FEATURS:
- Choose among the following memory organizations:
 IDT72V36100 — 65,536 x 36
 IDT72V36110 — 131,072 x 36
- Higher density, 2Meg and 4Meg SuperSync II FIFOs
- Up to 166 MHz Operation of the Clocks
- User selectable Asynchronous read and/or write ports (PBGA Only)
- User selectable input and output port bus-sizing
 - x36 in to x36 out
 - x36 in to x18 out
 - x36 in to x9 out
 - x18 in to x36 out
 - x9 in to x36 out
- Big-Endian/Little-Endian user selectable byte representation
- 5V input tolerant
- Fixed, low first word latency
- Zero latency retransmit
- Auto power down minimizes standby power consumption
- Master Reset clears entire FIFO
- Partial Reset clears data, but retains programmable settings

Empty, Full and Half-Full flags signal FIFO status
- Programmable Almost-Empty and Almost-Full flags, each flag can default to one of eight preselected offsets
- Selectable synchronous/asynchronous timing modes for Almost-Empty and Almost-Full flags
- Program programmable flags by either serial or parallel means
- Select IDT Standard timing (using EF and FF flags) or First Word Fall Through timing (using OR and IR flags)
- Output enable puts data outputs into high impedance state
- Easily expandable in depth and width
- JTAG port, provided for Boundary Scan function (PBGA Only)
- Independent Read and Write Clocks (permit reading and writing simultaneously)
- Available in a 128-pin Thin Quad Flat Pack (TQFP) or a 144-pin Plastic Ball Grid Array (PBGA) (with additional features)
- Pin compatible to the SuperSync II (IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690) family
- High-performance submicron CMOS technology
- Industrial temperature range (–40°C to +85°C) is available
- Green parts available, see ordering information

FUNCTIONAL BLOCK DIAGRAM
*Available on the PBGA package only.
DESCRIPTION:

The IDT72V36100/72V36110 are exceptionally deep, high-speed, CMOS First-In-First-Out (FIFO) memories with clocked read and write controls and a flexible Bus-Matching x36/x18/x9 data flow. These FIFOs offer several key user benefits:

- Flexible x36/x18/x9 Bus-Matching on both read and write ports
- The period required by the retransmit operation is fixed and short.
- The first word data latency period, from the time the first word is written to an empty FIFO to the time it can be read, is fixed and short.
- Asynchronous/Synchronous translation on the read or write ports
- High density offerings up to 4 Mbit

Bus-Matching Sync FIFOs are particularly appropriate for network, video, telecommunications, data communications and other applications that need to buffer large amounts of data and match busses of unequal sizes.

Each FIFO has a data input port (Dn) and a data output port (Qn), both of which can assume either a 36-bit, 18-bit or a 9-bit width as determined by the state of external control pins Input Width (IW), Output Width (OW), and Bus-Matching (BM) pin during the Master Reset cycle.

The input port can be selected as either a Synchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the input port is controlled by a Write Clock (WCLK) input and a Write Enable (WEN) input. Data present on the Dn data inputs is written into the FIFO on every rising edge of WCLK.

NOTE:
1. DNC = Do Not Connect.
DESCRIPTION (CONTINUED)

WCLK when WEN is asserted. During Asynchronous operation only the WR input is used to write data into the FIFO. Data is written on a rising edge of WR, the WEN input should be tied to its active state, (LOW).

The output port can be selected as either a Synchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the output port is controlled by a Read Clock (RCLK) input and Read Enable (REN) input. Data is read from the FIFO on every rising edge of RCLK when REN is asserted. During Asynchronous operation only the RD input is used to read data from the FIFO. Data is read on a rising edge of RD, the REN input should be tied to its active state, LOW. When Asynchronous operation is selected on the output port the FIFO must be configured for Standard IDT mode, and the OE input used to provide three-state control of the outputs, Qn.

The frequencies of both the RCLK and the WCLK signals may vary from 0 to fMAX with complete independence. There are no restrictions on the frequency of the one clock input with respect to the other.

There are two possible timing modes of operation with these devices: IDT Standard mode and First Word Fall Through (FWFT) mode.

In IDT Standard mode, the first word written to an empty FIFO will not appear on the data output lines unless a specific read operation is performed. A read
DESCRIPTION (CONTINUED)

operation, which consists of activating REN and enabling a rising RCLK edge, will shift the word from internal memory to the data output lines.

In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A REN does not have to be asserted for accessing the first word. However, subsequent words written to the FIFO do require a LOW on REN for access. The state of the FWFT/SI input during Master Reset determines the timing mode in use.

For applications requiring more data storage capacity than a single FIFO can provide, the FWFT timing mode permits depth expansion by chaining FIFOs in series (i.e. the data outputs of one FIFO are connected to the corresponding data inputs of the next). No external logic is required.

These FIFOs have five flag pins, EF/OR (Empty Flag or Output Ready), FF/IR (Full Flag or Input Ready), HF (Half-full Flag), PAE (Programmable Almost-Empty flag) and PAF (Programmable Almost-Full flag). The EF and FF functions are selected in IDT Standard mode. The IR and OR functions are selected in FWFT mode. HF, PAE and PAF are always available for use, irrespective of timing mode.

PAE and PAF can be programmed independently to switch at any point in memory. Programmable offsets determine the flag switching threshold and can be loaded by two methods: parallel or serial. Eight default offset settings are also provided, so that PAE can be set to switch at a predefined number of locations from the empty boundary and the PAF threshold can also be set at similar predefined values from the full boundary. The default offset values are set during Master Reset by the state of the FSEL0, FSEL1, and LD pins.

For serial programming, SEN together with LD on each rising edge of WCLK, are used to load the offset registers via the Serial Input (SI). For parallel programming, WEN together with LD on each rising edge of WCLK, are used to load the offset registers via Dn. REN together with LD on each rising edge of RCLK can be used to read the offsets in parallel from Qn regardless of whether serial or parallel offset loading has been selected.

During Master Reset (MRS) the following events occur: the read and write pointers are set to the first location of the FIFO. The FWFT pin selects IDT Standard mode or FWFT mode.

The Partial Reset (PRS) also sets the read and write pointers to the first location of the memory. However, the timing mode, programmable flag programming method, and default or programmed offset settings existing before Partial Reset remain unchanged. The flags are updated according to the timing mode and offsets in effect. PRS is useful for resetting a device in mid-operation, when reprogramming programmable flags would be undesirable.

It is also possible to select the timing mode of the PAE (Programmable Almost-Empty flag) and PAF (Programmable Almost-Full flag) outputs. The timing modes can be set to be either asynchronous or synchronous for the PAE and PAF flags.
If asynchronous PAE/PAF configuration is selected, the PAE is asserted LOW on the LOW-to-HIGH transition of RCLK. Similarly, the PAF is asserted LOW on the LOW-to-HIGH transition of WCLK. The mode desired is configured during Master Reset by the state of the Programmable Flag Mode (PFM) pin.

If synchronous PAE/PAF configuration is selected, the PAE is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, PAF is asserted and updated on the rising edge of WCLK only and not RCLK. The Retransmit function allows data to be reread from the FIFO more than once. A LOW on the RT input during a rising RCLK edge initiates a retransmit operation by setting the read pointer to the first location of the memory array. A zero-latency retransmit timing mode can be selected using the Retransmit Timing Mode pin (RM). During Master Reset, a LOW on RM will select zero latency retransmit. A HIGH on RM during Master Reset will select normal latency. If zero latency retransmit operation is selected, the first data word to be retransmitted will be placed on the output register with respect to the same RCLK edge that initiated the retransmit based on RT being LOW.

The retransmit function allows to data to be reread from the FIFO more than once. A LOW on the RT input during a rising RCLK edge initiates a retransmit operation by setting the read pointer to the first location of the memory array. A zero-latency retransmit timing mode can be selected using the Retransmit Timing Mode pin (RM). During Master Reset, a LOW on RM will select zero latency retransmit. A HIGH on RM during Master Reset will select normal latency. If zero latency retransmit operation is selected, the first data word to be retransmitted will be placed on the output register with respect to the same RCLK edge that initiated the retransmit based on RT being LOW.

