FEATURES:
- High performance 1:10 clock driver for general purpose applications
- Operates up to 200MHz at \(V_{DD} = 3.3V \)
- Pin-to-pin skew < 100ps
- \(V_{DD} \) range: 2.3V to 3.6V
- Output enable glitch suppression
- Distributes one clock input to two banks of five outputs
- 25Ω on-chip series dampening resistors
- Available in TSSOP package

DESCRIPTION:
The IDT5V2310 is a high performance, low skew clock buffer that operates up to 200MHz. Two banks of five outputs each provide low skew copies of CLK. Through the use of control pins 1G and 2G, the outputs of banks 1Y(0:4) and 2Y(0:4) can be placed in a low state regardless of CLK input. The device operates in 2.5V and 3.3V environments. The built-in output enable glitch suppression ensures a synchronized output enable sequence to distribute full period clock signals.

The IDT5V2310 is characterized for operation from -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.
PIN CONFIGURATION

<table>
<thead>
<tr>
<th>GND</th>
<th>1</th>
<th>24</th>
<th>CLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>2</td>
<td>23</td>
<td>VDD</td>
</tr>
<tr>
<td>Y0</td>
<td>3</td>
<td>22</td>
<td>VDD</td>
</tr>
<tr>
<td>Y1</td>
<td>4</td>
<td>21</td>
<td>Y0</td>
</tr>
<tr>
<td>Y2</td>
<td>5</td>
<td>20</td>
<td>Y1</td>
</tr>
<tr>
<td>GND</td>
<td>6</td>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>Y3</td>
<td>8</td>
<td>17</td>
<td>Y2</td>
</tr>
<tr>
<td>Y4</td>
<td>9</td>
<td>16</td>
<td>Y3</td>
</tr>
<tr>
<td>VDD</td>
<td>10</td>
<td>15</td>
<td>VDD</td>
</tr>
<tr>
<td>GND</td>
<td>11</td>
<td>14</td>
<td>VDD</td>
</tr>
<tr>
<td>GND</td>
<td>12</td>
<td>13</td>
<td>2G</td>
</tr>
</tbody>
</table>

FUNCTION TABLE(1)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G</td>
<td>Y0(0:4)</td>
</tr>
<tr>
<td>2G</td>
<td>Y1(0:4)</td>
</tr>
<tr>
<td>CLK</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Not to exceed 4.6V.

Capacitance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Input Capacitance</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
<td>pF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>Input Voltage(2)</td>
<td>—0.5</td>
<td>+0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vo</td>
<td>Output Voltage(2)</td>
<td>—0.5</td>
<td>+0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Iik</td>
<td>Input Clamp Current</td>
<td>±50</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iok</td>
<td>Output Clamp Current</td>
<td>±50</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Io</td>
<td>Continuous Total Output Current</td>
<td>±50</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings(1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Power Supply Voltage</td>
<td>—0.5</td>
<td>+4.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Input Voltage(2)</td>
<td>—0.5</td>
<td>+0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vo</td>
<td>Output Voltage(2)</td>
<td>—0.5</td>
<td>+0.5</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Function Table(1)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G</td>
<td>Y0(0:4)</td>
</tr>
<tr>
<td>2G</td>
<td>Y1(0:4)</td>
</tr>
<tr>
<td>CLK</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. H = HIGH Voltage Level
2. L = LOW Voltage Level
X = Don't Care

