FEATURES:
- 256 x 18-bit organization array (IDT72205LB)
- 512 x 18-bit organization array (IDT72215LB)
- 1,024 x 18-bit organization array (IDT72225LB)
- 2,048 x 18-bit organization array (IDT72235LB)
- 4,096 x 18-bit organization array (IDT72245LB)
- 10 ns read/write cycle time
- Empty and Full flags signal FIFO status
- Easy expandable in depth and width
- Asynchronous or coincident read and write clocks
- Programmable Almost-Empty and Almost-Full flags with default settings
- Half-Full flag capability
- Dual-Port zero fall-through time architecture
- Output enable puts output data bus in high-impedence state
- High-performance submicron CMOS technology
- Available in a 64-lead thin quad flatpack (TQFP/STQFP) and plastic leaded chip carrier (PLCC)
- Industrial temperature range (-40°C to +85°C) is available
- Green parts available, see ordering information

DESCRIPTION:
The IDT72205LB/72215LB/72225LB/72235LB/72245LB are very high speed, low-power First-In, First-Out (FIFO) memories with clocked read and write controls. These FIFOs are applicable for a wide variety of data buffering needs, such as optical disk controllers, Local Area Networks (LANs), and interprocessor communication.

These FIFOs have 18-bit input and output ports. The input port is controlled by a free-running clock (WCLK), and an input enable pin (WEN). Data is read into the synchronous FIFO on every clock when WEN is asserted. The output port is controlled by another clock pin (RCLK) and another enable pin (REN). The read clock can be tied to the write clock for single clock operation or the two clocks can run asynchronous of one another for dual-clock operation. An Output Enable pin (OE) is provided on the read port for three-state control of the output.

The synchronous FIFOs have two fixed flags, Empty (EF) and Full (FF), and two programmable flags, Almost-Empty (PAE) and Almost-Full (PAF). The offset loading of the programmable flags is controlled by a simple state machine, and is initiated by asserting the Load pin (LD). A Half-Full flag (HF) is available when the FIFO is used in a single device configuration.

These devices are depth expandable using a Daisy-Chain technique. The XI and XO pins are used to expand the FIFOs. In depth expansion configuration, First Load (FL) is grounded on the first device and set to HIGH for all other devices in the Daisy Chain.

The IDT72205LB/72215LB/72225LB/72235LB/72245LB is fabricated using high-speed submicron CMOS technology.