Refer to Figure 11 and 12 for Retransmit Timing with normal latency. Refer to Figure 13 and 14 for Zero Latency Retransmit Timing.

The device can be configured with different input and output bus widths as shown in Table 1.

A Big-Endian/Little-Endian data word format is provided. This function is useful when data is written into the FIFO in long word format (x36/x18) and read out of the FIFO in small word (x18/x9) format. If Big-Endian mode is selected, then the most significant byte (word) of the long word written into the FIFO will be read out of the FIFO first, followed by the least significant byte. If Little-Endian format is selected, then the least significant byte of the long word written into the FIFO will be read out first, followed by the most significant byte. The mode desired is configured during master reset by the state of the Big-Endian (BE) pin. See Figure 4 for Bus-Matching Byte Arrangement.

The Interspersed/Non-Interspersed Parity (IP) bit function allows the user to select the parity bit in the word loaded into the parallel port (D0-Dn) when programming the flag offsets. If Interspersed Parity mode is selected, then the FIFO will assume that the parity bit is located in bit positions D8, D17, D26 and D35 during the parallel programming of the flag offsets. If Non-Interspersed Parity mode is selected, then D8, D17 and D26 are assumed to be valid bits and D32, D33, D34 and D35 are ignored. IP mode is selected during Master Reset by the state of the IP input pin. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO.

A JTAG test port is provided, here the FIFO has fully functional Boundary Scan feature, compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.

If, at any time, the FIFO is not actively performing an operation, the chip will automatically power down. Once in the power down state, the standby supply current consumption is minimized. Initiating any operation (by activating control inputs) will immediately take the device out of the power down state.

The IDT72V36100/72V36110 are fabricated using high speed submicron CMOS technology.

TABLE 1 — BUS-MATCHING CONFIGURATION MODES

<table>
<thead>
<tr>
<th>BM</th>
<th>IW</th>
<th>OW</th>
<th>Write Port Width</th>
<th>Read Port Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>x36</td>
<td>x36</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td>x36</td>
<td>x18</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>x36</td>
<td>x9</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td>x18</td>
<td>x36</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>x9</td>
<td>x36</td>
</tr>
</tbody>
</table>

NOTE:
1. Pin status during Master Reset.
PIN DESCRIPTION (TQFP AND PBGA PACKAGES)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Bus-Matching</td>
<td>I</td>
<td>BM works with IW and OW to select the bus sizes for both write and read ports. See Table 1 for bus size configuration.</td>
</tr>
<tr>
<td>BE(1)</td>
<td>Big-Endian/</td>
<td>I</td>
<td>During Master Reset, a LOW on BE will select Big-Endian operation. A HIGH on BE during Master Reset will select Little-Endian format.</td>
</tr>
<tr>
<td></td>
<td>Little-Endian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do–D35</td>
<td>Data Inputs</td>
<td>I</td>
<td>Data inputs for a 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused input pins are in a don’t care state.</td>
</tr>
<tr>
<td>EF/OR</td>
<td>Empty Flag/Output Ready</td>
<td>O</td>
<td>In the IDT Standard mode, the EF function is selected. EF indicates whether or not the FIFO memory is empty. In FWT mode, the OR function is selected. OR indicates whether or not there is valid data available at the outputs.</td>
</tr>
<tr>
<td>FF/IR</td>
<td>Full Flag/Input Ready</td>
<td>O</td>
<td>In the IDT Standard mode, the FF function is selected. FF indicates whether or not the FIFO memory is full. In the FWT mode, the IR function is selected. IR indicates whether or not there is space available for writing to the FIFO memory.</td>
</tr>
<tr>
<td>FSEL0(1)</td>
<td>Flag Select Bit 0</td>
<td>I</td>
<td>During Master Reset, this input along with FSEL and the LD pin, will select the default offset values for the programmable flags PAE and PAF. There are up to eight possible settings available.</td>
</tr>
<tr>
<td>FSEL1(1)</td>
<td>Flag Select Bit 1</td>
<td>I</td>
<td>During Master Reset, this input along with FSEL0 and the LD pin will select the default offset values for the programmable flags PAE and PAF. There are up to eight possible settings available.</td>
</tr>
<tr>
<td>FWFT/SI</td>
<td>First Word Fall Through/Serial In</td>
<td>I</td>
<td>During Master Reset, selects First Word Fall Through or IDT Standard mode. After Master Reset, this pin functions as a serial input for loading offset registers.</td>
</tr>
<tr>
<td>HF</td>
<td>Half-Full Flag</td>
<td>O</td>
<td>HF indicates whether the FIFO memory is more or less than half-full.</td>
</tr>
<tr>
<td>IP(1)</td>
<td>Interspersed Parity</td>
<td>I</td>
<td>During Master Reset, a LOW on IP will select Non-Interspersed Parity mode. A HIGH will select Interspersed Parity mode. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO.</td>
</tr>
<tr>
<td>IW(1)</td>
<td>Input Width</td>
<td>I</td>
<td>This pin, along with OW and MB, selects the bus width of the write port. See Table 1 for bus size configuration.</td>
</tr>
<tr>
<td>LD</td>
<td>Load</td>
<td>I</td>
<td>This is a dual purpose pin. During Master Reset, the state of the LD input along with FSEL0 and FSEL1, determines one of eight default offset values for the PAE and PAF flags, along with the method by which these offset registers can be programmed, parallel or serial (see Table 2). After Master Reset, this pin enables writing to and reading from the offset registers.</td>
</tr>
<tr>
<td>OE</td>
<td>Output Enable</td>
<td>I</td>
<td>OE controls the output impedance of Qn.</td>
</tr>
<tr>
<td>OW(1)</td>
<td>Output Width</td>
<td>I</td>
<td>This pin, along with IW and BM, selects the bus width of the read port. See Table 1 for bus size configuration.</td>
</tr>
<tr>
<td>MRS</td>
<td>Master Reset</td>
<td>I</td>
<td>MRS initializes the read and write pointers to zero and sets the output register to all zeroes. During Master Reset, the FIFO is configured for either FWT or IDT Standard mode. Bus-Matching configurations, one of eight programmable flag default settings, serial or parallel programming of the offset settings, Big-Endian/Little-Endian format, zero latency timing mode, interspersed parity, and synchronous versus asynchronous programmable flag timing modes.</td>
</tr>
<tr>
<td>PAE</td>
<td>Programmable Almost-Empty Flag</td>
<td>O</td>
<td>PAE goes LOW if the number of words in the FIFO memory is less than offset (n), which is stored in the Empty Offset register. PAE goes HIGH if the number of words in the FIFO memory is greater than or equal to offset (n).</td>
</tr>
<tr>
<td>PAF</td>
<td>Programmable Almost-Empty Flag</td>
<td>O</td>
<td>PAE goes HIGH if the number of free locations in the FIFO memory is greater than or equal to (m), which is stored in the Full Offset register. PAE goes LOW if the number of free locations in the FIFO memory is less than (m).</td>
</tr>
<tr>
<td>PFM(1)</td>
<td>Programmable Flag Mode</td>
<td>I</td>
<td>During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM will select Synchronous Programmable flag timing mode.</td>
</tr>
<tr>
<td>PRS</td>
<td>Partial Reset</td>
<td>I</td>
<td>PRS initializes the read and write pointers to zero and sets the output register to all zeroes. During Partial Reset, the existing mode (IDT or FWT), programming method (serial or parallel), and programmable flag settings are all retained.</td>
</tr>
<tr>
<td>Q0–Q35</td>
<td>Data Outputs</td>
<td>O</td>
<td>Data outputs for a 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused output pins are in a don’t care state. Outputs are not 5V tolerant regardless of the state of OE.</td>
</tr>
<tr>
<td>RCLK/RD</td>
<td>Read Clock/Read Strobe</td>
<td>I</td>
<td>If Synchronous operation of the write port has been selected, when enabled by REN, the rising edge of RCLK reads data from the FIFO memory and offsets from the programmable registers. If LD is LOW, the values loaded into the offset registers is output on a rising edge of RCLK. If Asynchronous operation of the read port has been selected, a rising edge on RD reads data from the FIFO in an Asynchronous manner. REN should be tied LOW. Asynchronous operation of the RCLK/RD input is only available in the PBGA package.</td>
</tr>
<tr>
<td>REN</td>
<td>Read Enable</td>
<td>I</td>
<td>REN enables RCLK for reading data from the FIFO memory and offset registers.</td>
</tr>
<tr>
<td>RM(1)</td>
<td>Retransmit Timing Mode</td>
<td>I</td>
<td>During Master Reset, a LOW on RM will select zero latency Retransmit timing Mode. A HIGH on RM will select normal latency mode.</td>
</tr>
<tr>
<td>RT</td>
<td>Retransmit</td>
<td>I</td>
<td>RT asserted on the rising edge of RCLK initializes the READ pointer to zero, sets the EF flag to LOW (OR to HIGH in FWT mode) and does not disturb the write pointer, programming method, existing timing mode or programmable flag settings. RT is useful to reread data from the first physical location of the FIFO.</td>
</tr>
</tbody>
</table>

