Features
• High-speed address/chip select time
 – Military: 25/35/45/55/70/85/100ns (max.)
 – Commercial/Industrial: 20/25/35ns (max.) low power only
• Low-power operation
• Battery Backup operation – 2V data retention
• Produced with advanced high-performance CMOS technology
• Input and output directly TTL-compatible
• Available in standard 28-pin (300 or 600 mil) ceramic DIP, 28-pin (300 mil) SOJ
• Military product compliant to MIL-STD-883, Class B

Description
The IDT 71256 is a 262,144-bit high-speed static RAM organized as 32K x 8. It is fabricated using high-performance, high-reliability CMOS technology.

Address access times as fast as 20ns are available with power consumption of only 350mW (typ.). The circuit also offers a reduced power standby mode. When CS goes HIGH, the circuit will automatically go to and remain in, a low-power standby mode as long as CS remains HIGH. This capability provides significant system level power and cooling savings. The low-power (L) version also offers a battery backup data retention capability where the circuit typically consumes only 5μW when operating off a 2V battery.

The IDT7 1256 is packaged in a 28-pin (300 or 600 mil) ceramic DIP, a 28-pin 300 mil SOJ providing high board level packing densities.

The IDT7 1256 military RAM is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Functional Block Diagram
IDT71256S/L
CMOS Static RAM 256K (32K x 8-Bit)

Military, Commercial, and Industrial Temperature Ranges

Pin Configurations

DIP/SOJ
Top View

Pin Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 - A14</td>
<td>Address Inputs</td>
</tr>
<tr>
<td>I/O0 - I/O7</td>
<td>Data Input/Output</td>
</tr>
<tr>
<td>CS</td>
<td>Chip Select</td>
</tr>
<tr>
<td>WE</td>
<td>Write Enable</td>
</tr>
<tr>
<td>OE</td>
<td>Output Enable</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>VCC</td>
<td>Power</td>
</tr>
</tbody>
</table>

Truth Table (1)

<table>
<thead>
<tr>
<th>WE</th>
<th>CS</th>
<th>OE</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>H</td>
<td>X</td>
<td>I/O</td>
<td>High-Z</td>
</tr>
<tr>
<td>X</td>
<td>VHC</td>
<td>X</td>
<td>I/O</td>
<td>Standby (lsb)</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>I/O</td>
<td>Output Disabled</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td>DOUT</td>
<td>Read Data</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>X</td>
<td>DN</td>
<td>Write Data</td>
</tr>
</tbody>
</table>

NOTE:
1. H = VTH, L = VIL, X = Don’t care.

Absolute Maximum Ratings (1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTERM</td>
<td>Terminal Voltage with Respect to GND</td>
<td>-0.5 to +7.0</td>
<td>-0.5 to +7.0</td>
<td>V</td>
</tr>
<tr>
<td>TA</td>
<td>Operating Temperature</td>
<td>0 to +70</td>
<td>-40 to +85</td>
<td>-55 to +125</td>
</tr>
<tr>
<td>TBIAS</td>
<td>Temperature Under Bias</td>
<td>-55 to +125</td>
<td>-55 to +125</td>
<td>-65 to +135</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>-55 to +125</td>
<td>-55 to +125</td>
<td>-65 to +150</td>
</tr>
<tr>
<td>PT</td>
<td>Power Dissipation</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>IOUT</td>
<td>DC Output Current</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

NOTE:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Capacitance (TA = +25°C, f = 1.0MHz)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Input Capacitance</td>
<td>VIN = 0V</td>
<td>11</td>
<td>pF</td>
</tr>
<tr>
<td>CIO</td>
<td>I/O Capacitance</td>
<td>VOUT = 0V</td>
<td>11</td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTE:
1. This parameter is determined by device characterization, but is not production tested.
Recommended Operating Temperature and Supply Voltage

<table>
<thead>
<tr>
<th>Grade</th>
<th>Temperature</th>
<th>GND</th>
<th>Vcc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military</td>
<td>-55°C to +125°C</td>
<td>0V</td>
<td>5V ± 10%</td>
</tr>
<tr>
<td>Industrial</td>
<td>-40°C to +85°C</td>
<td>0V</td>
<td>5V ± 10%</td>
</tr>
<tr>
<td>Commercial</td>
<td>0°C to +70°C</td>
<td>0V</td>
<td>5V ± 10%</td>
</tr>
</tbody>
</table>

Recommended DC Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc</td>
<td>Supply Voltage</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>VIL</td>
<td>Input Low Voltage</td>
<td>-0.5(1)</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>VIL</td>
<td>Input High Voltage</td>
<td>2.2</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE:
1. VIL (min.) = −3.0V for pulse width less than 20ns, once per cycle.