FUNCTIONAL BLOCK DIAGRAM
PIN CONFIGURATIONS

PLCC (J68-1, order code: J)
TOP VIEW

TQFP (PN64-1, order code: PF)
STQFP (PP64-1, order code: TF)
TOP VIEW
PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0–D17</td>
<td>Data Inputs</td>
<td>I</td>
<td>Data inputs for a 18-bit bus.</td>
</tr>
<tr>
<td>RS</td>
<td>Reset</td>
<td>I</td>
<td>When RS is set LOW, internal read and write pointers are set to the first location of the RAM array, FF and PAF go HIGH, and PAE and EF go LOW. A reset is required before an initial WRITE after power-up.</td>
</tr>
<tr>
<td>WCLK</td>
<td>Write Clock</td>
<td>I</td>
<td>When WREN is LOW, data is written into the FIFO on a LOW-TO-HIGH transition of WCLK, if the FIFO is not full.</td>
</tr>
<tr>
<td>WEN</td>
<td>Write Enable</td>
<td>I</td>
<td>When WEN is LOW and LD is HIGH, data is written into the FIFO on every LOW-TO-HIGH transition of WCLK. When WEN is HIGH, the FIFO holds the previous data. Data will not be written into the FIFO if the FF is LOW.</td>
</tr>
<tr>
<td>RCLK</td>
<td>Read Clock</td>
<td>I</td>
<td>When REN is LOW, data is read from the FIFO on a LOW-TO-HIGH transition of RCLK, if the FIFO is not empty.</td>
</tr>
<tr>
<td>REN</td>
<td>Read Enable</td>
<td>I</td>
<td>When REN is LOW, and LD is HIGH, data is read from the FIFO on every LOW-TO-HIGH transition of RCLK. When REN is HIGH, the output register holds the previous data. Data will not be read from the FIFO if the EF is LOW.</td>
</tr>
<tr>
<td>OE</td>
<td>Output Enable</td>
<td>I</td>
<td>When OE is LOW, the data output bus is active. If OE is HIGH, the output data bus will be in a high-impedance state.</td>
</tr>
<tr>
<td>LD</td>
<td>Load</td>
<td>I</td>
<td>When LD is LOW, data on the inputs D0–D11 is written to the offset and depth registers on the LOW-TO-HIGH transition of the WCLK, when WEN is LOW. When LD is LOW, data on the outputs Q0–Q11 is read from the offset and depth registers on the LOW-TO-HIGH transition of the RCLK, when REN is LOW.</td>
</tr>
<tr>
<td>FL</td>
<td>First Load</td>
<td>I</td>
<td>In the single device or width expansion configuration, FL is grounded. In the depth expansion configuration, FL is grounded on the first device (first load device) and set to HIGH for all other devices in the Daisy Chain.</td>
</tr>
<tr>
<td>WXI</td>
<td>Write Expansion</td>
<td>I</td>
<td>In the single device or width expansion configuration, WXI is grounded. In the depth expansion configuration, WXI is connected to WXO (Write Expansion Out) of the previous device.</td>
</tr>
<tr>
<td>RXI</td>
<td>Read Expansion</td>
<td>I</td>
<td>In the single device or width expansion configuration, RXI is grounded. In the depth expansion configuration, RXI is connected to RXO (Read Expansion Out) of the previous device.</td>
</tr>
<tr>
<td>FF</td>
<td>Full Flag</td>
<td>O</td>
<td>When FF is LOW, the FIFO is full and further data writes into the input are inhibited. When FF is HIGH, the FIFO is not full. FF is synchronized to WCLK.</td>
</tr>
<tr>
<td>EF</td>
<td>Empty Flag</td>
<td>O</td>
<td>When EF is LOW, the FIFO is empty and further data reads from the output are inhibited. When EF is HIGH, the FIFO is not empty. EF is synchronized to RCLK.</td>
</tr>
<tr>
<td>PAE</td>
<td>Programmable Almost-Empty Flag</td>
<td>O</td>
<td>When PAE is LOW, the FIFO is almost empty based on the offset programmed into the FIFO. The default offset at reset is 31 from empty for IDT72205LB, 63 from empty for IDT72215LB, and 127 from empty for IDT72225LB/72235LB/72245LB.</td>
</tr>
<tr>
<td>PAF</td>
<td>Programmable Almost-Full Flag</td>
<td>O</td>
<td>When PAF is LOW, the FIFO is almost-full based on the offset programmed into the FIFO. The default offset at reset is 31 from full for IDT72205, 63 from full for IDT72215LB, and 127 from full for IDT72225LB/72235LB/72245LB.</td>
</tr>
<tr>
<td>WXO/HF</td>
<td>Write Expansion Out/Half-Full Flag</td>
<td>O</td>
<td>In the single device or width expansion configuration, the device is more than half full when HF is LOW. In the depth expansion configuration, a pulse is sent from WXO to WXI of the next device when the last location in the FIFO is written.</td>
</tr>
<tr>
<td>RXO</td>
<td>Read Expansion Out</td>
<td>O</td>
<td>In the depth expansion configuration, a pulse is sent from RXO to RXI of the next device when the last location in the FIFO is read.</td>
</tr>
<tr>
<td>Q0–Q17</td>
<td>Data Outputs</td>
<td>O</td>
<td>Data outputs for an 18-bit bus.</td>
</tr>
<tr>
<td>VCC</td>
<td>Power</td>
<td>+5V</td>
<td>+5V power supply pins.</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
<td></td>
<td>Eight ground pins for the PLCC and seven ground pins for the TQFP/STQFP.</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Rating</th>
<th>Commercial</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTERM</td>
<td>Terminal Voltage with respect to GND</td>
<td>−0.5 to +7.0</td>
<td>V</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>−55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>IOUT</td>
<td>DC Output Current</td>
<td>−50 to +50</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS

(Commercial: Vcc = 5V ± 10%, TA = 0°C to +70°C; Industrial: Vcc = 5V ± 10%V, TA = −40°C to +85°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL(2)</td>
<td>Input Leakage Current (any input)</td>
<td>−1</td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>ILO(3)</td>
<td>Output Leakage Current</td>
<td>−10</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>VOH</td>
<td>Output Logic “1” Voltage, IOH = −2 mA</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOL</td>
<td>Output Logic “0” Voltage, IOL = 8 mA</td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ICC(4,5,6)</td>
<td>Active Power Supply Current</td>
<td></td>
<td>60</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>ICC2(4,7)</td>
<td>Standby Current</td>
<td></td>
<td>5</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES:
1. Industrial Temperature Range Product for the 15ns and the 25ns speed grades are available as a standard device.
2. Measurements with 0.4 ≤ Vin ≤ Vcc.
3. OE ≥ VIH, 0.4 ≤ Vout ≤ Vcc.
4. Tested with outputs disabled (IOUT = 0).
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz.
6. For the IDT72205/72215/72225 the typical ICC = 1.81 + 1.12*fS + 0.02*CL*fS (in mA);
 for the IDT72235/72245 the typical ICC = 2.85 + 1.30*fS + 0.02*CL*fS (in mA)
 These equations are valid under the following conditions:
 Vcc = 5V, TA = 25°C, fS = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at fS/2, CL = capacitive load (in pF).
7. All Inputs = Vcc − 0.2V or GND + 0.2V, except RCLK and WCLK, which toggle at 20 MHz.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter(1)</th>
<th>Conditions</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cn(2)</td>
<td>Input Capacitance</td>
<td>Vin = 0V</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>Cout(1,2)</td>
<td>Output Capacitance</td>
<td>Vout = 0V</td>
<td>10</td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTES:
2. Characterized values, not currently tested.
AC ELECTRICAL CHARACTERISTICS