NOTE:

1. Inputs should not change state after Master Reset.

© 2019 Renesas Electronics Corporation
PIN DESCRIPTION CONTINUED (TQFP & PBGA PACKAGES)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEN</td>
<td>Serial Enable</td>
<td>I</td>
<td>SEN enables serial loading of programmable flag offsets.</td>
</tr>
<tr>
<td>WCLK/</td>
<td>Write Clock/</td>
<td>I</td>
<td>If Synchronous operation of the write port has been selected, when enabled by WEN, the rising edge of WCLK writes data into the FIFO. If</td>
</tr>
<tr>
<td>WR</td>
<td>Write Strobe</td>
<td>I</td>
<td>If Asynchronous operation of the write port has been selected, WR writes data into the FIFO on a rising edge in an Asynchronous manner. (WEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>should be tied to its active state). Asynchronous operation of the WCLK/WR input is only available in the PBGA package.</td>
</tr>
<tr>
<td>WEN</td>
<td>Write Enable</td>
<td>I</td>
<td>WEN enables WCLK for writing data into the FIFO memory and offset registers.</td>
</tr>
<tr>
<td>Vcc</td>
<td>+3.3V Supply</td>
<td>I</td>
<td>These are Vcc supply inputs and must be connected to the 3.3V supply rail.</td>
</tr>
</tbody>
</table>

NOTE:
1. Inputs should not change state after Master Reset.

PIN DESCRIPTION (PBGA PACKAGE ONLY)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASYR(1)</td>
<td>Asynchronous Read Port</td>
<td>I</td>
<td>A HIGH on this input during Master Reset will select Synchronous read operation for the output port. A LOW will select Asynchronous operation. If Asynchronous is selected the FIFO must operate in IDT Standard mode.</td>
</tr>
<tr>
<td>ASYW(1)</td>
<td>Asynchronous Write Port</td>
<td>I</td>
<td>A HIGH on this input during Master Reset will select Synchronous write operation for the input port. A LOW will select Asynchronous operation.</td>
</tr>
<tr>
<td>TCK(2)</td>
<td>JTAG Clock</td>
<td>I</td>
<td>Clock input for JTAG function. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to TCK. Data from TMS and TDI are sampled on the rising edge of TCK and outputs change on the falling edge of TCK. If the JTAG function is not used this signal needs to be tied to GND.</td>
</tr>
<tr>
<td>TDI(2)</td>
<td>JTAG Test Data Input</td>
<td>I</td>
<td>One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded via the TDI on the rising edge of TCK to either the Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDI HIGH if left unconnected.</td>
</tr>
<tr>
<td>TDO(2)</td>
<td>JTAG Test Data Output</td>
<td>O</td>
<td>One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded output via the TDO on the falling edge of TCK from either the Instruction Register, ID Register and Bypass Register. This output is high impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.</td>
</tr>
<tr>
<td>TMS(2)</td>
<td>JTAG Mode</td>
<td>I</td>
<td>TMS is a serial input pin. One of four terminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pull-up resistor forces TMS HIGH if left unconnected.</td>
</tr>
<tr>
<td>TRST(2)</td>
<td>JTAG Reset</td>
<td>I</td>
<td>TRST is an asynchronous reset pin for the JTAG controller. The JTAG TAP controller will automatically reset upon power-up. If the JTAG function is not used then this signal should be tied to GND.</td>
</tr>
</tbody>
</table>

NOTES:
1. Inputs should not change state after Master Reset.
2. These pins are for the JTAG port. Please refer to pages 43-47 and Figures 31-33.
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Com’l & Ind’l</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTERM(2)</td>
<td>Terminal Voltage with respect to GND</td>
<td>–0.5 to +4.5</td>
<td>V</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>–55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>IOUT</td>
<td>DC Output Current</td>
<td>–50 to +50</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES:
1. Pressures greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminal only.

RECOMMENDED DC OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC(1)</td>
<td>Supply Voltage</td>
<td>3.15</td>
<td>3.3</td>
<td>3.45</td>
<td>V</td>
</tr>
<tr>
<td>GND</td>
<td>Supply Voltage</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>VIL(3)</td>
<td>Input Low Voltage</td>
<td>2.0</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>VIH(2)</td>
<td>Input High Voltage</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>TA</td>
<td>Operating Temperature</td>
<td>0</td>
<td>70</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
1. Vcc = 3.3V ± 0.15V, JEDEC JESD8-A compliant.
2. Outputs are not 5V tolerant.
3. 1.5V undershoots are allowed for 10ns once per cycle.

DC ELECTRICAL CHARACTERISTICS

(Commercial: Vcc = 3.3V ± 0.15V, TA = 0°C to +70°C; Industrial: Vcc = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL(2)</td>
<td>Input Leakage Current</td>
<td>–1</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>ILO(3)</td>
<td>Output Leakage Current</td>
<td>–10</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>VOH</td>
<td>Output Logic “1” Voltage, IOH = –2 mA</td>
<td>2.4</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>VOL</td>
<td>Output Logic “0” Voltage, IOL = 8 mA</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>ICC1(4,5,6)</td>
<td>Active Power Supply Current</td>
<td>—</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>ICC2(4,7)</td>
<td>Standby Current</td>
<td>—</td>
<td>15</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES:
1. Industrial temperature range product for the 7-5ns and 15ns speed grade are available as a standard device. All other speed grades are available by special order.
2. Measurements with 0.4 ≤ VIN ≤ Vcc.
3. OE ≥ Vih, 0.4 ≤ Vout ≤ Vcc.
4. Tested with outputs open (IOUT = 0).
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz.
6. Typical ICC1 = 4.2 + 1.4*fs + 0.002*Cf*fs (in mA) with VCC = 3.3V, tA = 25°C, fs = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at fs/2, Cf = capacitive load (in pF).
7. All Inputs = Vcc - 0.2V or GND + 0.2V, except RCLK and WCLK, which toggle at 20 MHz.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN(2)</td>
<td>Input Capacitance</td>
<td>VIN = 0V</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>Cout(1,2)</td>
<td>Output Capacitance</td>
<td>VOUT = 0V</td>
<td>10</td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTES:
2. Characterized values, not currently tested.
AC ELECTRICAL CHARACTERISTICS

