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXXX</td>
<td>XX</td>
<td>X</td>
<td>I</td>
<td>-40° to + 85° (Industrial)</td>
</tr>
<tr>
<td>EJG</td>
<td></td>
<td></td>
<td></td>
<td>TSSOP - Green</td>
</tr>
<tr>
<td>5T9304</td>
<td></td>
<td></td>
<td></td>
<td>2.5V LVDS 1:4 Glitchless Clock Buffer Terabuffer™ II</td>
</tr>
</tbody>
</table>
Revision History Sheet

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>9</td>
<td>Added EPAD Thermal Release Path section.</td>
<td>3/12/10</td>
</tr>
<tr>
<td>B</td>
<td>T5F</td>
<td>8</td>
<td>AC Characteristics Table - per PCN660, changed both Propagation Delay specs from</td>
<td>7/31/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.25ns typical to 1.7ns and 1.75ns maximum to 1.9ns.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>15</td>
<td>Removed IDT from the Ordering Information</td>
<td>9/21/12</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td>Not Recommended For New Designs</td>
<td>5/15/13</td>
</tr>
<tr>
<td>B</td>
<td>T8</td>
<td>15</td>
<td>Ordering Information - removed leaded device per PDN N-13-11</td>
<td>3/10/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated data sheet format</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>Removed NRND from data sheet.</td>
<td>5/13/15</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.) or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and failures under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) *Renesas Electronics* as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) *Renesas Electronics product(s)* means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

© 2019 Renesas Electronics Corporation. All rights reserved.