(Commercial: VCC = 5V ± 10%, TA = 0°C to +70°C; Industrial: VCC = 5V ± 10%, TA = -40°C to +85°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Commercial</th>
<th>Commercial & Industrial[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>fS</td>
<td>Clock Cycle Frequency</td>
<td>—</td>
<td>100 — 66.7</td>
</tr>
<tr>
<td>tA</td>
<td>Data Access Time</td>
<td>2 — 6.5</td>
<td>2 — 40 MHz</td>
</tr>
<tr>
<td>tCLK</td>
<td>Clock Cycle Time</td>
<td>10 — 15</td>
<td>— 25 ns</td>
</tr>
<tr>
<td>tCLKH</td>
<td>Clock HIGH Time</td>
<td>4.5 — 6</td>
<td>— 10 ns</td>
</tr>
<tr>
<td>tCLKL</td>
<td>Clock LOW Time</td>
<td>4.5 — 6</td>
<td>— 10 ns</td>
</tr>
<tr>
<td>tDS</td>
<td>Data Set-up Time</td>
<td>3 — 4</td>
<td>— 6 ns</td>
</tr>
<tr>
<td>tDH</td>
<td>Data Hold Time</td>
<td>0 — 1</td>
<td>— 1 ns</td>
</tr>
<tr>
<td>tENS</td>
<td>Enable Set-up Time</td>
<td>3 — 4</td>
<td>— 6 ns</td>
</tr>
<tr>
<td>tENH</td>
<td>Enable Hold Time</td>
<td>0 — 1</td>
<td>— 1 ns</td>
</tr>
<tr>
<td>tSS</td>
<td>Reset Set-up Time</td>
<td>8 — 10</td>
<td>— 15 ns</td>
</tr>
<tr>
<td>tSR</td>
<td>Reset Recovery Time</td>
<td>8 — 10</td>
<td>— 15 ns</td>
</tr>
<tr>
<td>tOE</td>
<td>Reset to Flag and Output Time</td>
<td>—</td>
<td>20 — 15 ns</td>
</tr>
<tr>
<td>tOLZ</td>
<td>Output Enable to Output in Low-Z[^3]</td>
<td>0 — 20</td>
<td>— 25 ns</td>
</tr>
<tr>
<td>tCE</td>
<td>Output Enable to Output Valid</td>
<td>3 — 6</td>
<td>3 — 12 ns</td>
</tr>
<tr>
<td>tOH2</td>
<td>Output Enable to Output in High-Z[^3]</td>
<td>—</td>
<td>12 ns</td>
</tr>
<tr>
<td>tMFF</td>
<td>Write Clock to Full Flag</td>
<td>—</td>
<td>6.5 — 10 ns</td>
</tr>
<tr>
<td>tBEF</td>
<td>Read Clock to Empty Flag</td>
<td>—</td>
<td>6.5 — 10 ns</td>
</tr>
<tr>
<td>tBF</td>
<td>Clock to Asynchronous Programmable Almost-Full Flag</td>
<td>—</td>
<td>17 — 24 ns</td>
</tr>
<tr>
<td>tANE</td>
<td>Clock to Programmable Almost-Empty Flag</td>
<td>—</td>
<td>17 — 24 ns</td>
</tr>
<tr>
<td>tHF</td>
<td>Clock to Half-Full Flag</td>
<td>—</td>
<td>17 — 24 ns</td>
</tr>
<tr>
<td>tIO</td>
<td>Clock to Expansion Out</td>
<td>—</td>
<td>17 — 24 ns</td>
</tr>
<tr>
<td>tE</td>
<td>Expansion In Pulse Width</td>
<td>3 — 6.5</td>
<td>— 10 ns</td>
</tr>
<tr>
<td>tEIS</td>
<td>Expansion In Set-Up Time</td>
<td>3.5 — 5</td>
<td>— 10 ns</td>
</tr>
<tr>
<td>tSKF</td>
<td>Skew time between Read Clock & Write Clock for Full Flag</td>
<td>5 — 6</td>
<td>— 10 ns</td>
</tr>
<tr>
<td>tSKEF</td>
<td>Skew time between Read Clock & Write Clock for Empty Flag</td>
<td>5 — 6</td>
<td>— 10 ns</td>
</tr>
</tbody>
</table>

AC TEST CONDITIONS

<table>
<thead>
<tr>
<th>Input Pulse Levels</th>
<th>GND to 3.0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Rise/Fall Times</td>
<td>3ns</td>
</tr>
<tr>
<td>Input Timing Reference Levels</td>
<td>1.5V</td>
</tr>
<tr>
<td>Output Reference Levels</td>
<td>1.5V</td>
</tr>
<tr>
<td>Output Load</td>
<td>See Figure 1</td>
</tr>
</tbody>
</table>

NOTES:

1. Industrial temperature range product for the 15ns and 25ns speed grades are available as a standard device. All other speed grades are available by special order.
2. Pulse widths less than minimum values are not allowed.
3. Values guaranteed by design, not currently tested.

![Figure 1. Output Load](image)

*Includes jig and scope capacitances.
SIGNAL DESCRIPTIONS:

INPUTS:
DATA IN (D0 - D17)
Data inputs for 18-bit wide data.

CONTROLS:
RESET (RS)
Reset is accomplished whenever the Reset (RS) input is taken to a LOW state. During reset, both internal read and write pointers are set to the first location. A reset is required after power-up before a write operation can take place. The Full Flag (FF), Half-Full Flag (HF) and Programmable Almost-Full Flag (PAF) will be reset to HIGH after tRF. The Empty Flag (EF) and Programmable Almost-Empty Flag (PAE) will be reset to LOW after tRF. During reset, the output register is initialized to all zeros and the offset registers are initialized to their default values.