(Commercial: Vcc = 3.3V ± 0.15V, TA = 0°C to +70°C; Industrial: Vcc = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Commercial PBGA & TQFP</th>
<th>Com‘l & Ind’l</th>
<th>Commercial TQFP Only</th>
<th>Com‘l & Ind’l TQFP Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDT72V36100L6</td>
<td>IDT72V36100L7-5</td>
<td>IDT72V36110L6</td>
<td>IDT72V36110L7-5</td>
<td>IDT72V36100L10</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>166</td>
<td>6.5</td>
<td>10</td>
<td>66.7</td>
</tr>
<tr>
<td>tA</td>
<td>Data Access Time</td>
<td>1</td>
<td>4</td>
<td>100</td>
<td>10ns</td>
</tr>
<tr>
<td>tCLK</td>
<td>Clock Cycle Time</td>
<td>6</td>
<td>7.5</td>
<td>10</td>
<td>15ns</td>
</tr>
<tr>
<td>tCLKH</td>
<td>Clock High Time</td>
<td>2.7</td>
<td>3.5</td>
<td>4.5</td>
<td>6ns</td>
</tr>
<tr>
<td>tCLL</td>
<td>Clock Low Time</td>
<td>2.7</td>
<td>3.5</td>
<td>4.5</td>
<td>6ns</td>
</tr>
<tr>
<td>tDS</td>
<td>Data Setup Time</td>
<td>2</td>
<td>2.5</td>
<td>3.5</td>
<td>4ns</td>
</tr>
<tr>
<td>tEH</td>
<td>Data Hold Time</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1ns</td>
</tr>
<tr>
<td>tENS</td>
<td>Enable Setup Time</td>
<td>2</td>
<td>2.5</td>
<td>3.5</td>
<td>4ns</td>
</tr>
<tr>
<td>tENH</td>
<td>Enable Hold Time</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1ns</td>
</tr>
<tr>
<td>tLD</td>
<td>Load Setup Time</td>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>4ns</td>
</tr>
<tr>
<td>tLH</td>
<td>Load Hold Time</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1ns</td>
</tr>
<tr>
<td>tRS</td>
<td>Reset Pulse Width</td>
<td>10</td>
<td>10</td>
<td>15ns</td>
<td></td>
</tr>
<tr>
<td>tRSS</td>
<td>Reset Setup Time</td>
<td>15</td>
<td>15</td>
<td>15ns</td>
<td></td>
</tr>
<tr>
<td>tRSR</td>
<td>Reset Recovery Time</td>
<td>10</td>
<td>10</td>
<td>15ns</td>
<td></td>
</tr>
<tr>
<td>tRFS</td>
<td>Reset to Flag and Output Time</td>
<td>15</td>
<td>15</td>
<td>15ns</td>
<td></td>
</tr>
<tr>
<td>tRTS</td>
<td>Retransmit Setup Time</td>
<td>15</td>
<td>15</td>
<td>15ns</td>
<td></td>
</tr>
<tr>
<td>tOZL</td>
<td>Output Enable to Output in Low Z</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>tOE</td>
<td>Output Enable to Output Valid</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8ns</td>
</tr>
<tr>
<td>tOHZ</td>
<td>Output Enable to Output in High Z</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8ns</td>
</tr>
<tr>
<td>tWFF</td>
<td>Write Clock to FF or IR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>tREF</td>
<td>Read Clock to EF or OR</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>10ns</td>
</tr>
<tr>
<td>tPAFA</td>
<td>Clock to Asynchronous Programmable Almost-Full Flag</td>
<td>10</td>
<td>12.5</td>
<td>16</td>
<td>20ns</td>
</tr>
<tr>
<td>tPAFS</td>
<td>Write Clock to Synchronous Programmable Almost-Full Flag</td>
<td>4</td>
<td>5</td>
<td>6.5</td>
<td>10ns</td>
</tr>
<tr>
<td>tPAEA</td>
<td>Clock to Asynchronous Programmable Almost-Empty Flag</td>
<td>10</td>
<td>12.5</td>
<td>16</td>
<td>20ns</td>
</tr>
<tr>
<td>tPAES</td>
<td>Read Clock to Synchronous Programmable Almost-Empty Flag</td>
<td>4</td>
<td>5</td>
<td>6.5</td>
<td>10ns</td>
</tr>
<tr>
<td>tHF</td>
<td>Clock to HF</td>
<td>10</td>
<td>12.5</td>
<td>16</td>
<td>20ns</td>
</tr>
<tr>
<td>tSKEW1</td>
<td>Skew time between RCLK and WCLK for EF/OR and FF/IR</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>tSKEW2</td>
<td>Skew time between RCLK and WCLK for PAE and PAF</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

NOTES:
1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Industrial temperature range product for the 7-5ns and 15ns are available as a standard device. All other speed grades are available by special order.
3. Pulse widths less than minimum values are not allowed.
4. Pulse widths less than minimum values are not allowed.
5. Pulse widths less than minimum values are not allowed.
AC ELECTRICAL CHARACTERISTICS\(^{(1)}\)—ASYNCHRONOUS TIMING
(Commercial: \(V_{CC} = 3.3V \pm 0.15V, \ TA = 0^\circ C \) to \(+70^\circ C\); Industrial: \(V_{CC} = 3.3V \pm 0.15V, \ TA = -40^\circ C \) to \(+85^\circ C\); JEDEC JESD8-A compliant)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Commercial</th>
<th>Com’l & Ind’l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IDT72V36100L6</td>
<td>IDT72V36100L7-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>(f_A)(^{(4)})</td>
<td>Cycle Frequency (Asynchronous mode)</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>(t_{AA})(^{(4)})</td>
<td>Data Access Time</td>
<td>0.6</td>
<td>8</td>
</tr>
<tr>
<td>(t_{CYC})(^{(4)})</td>
<td>Cycle Time</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>(t_{CYH})(^{(4)})</td>
<td>Cycle HIGH Time</td>
<td>4.5</td>
<td>—</td>
</tr>
<tr>
<td>(t_{CYL})(^{(4)})</td>
<td>Cycle LOW Time</td>
<td>4.5</td>
<td>—</td>
</tr>
<tr>
<td>(t_{RPE})(^{(4)})</td>
<td>Read Pulse after EF HIGH</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>(t_{FFA})(^{(4)})</td>
<td>Clock to Asynchronous FF</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>(t_{EFA})(^{(4)})</td>
<td>Clock to Asynchronous EF</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>(t_{PAF})(^{(4)})</td>
<td>Clock to Asynchronous Programmable Almost-Full Flag</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>(t_{PAE})(^{(4)})</td>
<td>Clock to Asynchronous Programmable Almost-Empty Flag</td>
<td>—</td>
<td>8</td>
</tr>
</tbody>
</table>

NOTES:
1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Pulse widths less than minimum values are not allowed.
3. Values guaranteed by design, not currently tested.
4. Parameters apply to the PBGA package only.
AC TEST CONDITIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Pulse Levels</td>
<td>GND to 3.0V</td>
</tr>
<tr>
<td>Input Rise/Fall Times</td>
<td>3ns<sup>(1)</sup></td>
</tr>
<tr>
<td>Input Timing Reference Levels</td>
<td>1.5V</td>
</tr>
<tr>
<td>Output Reference Levels</td>
<td>1.5V</td>
</tr>
<tr>
<td>Output Load for tCLK = 10ns, 15 ns</td>
<td>See Figure 2a</td>
</tr>
<tr>
<td>Output Load for tCLK = 6ns, 7.5 ns</td>
<td>See Figure 2b & 2c</td>
</tr>
</tbody>
</table>

NOTE:
1. For 166MHz and 133MHz operation input rise/fall times are 1.5ns.

AC TEST LOADS - 6ns, 7.5ns Speed Grade

AC TEST LOADS - 10ns, 15ns Speed Grades

Figure 2a. Output Load
* Includes jig and scope capacitances.

Figure 2b. AC Test Load

Figure 2c. Lumped Capacitive Load, Typical Derating

OUTPUT ENABLE & DISABLE TIMING
FUNCTIONAL DESCRIPTION

TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH (FWFT) MODE

The IDT72V36100/72V36110 support two different timing modes of operation: IDT Standard mode or First Word Fall Through (FWFT) mode. The selection of which mode will operate is determined during Master Reset, by the state of the FWFT/SI input.