DC Electrical Characteristics\(^{(1,2)}\) (\(V_{CC} = 5.0V ± 10\%, V_{LC} = 0.2V, V_{HC} = V_{CC} - 0.2V\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Power</th>
<th>71256S/L20</th>
<th>71256S/L25</th>
<th>71256S/L35</th>
<th>71256S/L45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Com'l. & Ind</td>
<td>Com'l. & Ind</td>
<td>Com'l. & Ind</td>
<td>Com'l. & Ind</td>
</tr>
<tr>
<td>ICC</td>
<td>Dynamic Operating Current</td>
<td></td>
<td>S</td>
<td>—</td>
<td>—</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>CS ≤ VIL, Outputs Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{CC} = \text{Max.}, f_{\text{MAX}})</td>
<td></td>
<td>L</td>
<td>135</td>
<td>125</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Standby Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(TTL Level), CS ≥ VIL, VCC = \text{Max.},</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outputs Open, (f = f_{\text{MAX}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISB</td>
<td></td>
<td></td>
<td>S</td>
<td>—</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ISB1</td>
<td>Full Standby Power Supply Current</td>
<td></td>
<td>S</td>
<td>—</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(CMOS Level), CS ≥ VHC, VCC = \text{Max.},</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>0.6</td>
<td>0.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>

NOTES:
1. All values are maximum guaranteed values.
2. \(f_{\text{MAX}} = 1/t_{RC}\), all address inputs are cycling at \(f_{\text{MAX}}\); \(f = 0\) means no address pins are cycling.
IDT71256S/L
CMOS Static RAM 256K (32K x 8-Bit)
Military, Commercial, and Industrial Temperature Ranges

AC Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>IDT71256S</th>
<th>IDT71256L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Input Pulse Levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Rise/Fall Times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Timing Reference Levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Reference Levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Test Load</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Includes scope and jig capacitances

DC Electrical Characteristics (Vcc = 5.0V ± 10%)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>IDT71256S</th>
<th>IDT71256L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>[LI]</td>
<td>Input Leakage Current</td>
<td>Vcc = Max., Vn = GND to Vcc</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>[LOI]</td>
<td>Output Leakage Current</td>
<td>Vcc = Max., C = Vih, Vout = GND to Vcc</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>[VOL]</td>
<td>Output Low Voltage</td>
<td>Iol = 8mA, Vcc = Min.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iol = 10mA, Vcc = Min.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>[VOH]</td>
<td>Output High Voltage</td>
<td>IoH = -4mA, Vcc = Min.</td>
<td>2.4</td>
<td>—</td>
</tr>
</tbody>
</table>

Data Retention Characteristics Over All Temperature Ranges
(L Version Only) (VLC = 0.2V, VHC = Vcc - 0.2V)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Typ.(0)</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vcc @</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>[VD]</td>
<td>VCC for Data Retention</td>
<td>MIL, COM' L & IND.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ICD]</td>
<td>Data Retention Current</td>
<td>MIL, COM' L & IND.</td>
<td>500</td>
<td>800</td>
<td>120</td>
</tr>
<tr>
<td>[IC]</td>
<td>Chip Deselect to Data Retention</td>
<td>C = VHC</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>[TR]</td>
<td>Operation Recovery Time</td>
<td>tRC(2)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTES:
1. TA = +25°C.
2. tRC = Read Cycle Time.
3. This parameter is guaranteed by device characterization, but is not production tested.
Low Vcc Data Retention Waveform

![Low Vcc Data Retention Waveform](image)