WRITE CLOCK (WCLK)
A write cycle is initiated on the LOW-to-HIGH transition of the Write Clock (WCLK). Data setup and hold times must be met with respect to the LOW-to-HIGH transition of WCLK. The Write and Read Clocks can be asynchronous or coincident.

WRITE ENABLE (WEN)
When the WEN input is LOW and LD input is HIGH, data may be loaded into the FIFO RAM array on the rising edge of every WCLK cycle if the device is not full. Data is stored in the RAM array sequentially and independently of any ongoing read operation.
When WEN is HIGH, no new data is written in the RAM array on each WCLK cycle.
To prevent data overflow, FF will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, FF will go HIGH allowing a write to occur. The FF flag is updated on the rising edge of WCLK. WEN is ignored when the FIFO is full.

READ CLOCK (RCLK)
Data can be read on the outputs on the LOW-to-HIGH transition of the Read Clock (RCLK), when Output Enable (OE) is set LOW.
The Write and Read Clocks can be asynchronous or coincident.

READ ENABLE (REN)
When Read Enable is LOW and LD input is HIGH, data is loaded from the RAM array into the output register on the rising edge of every RCLK cycle if the device is not empty.
When the REN input is HIGH, the output register holds the previous data and no new data is loaded into the output register. The data outputs Q0-Qn maintain the previous data value.
Every word accessed at Qn, including the first word written to an empty FIFO, must be requested using REN. When the last word has been read from the FIFO, the Empty Flag (EF) will go LOW, inhibiting further read operations. REN is ignored when the FIFO is empty. Once a write is performed, EF will go HIGH allowing a read to occur. The EF flag is updated on the rising edge of RCLK.

OUTPUT ENABLE (OE)
When Output Enable (OE) is enabled (LOW), the parallel output buffers receive data from the output register. When OE is disabled (HIGH), the Q output data bus is in a high-impedance state.

LOAD (LD)
The IDT72205LB/72215LB/72225LB/72235LB/72245LB devices contain two 12-bit offset registers with data on the inputs, or read on the outputs. When the Load (LD) pin is set LOW and WEN is set LOW, data on the inputs D0-D11 is written into the Empty Offset register on the first LOW-to-HIGH transition of the Write Clock (WCLK). When the LD pin and (WEN) are held LOW then data is written into the Full Offset register on the second LOW-to-HIGH transition of (WCLK). The third transition of the write clock (WCLK) again writes to the Empty Offset register.
However, writing all offset registers does not have to occur at one time. One or two offset registers can be written and then by bringing the LD pin HIGH, the FIFO is returned to normal read/write operation. When the LD pin is set LOW, and WEN is LOW, the next offset register in sequence is written.

<table>
<thead>
<tr>
<th>LD</th>
<th>WEN</th>
<th>WCLK</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Writing to offset registers:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Empty Offset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Offset</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>No Operation</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td>Write Into FIFO</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>No Operation</td>
</tr>
</tbody>
</table>

NOTE:
1. The same selection sequence applies to reading from the registers. REN is enabled and read is performed on the LOW-to-HIGH transition of RCLK.

Figure 2. Write Offset Register

EMPTY OFFSET REGISTER
DEFAULT VALUE
001FH (72205) 003FH (72215): 007FH (72225/72235/72245)

FULL OFFSET REGISTER
DEFAULT VALUE
001FH (72205) 003FH (72215): 007FH (72225/72235/72245)

NOTE:
1. Any bits of the offset register not being programmed should be set to zero.

Figure 3. Offset Register Location and Default Values

© 2019 Renesas Electronics Corporation
When the LD pin is LOW and WEN is HIGH, the WCLK input is disabled; then a signal at this input can neither increment the write offset register pointer, nor execute a write.

The contents of the offset registers can be read on the output lines when the LD pin is set LOW and REN is set LOW; then, data can be read on the LOW-to-HIGH transition of the read clock (RCLK). The act of reading the control registers employs a dedicated read offset register pointer. (The read and write pointers operate independently.)

A read and a write should not be performed simultaneously to the offset registers.