If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag (EF) to indicate whether or not there are any words present in the FIFO. It also uses the Full Flag function (FF) to indicate whether or not the FIFO has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable (REN) and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready (OR) to indicate whether or not there is valid data at the data outputs (Qn). It also uses Input Ready (IR) to indicate whether or not the FIFO has any free space for writing. In the FWFT mode, the first word written to an empty FIFO goes directly to Qn after three RCLK rising edges, REN = LOW is not necessary. Subsequent words must be accessed using the Read Enable (REN) and RCLK.

Various signals, both input and output signals operate differently depending on which timing mode is in effect.

IDT STANDARD MODE

In this mode, the status flags, FF, PAF, HF, PAE, and EF operate in the manner outlined in Table 3. To write data into the FIFO, Write Enable (WEN) must be LOW. Data presented to the DATA IN lines will be clocked into the FIFO on subsequent transitions of the Write Clock (WCLK). After the first write is performed, the Empty Flag (EF) will go HIGH. Subsequent writes will continue to fill up the FIFO. The Programmable Almost-Empty flag (PAE) will go HIGH after n + 1 words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are stated in the footnote of Table 2. This parameter is also user programmable. See section on Programmable Flag Offset Loading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the HF would toggle to LOW once the 32,770th word for the IDT72V36100 and 65,538th word for the IDT72V36110, respectively was written into the FIFO. Continuing to write data into the FIFO will cause the PAF to go LOW. Again, if no reads are performed, the PAF will go LOW after (65,537-m) writes for the IDT72V36100 and (131,073-m) writes for the IDT72V36110, where m is the full offset value. The default setting for these values are stated in the footnote of Table 2.

First word fall through mode is due to the capacity of the memory plus output register.

When the FIFO is full, the Input Ready (IR) flag will go HIGH, inhibiting further write operations. If no reads are performed after a reset, IR will go HIGH after D writes to the FIFO. D = 65,536 writes for the IDT72V36100 and 131,072 writes for the IDT72V36110, respectively.

If the FIFO is full, the first read operation will cause FF to go HIGH. Subsequent read operations will cause PAF and HF to go HIGH at the conditions described in Table 3. If further read operations occur, without write operations, PAE will go LOW when there are n words in the FIFO, where n is the empty offset value. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, the EF will go LOW inhibiting further read operations. REN is ignored when the FIFO is empty.

When configured in IDT Standard mode, the EF and FF outputs are double register-buffered outputs.

Relevant timing diagrams for IDT Standard mode can be found in Figure 7, 8, 11 and 13.

FIRST WORD FALL THROUGH MODE (FWFT)

In this mode, the status flags, IR, PAF, HF, PAE, and OR operate in the manner outlined in Table 4. To write data into to the FIFO, WEN must be LOW. Data presented to the DATA IN lines will be clocked into the FIFO on subsequent transitions of WCLK. After the first write is performed, the Output Ready (OR) flag will go LOW. Subsequent writes will continue to fill up the FIFO. PAF will go HIGH after n + 2 words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are stated in the footnote of Table 2. This parameter is also user programmable. See section on Programmable Flag Offset Loading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the HF would toggle to LOW once the 32,770th word for the IDT72V36100 and 65,538th word for the IDT72V36110, respectively was written into the FIFO. Continuing to write data into the FIFO will cause the PAF to go LOW. Again, if no reads are performed, the PAF will go LOW after (65,537-m) writes for the IDT72V36100 and (131,073-m) writes for the IDT72V36110, where m is the full offset value. The default setting for these values are stated in the footnote of Table 2.

When the FIFO is full, the Input Ready (IR) flag will go HIGH, inhibiting further write operations. If no reads are performed after a reset, IR will go HIGH after D writes to the FIFO. D = 65,537 writes for the IDT72V36100 and 131,073 writes for the IDT72V36110, respectively. Note that the additional word in FWFT mode is due to the capacity of the memory plus output register.

When the FIFO is full, the first read operation will cause the IR flag to go LOW. Subsequent read operations will cause the PAF and HF to go HIGH at the conditions described in Table 4. If further read operations occur, without write operations, the PAF will go LOW when there are n + 1 words in the FIFO, where n is the empty offset value. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, OR will go HIGH inhibiting further read operations. REN is ignored when the FIFO is empty.

When configured in FWFT mode, the OR flag output is triple register-buffered, and the IR flag output is double register-buffered.

Relevant timing diagrams for FWFT mode can be found in Figure 9, 10, 12, and 14.
TABLE 2 — DEFAULT PROGRAMMABLE FLAG OFFSETS

<table>
<thead>
<tr>
<th>IDT72V36100, 72V36110</th>
<th>LD</th>
<th>FSEL1</th>
<th>FSEL0</th>
<th>Offsets n,m</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
<td>16,383</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td></td>
<td>8,191</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td></td>
<td>4,095</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td></td>
<td>1,023</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td></td>
<td>511</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>255</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td>127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LD</th>
<th>FSEL1</th>
<th>FSEL0</th>
<th>Program Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>X</td>
<td>X</td>
<td>Serial(3)</td>
</tr>
<tr>
<td>L</td>
<td>X</td>
<td>X</td>
<td>Parallel(4)</td>
</tr>
</tbody>
</table>

NOTES:
1. n = empty offset for PAE.
2. m = full offset for PAF.
3. As well as selecting serial programming mode, one of the default values will also be loaded depending on the state of FSEL0 & FSEL1.
4. As well as selecting parallel programming mode, one of the default values will also be loaded depending on the state of FSEL0 & FSEL1.

PROGRAMMING FLAG OFFSETS

Full and Empty Flag offset values are user programmable. The IDT72V36100/72V36110 have internal registers for these offsets. There are eight default offset values selectable during Master Reset. These offset values are shown in Table 2. Offset values can also be programmed into the FIFO in one of two ways; serial or parallel loading method. The selection of the loading method is done using the LD (Load) pin. During Master Reset, the state of the LD input determines whether serial or parallel flag offset programming is enabled. A HIGH on LD during Master Reset selects serial loading of offset values. A LOW on LD during Master Reset selects parallel loading of offset values.

In addition to loading offset values into the FIFO, it is also possible to read the current offset values. Offset values can be read via the parallel output port Q0-Qn, regardless of the programming mode selected (serial or parallel). It is not possible to read the offset values in serial fashion.

Figure 3, Programmable Flag Offset Programming Sequence, summarizes the control pins and sequence for both serial and parallel programming modes. For a more detailed description, see discussion that follows.

The offset registers may be programmed (and reprogrammed) any time after Master Reset, regardless of whether serial or parallel programming has been selected. Valid programming ranges are from 0 to D-1.

SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG TIMING SELECTION

The IDT72V36100/72V36110 can be configured during the Master Reset cycle with either synchronous or asynchronous timing for PAF and PAE flags by use of the PFM pin.

If synchronous PAF/PAE configuration is selected (PFM, HIGH during MRS), the PAF is asserted and updated on the rising edge of WCLK only and not RCLK. Similarly, PAE is asserted and updated on the rising edge of RCLK only and not WCLK. For detail timing diagrams, see Figure 17 for synchronous PAF timing and Figure 18 for synchronous PAE timing.

If asynchronous PAF/PAE configuration is selected (PFM, LOW during MRS), the PAF is asserted LOW on the LOW-to-HIGH transition of WCLK and PAE is reset to HIGH on the LOW-to-HIGH transition of RCLK. Similarly, PAE is asserted LOW on the LOW-to-HIGH transition of RCLK, PAE is reset to HIGH on the LOW-to-HIGH transition of WCLK. For detail timing diagrams, see Figure 19 for asynchronous PAF timing and Figure 20 for asynchronous PAE timing.
TABLE 3 — STATUS FLAGS FOR IDT STANDARD MODE

<table>
<thead>
<tr>
<th>Number of Words in FIFO</th>
<th>IDT72V36100</th>
<th>IDT72V36110</th>
<th>FF</th>
<th>PAF</th>
<th>HF</th>
<th>PAE</th>
<th>EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1 to (n^{(1)})</td>
<td>1 to (n^{(1)})</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>((n+1)) to 32,768</td>
<td>((n+1)) to 65,536</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>32,769 to (65,536-(m+1))</td>
<td>65,537 to (131,072-(m+1))</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>(65,536-m) to 65,535</td>
<td>(131,072-m) to 131,071</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>65,536</td>
<td>131,072</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: 1. See table 2 for values for \(n, m\).