© 2019 Renesas Electronics Corporation
PIN DESCRIPTION

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>1G</td>
<td>Output Enable Control for 1Y(0:4) Outputs. This output enable is active HIGH. If this pin is Logic HIGH, the 1Y(0:4) clock outputs will follow the input clock (CLK). If this pin is logic LOW, the 1Y(0:4) outputs will drive low independent of the state of CLK.</td>
<td>2.3</td>
<td>2.5</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>G</td>
<td>2G</td>
<td>Output Enable Control for 2Y(0:4) Outputs. This output enable is active HIGH. If this pin is Logic HIGH, the 2Y(0:4) clock outputs will follow the input clock (CLK). If this pin is logic LOW, the 2Y(0:4) outputs will drive low independent of the state of CLK.</td>
<td>3</td>
<td>3.6</td>
<td>2.3</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>1Y(0:4)</td>
<td>Buffered Output Clocks</td>
<td>0.8</td>
<td>VDD = 3V to 3.6V</td>
<td>0.7</td>
<td>VDD = 2.3V to 2.7V</td>
</tr>
<tr>
<td></td>
<td>2Y(0:4)</td>
<td>Buffered Output Clocks</td>
<td>-12</td>
<td>mA</td>
<td>-6</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>CLK</td>
<td>Input Reference Frequency</td>
<td>0</td>
<td>V</td>
<td>VDD</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>DC Power Supply, 2.3V to 3.6V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING RANGE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Internal Power Supply Voltage</td>
<td>2.3</td>
<td>2.5</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>VIL</td>
<td>Input Voltage LOW</td>
<td>VDD = 3V to 3.6V</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD = 2.3V to 2.7V</td>
<td>0.7</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIH</td>
<td>Input Voltage HIGH</td>
<td>VDD = 3V to 3.6V</td>
<td>2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD = 2.3V to 2.7V</td>
<td>1.7</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Input Voltage</td>
<td>0</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>Output Current HIGH</td>
<td>VDD = 3V to 3.6V</td>
<td>-12</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD = 2.3V to 2.7V</td>
<td>-6</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td>Output Current LOW</td>
<td>VDD = 3V to 3.6V</td>
<td>12</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD = 2.3V to 2.7V</td>
<td>6</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>Ambient Operating Temperature</td>
<td>-40</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIK</td>
<td>Input Voltage</td>
<td>VDD = 3V, IIN = -18mA</td>
<td>-1.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIN</td>
<td>Input Current</td>
<td>VDI = 0V or VDD</td>
<td>25</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDD</td>
<td>Static Device Current</td>
<td>CLK = 0V or VDD, IO = 0mA, VDD = 3.3V</td>
<td>25</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS - VDD = 3.3V ± 0.3V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOH</td>
<td>HIGH level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>2.1</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>LOW level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>HIGH level Output Current</td>
<td>VDD = 3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td>LOW level Output Current</td>
<td>VDD = 3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS - VDD = 3.3V ± 0.3V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOH</td>
<td>HIGH level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>2.1</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>LOW level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>HIGH level Output Current</td>
<td>VDD = 3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td>LOW level Output Current</td>
<td>VDD = 3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS - VDD = 3.3V ± 0.3V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOH</td>
<td>HIGH level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>2.1</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>LOW level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>HIGH level Output Current</td>
<td>VDD = 3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td>LOW level Output Current</td>
<td>VDD = 3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS - VDD = 3.3V ± 0.3V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOH</td>
<td>HIGH level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>2.1</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>LOW level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>HIGH level Output Current</td>
<td>VDD = 3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td>LOW level Output Current</td>
<td>VDD = 3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS - VDD = 3.3V ± 0.3V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOH</td>
<td>HIGH level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>2.1</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>LOW level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>HIGH level Output Current</td>
<td>VDD = 3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td>LOW level Output Current</td>
<td>VDD = 3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

DC ELECTRICAL CHARACTERISTICS - VDD = 3.3V ± 0.3V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOH</td>
<td>HIGH level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>2.1</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>2.0</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>LOW level Output Voltage</td>
<td>VDD = Min. to Max.</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3V</td>
<td>0.2</td>
<td>0.55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>HIGH level Output Current</td>
<td>VDD = 3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>-28</td>
<td>-36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IOL</td>
<td>LOW level Output Current</td>
<td>VDD = 3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 3.3V</td>
<td>28</td>
<td>36</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>
DC ELECTRICAL CHARACTERISTICS - $V_{DD} = 2.5V \pm 0.2V$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ. (1)</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>HIGH level Output Voltage</td>
<td>$V_{DD} = \text{Min. to Max.}$</td>
<td>$I_{OH} = -100\mu A$</td>
<td>$V_{DD} - 0.2$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.3V$</td>
<td>$I_{OH} = -6mA$</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>LOW level Output Voltage</td>
<td>$V_{DD} = \text{Min. to Max.}$</td>
<td>$I_{OL} = 100\mu A$</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.3V$</td>
<td>$I_{OL} = 6mA$</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OH}</td>
<td>HIGH level Output Current</td>
<td>$V_{DD} = 2.3V$</td>
<td>$V_{O} = 1V$</td>
<td>-17</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.5V$</td>
<td>$V_{O} = 1.25V$</td>
<td>-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.7V$</td>
<td>$V_{O} = 2.375V$</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OL}</td>
<td>LOW level Output Current</td>
<td>$V_{DD} = 2.3V$</td>
<td>$V_{O} = 1.2V$</td>
<td>17</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.5V$</td>
<td>$V_{O} = 1.25V$</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.7V$</td>
<td>$V_{O} = 0.3V$</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. All typical values are at respective nominal V_{DD}.

TIMING REQUIREMENTS OVER RECOMMENDED RANGE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{CLK}</td>
<td>Clock Frequency</td>
<td>$V_{DD} = 3V \text{ to } 3.6V$</td>
<td>0</td>
<td>200</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.3V \text{ to } 2.7V$</td>
<td>0</td>
<td>170</td>
<td></td>
<td>MHz</td>
</tr>
</tbody>
</table>
SWITCHING CHARACTERISTICS OVER OPERATING RANGE -