FIRST LOAD (FL)
FL is grounded to indicate operation in the Single Device or Width Expansion mode. In the Depth Expansion configuration, FL is grounded to indicate it is the first device loaded and is set to HIGH for all other devices in the Daisy Chain. (See Operating Configurations for further details.)

WRITE EXPANSION INPUT (WXI)
This is a dual-purpose pin. WXI is grounded to indicate operation in the Single Device or Width Expansion mode. WXI is connected to Write Expansion Out (WXO) of the previous device in the Daisy Chain Depth Expansion mode.

READ EXPANSION INPUT (RXI)
This is a dual-purpose pin. RXI is grounded to indicate operation in the Single Device or Width Expansion mode. RXI is connected to Read Expansion Out (RXO) of the previous device in the Daisy Chain Depth Expansion mode.

OUTPUTS:

FULL FLAG (FF)
When the FIFO is full, FF will go LOW, inhibiting further write operations. When FF is HIGH, the FIFO is not full. If no reads are performed after a reset, FF will go LOW after D writes to the FIFO. D = 256 writes for the IDT72205LB, 512 for the IDT72215LB, 1,024 for the IDT72225LB, 2,048 for the IDT72235LB and 4,096 for the IDT72245LB.

The FF is updated on the LOW-to-HIGH transition of the write clock (WCLK).

EMPTY FLAG (EF)
When the FIFO is empty, EF will go LOW, inhibiting further read operations. When EF is HIGH, the FIFO is not empty. The EF is updated on the LOW-to-HIGH transition of the read clock (RCLK).

PROGRAMMABLE ALMOST-FULL FLAG (PAF)
The Programmable Almost-Full Flag (PAF) will go LOW when FIFO reaches the Almost-Full condition. If no reads are performed after Reset (RS), the PAF will go LOW after (256-m) writes for the IDT72205LB, (512-m) writes for the IDT72215LB, (1,024-m) writes for the IDT72225LB, (2,048–m) writes for the IDT72235LB and (4,096–m) writes for the IDT72245LB. The offset "m" is defined in the FULL offset register.

If there is no Full offset specified, the PAF will be LOW when the device is 31 away from completely full for IDT72205LB, 63 away from completely full for IDT72215LB, and 127 away from completely full for IDT72225LB/72235LB/72245LB.

The PAF is asserted LOW on the LOW-to-HIGH transition of the write clock (WCLK). PAF is reset to HIGH on the LOW-to-HIGH transition of the read clock (RCLK). Thus PAF is asynchronous.

PROGRAMMABLE ALMOST-EMPTY FLAG (PAE)
The Programmable Almost-Empty Flag (PAE) will go LOW when the read pointer is "n+1" locations less than the write pointer. The offset "n" is defined in the EMPTY offset register.

If there is no Empty offset specified, the Programmable Almost-Empty Flag (PAE) will be LOW when the device is 31 away from completely empty for IDT72205LB, 63 away from completely empty for IDT72215LB, and 127 away from completely empty for IDT72225LB/72235LB/72245LB.

The PAE is asserted LOW on the LOW-to-HIGH transition of the read clock (RCLK). PAE is reset to HIGH on the LOW-to-HIGH transition of the write clock (WCLK). Thus PAE is asynchronous.

WRITE EXPANSION OUT/HALF-FULL FLAG (WXO/HF)
This is a dual-purpose output. In the Single Device and Width Expansion mode, when Write Expansion In (WXI) and Read Expansion In (RXI) are grounded, this output acts as an indication of a half-full memory.