TABLE 4 — STATUS FLAGS FOR FWFT MODE

<table>
<thead>
<tr>
<th>Number of Words in FIFO</th>
<th>IDT72V36100</th>
<th>IDT72V36110</th>
<th>IR</th>
<th>PAF</th>
<th>HF</th>
<th>PAE</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1 to (n+1)</td>
<td>1 to (n+1)</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>((n+2)) to 32,769</td>
<td>((n+2)) to 65,537</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>32,770 to (65,537-(m+1))</td>
<td>65,538 to (131,073-(m+1))</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>(65,537-m) to 65,536</td>
<td>(131,073-m) to 131,072</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>65,537</td>
<td>131,073</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: 1. See table 2 for values for \(n, m\).
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

IDT72V36100/72V36110 3.3V HIGH DENSITY SUPERSYNC II+ 36-BIT FIFO

65,536 x 36 and 131,072 x 36

IDT72V36100
IDT72V36110

<table>
<thead>
<tr>
<th>LD</th>
<th>WEN</th>
<th>REN</th>
<th>SEN</th>
<th>WCLK</th>
<th>RCLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
</tbody>
</table>

Parallel write to registers:
- Empty Offset (LSB)
- Empty Offset (MSB)
- Full Offset (LSB)
- Full Offset (MSB)

| 0 | 1 | 0 | 1 | X | |

Parallel read from registers:
- Empty Offset (LSB)
- Empty Offset (MSB)
- Full Offset (LSB)
- Full Offset (MSB)

| 0 | 1 | 1 | 0 | X | |

Serial shift into registers:
- 32 bits for the 72V36100
- 34 bits for the 72V36110
- 1 bit for each rising WCLK edge
- Starting with Empty Offset (LSB)
- Ending with Full Offset (MSB)

| X | 1 | 1 | 1 | X | X |

No Operation

| 1 | 0 | X | X | X | |

Write Memory

| 1 | X | 0 | X | X | |

Read Memory

| 1 | 1 | 1 | X | X | |

No Operation

NOTES:

1. The programming method can only be selected at Master Reset.
2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected.
3. The programming sequence applies to both IDT Standard and FWFT modes.

Figure 3. Programmable Flag Offset Programming Sequence
Figure 3. Programmable Flag Offset Programming Sequence (Continued)
Figure 3. Programmable Flag Offset Programming Sequence (Continued)
SERIAL PROGRAMMING MODE

If Serial Programming mode has been selected, as described above, then programming of PAE and PAF values can be achieved by using a combination of the LD, SEN, WCLK and SI input pins. Programming PAE and PAF proceeds as follows: when LD and SEN are set LOW, data on the SI input are written, one bit for each WCLK rising edge, starting with the Empty Offset LSB and ending with the Full Offset MSB. A total of 32 bits for the IDT72V36100 and 34 bits for the IDT72V36110. See Figure 15, Serial Loading of Programmable Flag Registers, for the timing diagram for this mode.

Using the serial method, individual registers cannot be programmed selectively. PAE and PAF can show a valid status only after the complete set of bits (for all offset registers) has been entered. The registers can be reprogrammed as long as the complete set of new offset bits is entered. When LD is LOW and SEN is HIGH, no serial write to the registers can occur.

Write operations to the FIFO are allowed before and during the serial programming sequence. In this case, the programming of all offset bits does not have to occur at once. A select number of bits can be written to the SI input and then, by bringing LD and SEN HIGH, data can be written to FIFO memory via Dn by toggling WEN. When WEN is brought HIGH with LD and SEN restored to a LOW, the next offset bit in sequence is written to the registers via SI. If an interruption of serial programming is desired, it is sufficient either to set LD LOW and deactivate SEN or to set SEN LOW and deactivate LD. Once LD and SEN are both restored to a LOW level, serial offset programming continues.

From the time serial programming has begun, neither programable flag will be valid until the full set of bits required to fill all the offset registers has been written. Measuring from the rising WCLK edge that achieves the above criteria; PAF will be valid after two or more rising WCLK edges plus TPAF. PAF will be valid after the next two rising RCLK edges plus TPAE plus TSECTION.

It is only possible to read the flag offset values via the parallel output port Qn.

PARALLEL MODE

If Parallel Programming mode has been selected, as described above, then programming of PAE and PAF values can be achieved by using a combination of the LD, WCLK, WEN and Dn input pins. Programming PAE and PAF proceeds as follows: LD and WEN must be set LOW. For x36 bit input bus width, data on the inputs Dn are written into the Empty Offset Register on the first LOW-to-HIGH transition of WCLK. Upon the second LOW-to-HIGH transition of WCLK, data are written into the Full Offset Register. The third transition of WCLK writes, once again, to the Empty Offset Register. For x18 bit input bus width, data on the inputs Dn are written into the Empty Offset Register LSB on the first LOW-to-HIGH transition of WCLK. Upon the second LOW-to-HIGH transition of WCLK, data are written into the Empty Offset Register LSB. The third transition of WCLK writes to the Full Offset Register LSB, the fourth transition of WCLK then writes to the Full Offset Register MSB. The fifth transition of WCLK writes once again to the Empty Offset Register LSB. A total of four writes to the offset registers is required to load values using a x18 input bus width. For an input bus width of x9 bits, a total of six write cycles to the offset registers is required to load values. See Figure 3, Programmable Flag Offset Programming Sequence. See Figure 16, Parallel Loading of Programmable Flag Registers, for the timing diagram for this mode.

The act of writing offsets in parallel employs a dedicated write offset register pointer. The act of reading offsets employs a dedicated read offset register pointer. The two pointers operate independently; however, a read and a write should not be performed simultaneously to the offset registers. A Master Reset initializes both pointers to the Empty Offset (LSB) register. A Partial Reset has no effect on the position of these pointers.

Write operations to the FIFO are allowed before and during the parallel programming sequence. In this case, the programming of all offset registers does not have to occur at one time. One, two or more offset registers can be written and then by bringing LD HIGH, write operations can be redirected to the FIFO memory. When LD is set LOW again, and WEN is LOW, the next offset register in sequence is written to. As an alternative to holding WEN LOW and toggling LD, parallel programming can also be interrupted by setting LD LOW and toggling WEN.

Note that the status of a programmable flag (PAE or PAF) output is invalid during the programming process. From the time parallel programming has begun, a programmable flag output will not be valid until the appropriate offset word has been written to the register(s) pertaining to that flag. Measuring from the rising WCLK edge that achieves the above criteria; PAF will be valid after two or more rising WCLK edges plus TPAF. PAF will be valid after the next two rising RCLK edges plus TPAE plus TSECTION.

The act of reading the offset registers employs a dedicated read offset register pointer. The contents of the offset registers can be read on the Q0-Qn pins when LD is set LOW and REN is set LOW. For x36 output bus width, data are read via Qn from the Empty Offset Register on the first LOW-to-HIGH transition of RCLK. Upon the second LOW-to-HIGH transition of RCLK, data are read from the Full Offset Register. The third transition of RCLK reads, once again, from the Empty Offset Register. For x18 output bus width, a total of four read cycles are required to obtain the values of the offset registers. Starting with the Empty Offset Register LSB and finishing with the Full Offset Register MSB. For x9 output bus width, a total of six read cycles must be performed on the offset registers. See Figure 3, Programmable Flag Offset Programming Sequence. See Figure 17, Parallel Read of Programmable Flag Registers, for the timing diagram for this mode.

It is permissible to interrupt the offset register read sequence with reads or writes to the FIFO. The interruption is accomplished by deasserting REN, LD, or both together. When REN and LD are restored to a LOW level, reading of the offset registers continues where it left off. It should be noted, and care should be taken from the fact that when a parallel read of the flag offsets is performed, the data word that was present on the output lines Qn will be overwritten.