AC Electrical Characteristics (Vcc = 5.0V ± 10%, All Temperature Ranges)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>71256L20**(1)**</th>
<th>71256S25**(3)**</th>
<th>71256S35**(3)**</th>
<th>71256S45**(3)**</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRC</td>
<td>Read Cycle Time</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>ns</td>
</tr>
<tr>
<td>tAA</td>
<td>Address Access Time</td>
<td>---</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>tACS</td>
<td>Chip Select Access Time</td>
<td>---</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>tCLZ**(2)**</td>
<td>Chip Select to Output in Low-Z</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>ns</td>
</tr>
<tr>
<td>tCHZ**(2)**</td>
<td>Chip Deselect to Output in High-Z</td>
<td>---</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>tCE</td>
<td>Output Enable to Output Valid</td>
<td>---</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>tCEL**(2)**</td>
<td>Output Enable to Output in Low-Z</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>tC0H**(2)**</td>
<td>Output Disable to Output in High-Z</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>tCH</td>
<td>Output Hold from Address Change</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>ns</td>
</tr>
</tbody>
</table>

Read Cycle

- **tRC**: Read Cycle Time
- **tAA**: Address Access Time
- **tACS**: Chip Select Access Time
- **tCLZ**(2)**: Chip Select to Output in Low-Z
- **tCHZ**(2)**: Chip Deselect to Output in High-Z
- **tCE**: Output Enable to Output Valid
- **tCEL**(2)**: Output Enable to Output in Low-Z
- **tC0H**(2)**: Output Disable to Output in High-Z
- **tCH**: Output Hold from Address Change

Write Cycle

- **tWC**: Write Cycle Time
- **tCW**: Chip Select to End-of-Write
- **tAW**: Address Valid to End-of-Write
- **tAS**: Address Set-up Time
- **tWP**: Write Pulse Width
- **tWR**: Write Recovery Time
- **tDX**: Data to Write Time Overlap
- **tWEN**(2)**: Write Enable to Output in High-Z
- **tDH**: Data Hold from Write Time
- **tC0W**(2)**: Output Active from End-of-Write

Notes:

1. 0° to +70°C or -40° to +85°C temperature range only.
2. This parameter is guaranteed by device characterization, but is not production tested.
3. -55° to +125°C temperature range only.
AC Electrical Characteristics (Vcc = 5.0V ± 10%, Military Temperature Ranges)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>71256S55(1)</th>
<th>71256S70(1)</th>
<th>71256S85(1)</th>
<th>71256S100(1)</th>
<th>71256L55(1)</th>
<th>71256L70(1)</th>
<th>71256L85(1)</th>
<th>71256L100(1)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Cycle</td>
<td></td>
</tr>
<tr>
<td>tRC</td>
<td>Read Cycle Time</td>
<td>55</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>85</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>tAA</td>
<td>Address Access Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tACS</td>
<td>Chip Select Access Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tZ(1)</td>
<td>Chip Select to Output in Low-Z</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>tHZ(2)</td>
<td>Chip Deselect to Output in High-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tOE</td>
<td>Output Enable to Output Valid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tOLZ(2)</td>
<td>Output Enable to Output in Low-Z</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>tOHZ(2)</td>
<td>Output Disable to Output in High-Z</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>30</td>
<td>—</td>
<td>35</td>
<td>—</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>tOH</td>
<td>Output Hold from Address Change</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>Write Cycle</td>
<td></td>
</tr>
<tr>
<td>tWC</td>
<td>Write Cycle Time</td>
<td>55</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>85</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>tCW</td>
<td>Chip Select to End-of-Write</td>
<td>50</td>
<td>—</td>
<td>60</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>tAW</td>
<td>Address Valid to End-of-Write</td>
<td>50</td>
<td>—</td>
<td>60</td>
<td>—</td>
<td>70</td>
<td>—</td>
<td>80</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>tAS</td>
<td>Address Set-up Time</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>tWP</td>
<td>Write Pulse Width</td>
<td>40</td>
<td>—</td>
<td>45</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>55</td>
<td>—</td>
<td>55</td>
</tr>
<tr>
<td>tWR</td>
<td>Write Recovery Time</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>tDW</td>
<td>Data to Write Time Overlap</td>
<td>25</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>35</td>
<td>—</td>
<td>40</td>
<td>—</td>
<td>40</td>
</tr>
<tr>
<td>tWZ(1)</td>
<td>Write Enable to Output in High-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tDH</td>
<td>Data Hold from Write (WE)</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>tOW(2)</td>
<td>Output Active from End-of-Write</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTES:
1. -55°C to +125°C temperature range only.
2. This parameter is guaranteed by device characterization, but is not production tested.
Timings Waveform of Read Cycle No. 1\(^{(1)}\)

- **ADDRESS**
- **\(\bar{OE}\)**
- **\(\bar{CS}\)**
- **DATA\text{OUT}**

NOTES:

1. **WE** is HIGH for Read Cycle.
2. Device is continuously selected, **\(\bar{CS}\)** is LOW.
3. Address valid prior to or coincident with **\(\bar{CS}\)** transition LOW.
4. **\(\bar{OE}\)** is LOW.
5. Transition is measured ±200mV from steady state.