Table 1 — Status Flags

<table>
<thead>
<tr>
<th>Number of Words in FIFO</th>
<th>IDT72205LB</th>
<th>IDT72215LB</th>
<th>IDT72225LB</th>
<th>IDT72235LB</th>
<th>IDT72245LB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 to n⁽¹⁾</td>
</tr>
<tr>
<td>(n + 1) to 128</td>
<td>(n + 1) to 256</td>
<td>(n + 1) to 512</td>
<td>(n + 1) to 1,024</td>
<td>(n + 1) to 2,048</td>
<td></td>
</tr>
<tr>
<td>129 to (256-(m+1))</td>
<td>257 to (512-(m+1))</td>
<td>513 to (1,024-(m+1))</td>
<td>1,025 to (2,048-(m+1))</td>
<td>2,049 to (4,096-(m+1))</td>
<td></td>
</tr>
<tr>
<td>(256-m)(2) to 255</td>
<td>(512-m)(2) to 511</td>
<td>(1,024-m)(2) to 1,023</td>
<td>(2,048-m)(2) to 2,047</td>
<td>(4,096-m)(2) to 4,095</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>512</td>
<td>1,024</td>
<td>2,048</td>
<td>4,096</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. n = Empty Offset (Default Values : IDT72205LB n=31, IDT72215LB n = 63, IDT72225LB/72235LB/72245LB n = 127)
2. m = Full Offset (Default Values : IDT72205LB m=31, IDT72215LB m = 63, IDT72225LB/72235LB/72245LB m = 127)
After half of the memory is filled, and at the LOW-to-HIGH transition of the next write cycle, the Half-Full Flag goes LOW and will remain set until the difference between the write pointer and read pointer is less than or equal to one half of the total memory of the device. The Half-Full Flag (HF) is then reset to HIGH by the LOW-to-HIGH transition of the Read Clock (RCLK). The HF is asynchronous.

In the Daisy Chain Depth Expansion mode, WXI is connected to WXO of the previous device. This output acts as a signal to the next device in the Daisy Chain by providing a pulse when the previous device writes to the last location of memory.

READ EXPANSION OUT (RXO)
In the Daisy Chain Depth Expansion configuration, Read Expansion In (RXI) is connected to Read Expansion Out (RXO) of the previous device. This output acts as a signal to the next device in the Daisy Chain by providing a pulse when the previous device reads from the last location of memory.

DATA OUTPUTS (Q0-Q17)
Q0-Q17 are data outputs for 18-bit wide data.

NOTES:
1. After reset, the outputs will be LOW if OE = 0 and tri-state if OE = 1.
2. The clocks (RCLK, WCLK) can be free-running during reset.

Figure 4. Reset Timing
NOTE:
1. \(t_{SKEW1} \) is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than \(t_{SKEW1} \), then FF may not change state until the next WCLK edge.

Figure 5. Write Cycle Timing

NOTE:
1. \(t_{SKEW2} \) is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH during the current clock cycle. If the time between the rising edge of WCLK and the rising edge of RCLK is less than \(t_{SKEW2} \), then EF may not change state until the next RCLK edge.

Figure 6. Read Cycle Timing
NOTE:
1. When tSKEW2 minimum specification, tFRL (maximum) = tCLK + tSKEW2. When tSKEW2 < minimum specification, tFRL (maximum) = either 2*tCLK + tSKEW2 or tCLK + tSKEW2.

The Latency Timing applies only at the Empty Boundary (EF = LOW).

2. The first word is available the cycle after EF goes HIGH, always.

Figure 7. First Data Word Latency after Reset with Simultaneous Read and Write

NOTE:
1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then FF may not change state until the next WCLK edge.

Figure 8. Full Flag Timing
NOTE:
1. When tSKEW2 minimum specification, tFRL (maximum) = tCLK + tSKEW2. When tSKEW2 < minimum specification, tFRL (maximum) = either 2*tCLK + tSKEW2 or tCLK + tSKEW2.

The Latency Timing applies only at the Empty Boundary (EF = LOW).

Figure 9. Empty Flag Timing

Figure 10. Write Programmable Registers

Figure 11. Read Programmable Registers
NOTES:
1. \(n = \text{PAE} \) offset. Number of data words written into FIFO already = \(n \).