Parallel reading of the offset registers is always permitted regardless of which timing mode (IDT Standard or FWFT modes) has been selected.

RETRANSMIT OPERATION

The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normal latency and zero latency. There are two stages to Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual rettransmit, which consists of reading out the memory contents, starting at the beginning of memory.

Retransmit setup is initiated by holding RT LOW during a rising RCLK edge. REN and WEN must be HIGH before bringing RT LOW. When zero latency is utilized, REN does not need to be HIGH before bringing RT LOW. At least two words, but no more than D-2 words should have been written into the FIFO, and read from the FIFO, between Reset (Master or Partial) and the time of Retransmit setup. D = 65,537 for the IDT72V36100 and 131,073 for the IDT72V36110.

If IDT Standard mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting EF LOW. The change in level will only be noticeable if EF was HIGH before setup. During this period, the internal read pointer is initialized to the first location of the RAM array.

When EF goes HIGH, Retransmit setup is complete and read operations may begin starting with the first location in memory. Since IDT Standard mode is selected, every word read including the first word following Retransmit setup requires a LOW on REN to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.
If FWFT mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting OR HIGH. During this period, the internal read pointer is set to the first location of the RAM array.

When OR goes LOW, Retransmit setup is complete; at the same time, the contents of the first location appear on the outputs. Since FWFT mode is selected, the first word appears on the outputs, no LOW on REN is necessary. Reading all subsequent words requires a LOW on REN to enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFT Mode), for the relevant timing diagram.

For either IDT Standard mode or FWFT mode, updating of the PAE, HF and PAF flags begin with the rising edge of RCLK that RT is setup. PAE is synchronized to RCLK, thus on the second rising edge of RCLK after RT is setup, the PAE flag will be updated. HF is asynchronous, thus the rising edge of RCLK that RT is setup will update HF. PAF is synchronized to WCLK, thus the second rising edge of WCLK that occurs tsKew after the rising edge of RCLK that RT is setup will update PAF. RT is synchronized to RCLK.

The Retransmit function has the option of two modes of operation, either “normal latency” or “zero latency”. Figure 11 and Figure 12 mentioned previously, relate to “normal latency”. Figure 13 and Figure 14 show “zero latency” retransmit operation. Zero latency basically means that the first data word to be retransmitted, is placed onto the output register with respect to the RCLK pulse that initiated the retransmit.
SIGNAL DESCRIPTION

INPUTS:

DATA IN (D0 - D35)

Data inputs for 36-bit wide data (D0 - D35), data inputs for 18-bit wide data (D0 - D17) or data inputs for 9-bit wide data (D0 - D8).

CONTROLS:

MASTER RESET (MRS)

A Master Reset is accomplished whenever the MRS input is taken to a LOW state. This operation sets the internal read and write pointers to the first location of the RAM array. PAF will go LOW, PAF goes HIGH, and HF goes HIGH.

If FWFT/SI is LOW during Master Reset then the IDT Standard mode, along with EF and FF are selected. EF will go LOW and FF will go HIGH. If FWFT/SI is HIGH, then the First Word Fall Through mode (FWFT), along with IR and OR, are selected. OR will go HIGH and IR will go LOW.

All control settings such as OW, IW, BM, BE, RM, PFM and IP are defined during the Master Reset cycle.

During a Master Reset, the output register is initialized to all zeroes. A Master Reset is required after power up, before a write operation can take place. MRS is asynchronous.

See Figure 5, Master Reset Timing, for the relevant timing diagram.

PARTIAL RESET (PRS)

A Partial Reset is accomplished whenever the PRS input is taken to a LOW state. As in the case of the Master Reset, the internal read and write pointers are set to the first location of the RAM array, PAF goes LOW, PAF goes HIGH, and HF goes HIGH

Whichever mode is active at the time of Partial Reset, IDT Standard mode or First Word Fall Through, that mode will remain selected. If the IDT Standard mode is active, then FF will go HIGH and EF will go LOW. If the First Word Fall Through mode is active, then IR will go HIGH, and OR will go LOW.

Following Partial Reset, all values held in the offset registers remain unchanged. The programming method (parallel or serial) currently active at the time of Partial Reset is also retained. The output register is initialized to all zeroes. PRS is asynchronous.

A Partial Reset is useful for resetting the device during the course of operation, when reprogramming programmable flag offset settings may not be convenient.

See Figure 6, Partial Reset Timing, for the relevant timing diagram.

ASYNCHRONOUS WRITE (ASYW)

The write port can be configured for either Synchronous or Asynchronous mode of operation. If during Master Reset the ASYW input is LOW, then Asynchronous operation of the write port will be selected. During Asynchronous operation of the write port the WCLK input becomes WR input, this is the Asynchronous write strobe input. A rising edge on WR will write data present on the Dn inputs into the FIFO. (WEN must be tied LOW when using the write port in Asynchronous mode).

When the write port is configured for Asynchronous operation the full flag (FF) operates in an asynchronous manner, that is, the full flag will be updated based on both a write operation and read operation. Note, if Asynchronous mode is selected, FWFT is not permissible. Refer to Figures 23, 24, 27 and 28 for relevant timing and operational waveforms.

ASYNCHRONOUS READ (ASYR)

The read port can be configured for either Synchronous or Asynchronous mode of operation. If during a Master Reset the ASYR input is LOW, then Asynchronous operation of the read port will be selected. During Asynchronous operation of the read port the RCLK input becomes RD input, this is the Asynchronous read strobe input. A rising edge on RD will read data from the FIFO via the output register and Qn port. (REN must be tied LOW during Asynchronous operation of the read port).

The OE input provides three-state control of the Qn output bus, in an asynchronous manner.

When the read port is configured for Asynchronous operation the device must be operating on IDT standard mode. FWFT mode is not permissible if the read port is Asynchronous. The Empty Flag (EF) operates in an Asynchronous manner, that is, the empty flag will be updated based on both a read operation and a write operation. Refer to figures 25, 26, 27 and 28 for relevant timing and operational waveforms.

RETRANSMIT (RT)

The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normal latency and zero latency. There are two stages to Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual retransmit, which consists of reading out the memory contents, starting at the beginning of the memory.

Retransmit setup is initiated by holding RT LOW during a rising RCLK edge. REN and WEN must be HIGH before bringing RT LOW. When zero latency is utilized, REN does not need to be HIGH before bringing RT LOW.

If IDT Standard mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting EF LOW. The change in level will only be noticeable if EF was HIGH before setup. During this period, the internal read pointer is initialized to the first location of the RAM array.

When EF goes HIGH, Retransmit setup is complete and read operations may begin starting with the first location in memory. Since IDT Standard mode is selected, every word read including the first word following Retransmit setup requires a LOW on REN to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.

If FWFT mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting OR HIGH. During this period, the internal read pointer is set to the first location of the RAM array.

When OR goes LOW, Retransmit setup is complete; at the same time, the contents of the first location appear on the outputs. Since FWFT mode is selected, the first word appears on the outputs, no LOW on REN is necessary. Reading all subsequent words requires a LOW on REN to enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFT Mode), for the relevant timing diagram.

In Retransmit operation, zero latency mode can be selected using the Retransmit Move (RM) pin during a Master Reset. This can be applied to both IDT Standard mode and FWFT mode.

FIRST WORD FALL THROUGH/serial in (FWFT/SI)

This is a dual purpose pin. During Master Reset, the state of the FWFT/SI input determines whether the device will operate in IDT Standard mode or First Word Fall Through (FWFT) mode.

© 2019 Renesas Electronics Corporation
If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag (EF) to indicate whether or not there are any words present in the FIFO memory. It also uses the Full Flag function (FF) to indicate whether or not the FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable (REN) and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready (OR) to indicate whether or not there is valid data at the data outputs (Qn). It also uses Input Ready (IR) to indicate whether or not the FIFO memory has any free space for writing. In the FWFT mode, the first word written to an empty FIFO goes directly to Qn after three RCLK rising edges, REN = LOW is not necessary. Subsequent words must be accessed using the Read Enable (REN) and RCLK.