Timings Waveform of Read Cycle No. 2\(^{(1,2,4)}\)

- **ADDRESS**
- **\(\bar{OE}\)**
- **\(\bar{CS}\)**
- **DATA\text{OUT}**

Timings Waveform of Read Cycle No. 2\(^{(1,3,4)}\)

- **\(\bar{CS}\)**
- **DATA\text{OUT}**

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)\(^{(1,2,4,6)}\)

NOTES:
1. A write occurs during the overlap of a LOW CS and a LOW WE.
2. \(t_{WR}\) is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
3. During this period, I/O pins are in the output state so that the input signals must not be applied.
4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
5. Transition is measured \(\pm 200\text{mV}\) from steady state.
6. If \(OE\) is LOW during a WE controlled write cycle, the write pulse width must be the larger of \(t_{WP}\) or \((t_{WHZ} + t_{DW})\) to allow the I/O drivers to turn off and data to be placed on the bus for the required \(t_{DW}\). If \(OE\) is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse width can be as short as the specified \(t_{WP}\). For a CS controlled write cycle, \(OE\) may be LOW with no degradation to \(t_{CW}\).
Ordering Information — Commercial & Industrial

71256	X	XX	XXX	X	X
Device Type | Power | Speed | Package | Process/Temperature Range |

Blank	Blank	G	Y	L
8 | I | Commercial (0°C to +70°C) | Industrial (-40°C to +85°C) | Low Power Only |

300 mil CERDIP (D28-3)

2946 drw 13

Ordering Information — Military

71256	X	XX	XXX	XXX	X	X
Device Type | Power | Speed | Package | Process/Temperature Range |

B	TD
Military (-55°C to +125°C) | Compliant to MIL-STD-883, Class B |

300 mil CERDIP (D28-3)

600 mil CERDIP (D28-1)

25	35	45	55	70	85	100
Speed in nanoseconds |

S	L
Standard Power | Low Power |

2946 drw 12
Datasheet Document History

11/4/99:
- Updated to new format
- Pp. 1–5, 9 Added Industrial Temperature Range offerings
- Pg. 1 Removed 30, 120, and 150ns military and 45ns commercial speed grade offerings.
- Pg. 2 Removed P28-2 package from DIP/SOJ Top View
- Pg. 3 Removed 30ns and 45ns (Commercial only) speed grade offerings from DC Electrical table
 - Revised notes and footnotes
- Pg. 5 Removed 30ns speed grade offering from AC Electrical table
 - Revised notes and footnotes
- Pg. 6 Expressed Military Temperature range on AC Electrical table
 - Revised notes and footnotes
- Pg. 8 Removed Note 1 and renumbered notes and footnotes
- Pg. 9 Revised Ordering Information and presented by temperature range offering
- Pg. 10 Added Datasheet Document History

08/09/00: Not recommended for new designs
02/01/01: Remove "Not recommended for new designs"
11/15/06: Pg. 3 Changed power limits for commercial and industrial. Refer to PCN SR-0602-03. Added Restricted hazardous substance device to ordering information.
11/01/08: Pg. 2,9 Corrected typo on pin 21 in 32-Pin LCC diagram. Updated the ordering information by removing the "IDT" notation.
04/28/11: Pg. 1, 2, 5, 9 Added 20ns to Industrial offering. Obsoleted 28-pin 600 mil, 32-pin LCC and Added Tape and Reel to Ordering information and updated description of Restricted hazardous substance device to Green.
09/26/13: Pg. 1 In the Description: removed IDT’s reference to fabrication and removed the sentence “In the full standby mode, the low-power device consumes less than 15µW, typically".
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

- **Standard**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
- **High Quality**: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

6. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

8. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microprocessor software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

9. Contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

10. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

11. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

12. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

(Rev.4.0-1 November 2017)