Figure 12. Programmable Almost-Empty Flag Timing

NOTES:
1. \(m = \text{PAF} \) offset. \(D = \) maximum FIFO Depth. Number of data words written into FIFO memory = \(256 - m + 1 \) for the IDT72205LB, \(512 - m + 1 \) for the IDT72215LB, \(1,024 - m + 1 \) for the IDT72225LB, \(2,048 - (m + 1) \) for the IDT72235LB and \(4,096 - (m + 1) \) for the IDT72245LB.
2. \(256 - m \) words for the IDT72205LB, \(512 - m \) words for the IDT72215LB, \(1,024 - m \) words for the IDT72225LB, \(2,048 - m \) words for the IDT72235LB and \(4,096 - m \) words for the IDT72245LB.

Figure 13. Programmable Almost-Full Flag Timing

Figure 14. Half-Full Flag Timing
NOTE:
1. Write to Last Physical Location.

Figure 15. Write Expansion Out Timing

NOTE:
1. Read from Last Physical Location.

Figure 16. Read Expansion Out Timing

Figure 17. Write Expansion In Timing

Figure 18. Read Expansion In Timing
OPERATING CONFIGURATIONS

SINGLE DEVICE CONFIGURATION
A single IDT72205LB/72215LB/72225LB/72235LB/72245LB may be used when the application requirements are for 256/512/1,024/2,048/4,096 words or less. These FIFOs are in a single Device Configuration when the First Load (FL), Write Expansion In (WXI) and Read Expansion In (RXI) control inputs are grounded (Figure 19).

Figure 19. Block Diagram of Single 256 x 18, 512 x 18, 1,024 x 18, 2,048 x 18, 4,096 x 18 Synchronous FIFO

WIDTH EXPANSION CONFIGURATION
Word width may be increased simply by connecting together the control signals of multiple devices. Status flags can be detected from any one device. The exceptions are the Empty Flag and Full Flag. Because of variations in skew between RCLK and WCLK, it is possible for flag assertion and deassertion to vary by one cycle between FIFOs. To avoid problems the user must create composite flags by ANDing the Empty Flags of every FIFO, and separately ANDing all Full Flags. Figure 20 demonstrates a 36-word width by using two IDT72205LB/72215LB/72225LB/72235LB/72245LBs. Any word width can be attained by adding additional IDT72205LB/72215LB/72225LB/72235LB/72245LBs. Please see the Application Note AN-83.

Figure 20. Block Diagram of 256 x 36, 512 x 36, 1,024 x 36, 2,048 x 36, 4,096 x 36 Synchronous FIFO Memory Used in a Width Expansion Configuration

NOTE:
1. Do not connect any output control signals directly together.
DEPTH EXPANSION CONFIGURATION —
(WITH PROGRAMMABLE FLAGS)

These devices can easily be adapted to applications requiring more than 256/512/1,024/2,048/4,096 words of buffering. Figure 21 shows Depth Expansion using three IDT72205LB/72215LB/72225LB/72235LB/72245LBs. Maximum depth is limited only by signal loading. Follow these steps:
1. The first device must be designated by grounding the First Load (FL) control input.
2. All other devices must have FL in the HIGH state.
3. The Write Expansion Out (WXO) pin of each device must be tied to the Write Expansion In (WXI) pin of the next device. See Figure 21.
4. The Read Expansion Out (RXO) pin of each device must be tied to the Read Expansion In (RXI) pin of the next device. See Figure 21.
5. All Load (LD) pins are tied together.
6. The Half-Full Flag (HF) is not available in this Depth Expansion Configuration.
7. EF, FF, PAE, and PAF are created with composite flags by ORing together every respective flags for monitoring. The composite PAE and PAF flags are not precise.

Figure 21. Block Diagram of 768 x 18, 1,536 x 18, 3,072 x 18, 6,144 x 18, 12,288 x 18 Synchronous FIFO Memory With Programmable Flags used in Depth Expansion Configuration
NOTES:
1. Industrial temperature range product for 15ns and 25ns speed grades are available as a standard device. All other speed grades are available by special order.
2. Green parts are available. For specific speeds and packages contact your sales office.

LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN# SP-17-02
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or damage to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.