V_{DD} = 3.3V ± 0.3V⁽¹⁾

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.<sup>(1)</sup></th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t<sub>PLH</sub></td>
<td>CLK to Yx</td>
<td>f = 0MHz to 200MHz</td>
<td>1.3</td>
<td></td>
<td>2.8</td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>PHL</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t<sub>SK(0)(2)</sub></td>
<td>Output Skew, Yx to Yx</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t<sub>SK(p)</sub></td>
<td>Pulse Skew</td>
<td></td>
<td></td>
<td>250</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t<sub>SK(pp)</sub></td>
<td>Part-to-Part Skew</td>
<td></td>
<td></td>
<td>500</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t<sub>R</sub></td>
<td>Rise Time</td>
<td>V<sub>o</sub> = 0.4V to 2V<sup>(3)</sup></td>
<td>0.7</td>
<td></td>
<td>2</td>
<td>V/ns</td>
</tr>
<tr>
<td>t<sub>F</sub></td>
<td>Fall Time</td>
<td>V<sub>o</sub> = 2V to 0.4V<sup>(3)</sup></td>
<td>0.7</td>
<td></td>
<td>2</td>
<td>V/ns</td>
</tr>
<tr>
<td>t<sub>su</sub></td>
<td>G before CLK↓ V<threshold> = V<sub>DD</sub>/2</td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>hi</sub></td>
<td>G after CLK↓</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All typical values are at respective nominal V_{DD}.
2. This specification is only valid for equal loading of all outputs.
3. Measured at 100MHz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE -

V_{DD} = 2.5V ± 0.2V⁽¹⁾

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.<sup>(1)</sup></th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t<sub>PLH</sub></td>
<td>CLK to Yx</td>
<td>f = 0MHz to 170MHz</td>
<td>1.5</td>
<td></td>
<td>3.5</td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>PHL</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t<sub>SK(0)(2)</sub></td>
<td>Output Skew, Yx to Yx</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t<sub>SK(p)</sub></td>
<td>Pulse Skew</td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t<sub>SK(pp)</sub></td>
<td>Part-to-Part Skew</td>
<td></td>
<td></td>
<td>600</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t<sub>R</sub></td>
<td>Rise Time</td>
<td>V<sub>o</sub> = 0.4V to 1.7V<sup>(3)</sup></td>
<td>0.5</td>
<td></td>
<td>1.4</td>
<td>V/ns</td>
</tr>
<tr>
<td>t<sub>F</sub></td>
<td>Fall Time</td>
<td>V<sub>o</sub> = 1.7V to 0.4V<sup>(3)</sup></td>
<td>0.5</td>
<td></td>
<td>1.4</td>
<td>V/ns</td>
</tr>
<tr>
<td>t<sub>su</sub></td>
<td>G before CLK↓ V<threshold> = V<sub>DD</sub>/2</td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>hi</sub></td>
<td>G after CLK↓</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All typical values are at respective nominal V_{DD}.
2. This specification is only valid for equal loading of all outputs.
3. Measured at 100MHz.
The purpose of the glitch suppression circuitry is to ensure the output enable sequence is synchronized with the clock input such that the output buffer will be enabled on the next full period of the input clock (negative edge triggered by the input clock). The G input must be stable one t_{EN}-time prior to the falling edge of the CLK for predictable operation.

$G(t_{EN}, t_{DIS})$ Relative to CLK
TEST CIRCUITS AND WAVEFORMS

FROM OUTPUT UNDER TEST

NOTES:
1. C_l includes probe and jig capacitance.
2. All input pulses are supplied by generators having the following characteristics:

 - PRR ≤ 200MHz
 - Z_o = 50Ω
 - t_R < 1.2ns
 - t_F < 1.2ns

\[
\text{Voltage Waveforms Propagation Delay Times}
\]

\[
\text{Output Skew}
\]

\[
\text{Pulse Skew}
\]
PACKAGE DRAWING AND DIMENSIONS (24-PIN TSSOP)

NOTES:
1. ALL DIMENSIONS AND TOLERANCES CONFORM TO ASME Y14.5M-1994
2. DATUMS A− and B− TO BE DETERMINED AT DATUM PLANE H−
3. DIMENSION E TO BE DETERMINED AT SEATING PLANE C−
4. DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM PLANE H−
5. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED .15 mm PER SIDE
6. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED .25 mm PER SIDE
7. DETAIL OF PIN 1 IDENTIFIER IS OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED
8. LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS .08 mm IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT
9. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .10 AND .25 mm FROM THE LEAD TIP
10. ALL DIMENSIONS ARE IN MILLIMETERS
11. THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO-153, VARIATION AA, AB−, AC, AD & AE

MARKING DIAGRAM

IDT5V231
0PGGI
YYWW$
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>IDT</th>
<th>Device Type</th>
<th>Package</th>
<th>Process/Temp. Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXX</td>
<td>XX</td>
<td>XX</td>
<td>I</td>
<td>Industrial (-40°C to +85°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PGG</td>
<td>TSSOP – Green</td>
</tr>
<tr>
<td>5V2310</td>
<td>2.5V to 3.3V High Performance Clock Buffer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyo-su,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.