After Master Reset, FWFT/SI acts as a serial input for loading PAE and PAF offsets into the programmable registers. The serial input function can only be used when the serial loading method has been selected during Master Reset. Serial programming using the FWFT/SI pin functions the same way in both IDT Standard and FWFT modes.

WRITE STROBE & WRITE CLOCK (WR/WCLK)

If Synchronous operation of the write port has been selected via ASYR, this input behaves as WCLK.

A write cycle is initiated on the rising edge of the WCLK input. Data setup and hold times must be met with respect to the LOW-to-HIGH transition of the WCLK. It is permissible to stop the WCLK. Note that while WCLK is idle, the FF/IR, PAF and HF flags will not be updated. (Note that WCLK is only capable of updating HF flag to LOW). The Write and Read Clocks can either be independent or coincident.

If Asynchronous operation has been selected this input is WR (write strobe). Data is asynchronously written into the FIFO via the Dn inputs whenever there is a rising edge on WR. In this mode the WEN input must be tied LOW.

WRITE ENABLE (WEN)

When the WEN input is LOW, data may be loaded into the FIFO RAM array on the rising edge of every WCLK cycle if the device is not full. Data is stored in the RAM array sequentially and independently of any ongoing read operation.

When WEN is HIGH, no new data is written in the RAM array on each WCLK cycle.

To prevent data overflow in the IDT Standard mode, FF will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, FF will go HIGH allowing a write to occur. The FF is updated by two WCLK cycles + tsKEW after the RCLK cycle.

To prevent data overflow in the FWFT mode, IR will go HIGH, inhibiting further write operations. Upon the completion of a valid read cycle, IR will go LOW allowing a write to occur. The IR flag is updated by two WCLK cycles + tsKEW after the valid RCLK cycle.

WEN is ignored when the FIFO is full in either FWFT or IDT Standard mode.

If Asynchronous operation of the write port has been selected, then WEN must be held active, (tied LOW).

READ STROBE & READ CLOCK (RD/RCLK)

If Synchronous operation of the read port has been selected via ASYR, this input behaves as RCLK. A read cycle is initiated on the rising edge of the RCLK input. Data can be read on the outputs, on the rising edge of the RCLK input. It is permissible to stop the RCLK. Note that while RCLK is idle, the EF/OR, PAE and HF flags will not be updated. (Note that RCLK is only capable of updating the HF flag to HIGH). The Write and Read Clocks can be independent or coincident.

If Asynchronous operation has been selected this input is RD (Read Strobe). Data is Asynchronously read from the FIFO via the output register whenever there is a rising edge on RD. In this mode the REN input must be tied LOW. The OE input is used to provide Asynchronous control of the three-state Qn outputs.

READ ENABLE (REN)

When Read Enable is LOW, data is loaded from the RAM array into the output register on the rising edge of every RCLK cycle if the device is not empty.

When the REN input is HIGH, the output register holds the previous data and no new data is loaded into the output register. The data outputs Q0-Qn maintain the previous data value.

In the IDT Standard mode, every word accessed at Qn, including the first word written to an empty FIFO, must be requested using REN. When the last word has been read from the FIFO, the Empty Flag (EF) will go LOW, inhibiting further read operations. REN is ignored when the FIFO is empty. Once a write is performed, EF will go HIGH allowing a read to occur. The EF flag is updated by two RCLK cycles + tsKEW after the valid WCLK cycle.

In the FWFT mode, the first word written to an empty FIFO automatically goes to the outputs Qn, on the third valid LOW-to-HIGH transition of RCLK + tsKEW after the first write. REN does not need to be asserted LOW. In order to access all other words, a read must be executed using REN. The RCLK low-to-high transition after the last word has been read from the FIFO, Output Ready (OR) will go HIGH with a true read (RCLK with REN = LOW), inhibiting further read operations. REN is ignored when the FIFO is empty.

If Asynchronous operation of the Read port has been selected, then REN must be held active, (tied LOW).

SERIAL ENABLE (SEN)

The SEN input is an enable used only for serial programming of the offset registers. The serial programming method must be selected during Master Reset. SEN is always used in conjunction with LD. When these lines are both LOW, data at the SI input can be loaded into the program register one bit for each LOW-to-HIGH transition of WCLK.

When SEN is HIGH, the programmable registers retains the previous settings and no offsets are loaded. SEN functions the same way in both IDT Standard and FWFT modes.

OUTPUT ENABLE (OE)

When Output Enable is enabled (LOW), the parallel output buffers receive data from the output register. When OE is HIGH, the output data bus (Qn) goes into a high impedance state.

LOAD (LD)

This is a dual purpose pin. During Master Reset, the state of the LD input, along with FSEL0 and FSEL1, determines one of eight default offset values for the PAE and PAF flags, along with the method by which these offset registers can be programmed, parallel or serial (see Table 2). After Master Reset, LD enables write operations to and read operations from the offset registers. Only the offset loading method currently selected can be used to write to the registers. Offset registers can be read only in parallel.

After Master Reset, the LD pin is used to activate the programming process of the flag offset values PAE and PAF. Pulling LD LOW will begin a serial loading or parallel load or read of these offset values.
BUS-MATCHING (BM, IW, OW)

The pins BM, IW and OW are used to define the input and output bus widths. During Master Reset, the state of these pins is used to configure the device bus sizes. See Table 1 for control settings. All flags will operate on the word/byte size boundary as defined by the selection of bus width. See Figure 4 for Bus-Matching Byte Arrangement.

BIG-ENDIAN/LITTLE-ENDIAN (BE)

During Master Reset, a LOW on BE will select Big-Endian operation. A HIGH on BE during Master Reset will select Little-Endian format. This function is useful when the following input to output bus widths are implemented: x36 to x18, x36 to x9, x18 to x36 and x9 to x36. If Big-Endian mode is selected, then the most significant byte (word) of the long word written into the FIFO will be read out of the FIFO first, followed by the least significant byte. If Little-Endian format is selected, then the least significant byte of the long word written into the FIFO will be read out first, followed by the most significant byte. The mode desired is configured during master reset by the state of the Big-Endian (BE) pin. See Figure 4 for Bus-Matching Byte Arrangement.

PROGRAMMABLE FLAG MODE (PFM)

During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM will select Synchronous Programmable flag timing mode. If asynchronous PAF/PAF configuration is selected (PFM, LOW during MRS), the PAF is asserted LOW on the LOW-to-HIGH transition of RCLK. PAF is reset to HIGH on the LOW-to-HIGH transition of WCLK. Similarly, the PAF is asserted LOW on the LOW-to-HIGH transition of WCLK and PAF is reset to HIGH on the LOW-to-HIGH transition of RCLK.

If synchronous PAF/PAF configuration is selected (PFM, HIGH during MRS), the PAF is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, PAF is asserted and updated on the rising edge of WCLK only and not RCLK. The mode desired is configured during master reset by the state of the Programmable Flag Mode (PFM) pin.

INTERSPERSED PARITY (IP)

During Master Reset, a LOW on IP will select Non-Interspersed Parity mode. A HIGH will select Interspersed Parity mode. The IP bit function allows the user to select the parity bit in the word loaded into the parallel port (D0-Dn) when programming the flag offsets. If Interspersed Parity mode is selected, then the FIFO will assume that the parity bits are located in bit position D8, D17, D26 and D35 during the parallel programming of the flag offsets. If Non-Interspersed Parity mode is selected, then D8, D17 and D26 are assumed to be valid bits and D32, D33, D34 and D35 are ignored. IP mode is selected during Master Reset by the state of the IP input pin. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO.

OUTPUTS:

FULL FLAG (FF/IR)

This is a dual purpose pin. In IDT Standard mode, the Full Flag (FF) function is selected. When the FIFO is full, FF will go LOW, inhibiting further write operations. When FF is HIGH, the FIFO is not full. If no reads are performed after a reset (either MRS or PRS), FF will go LOW after D writes to the FIFO (D = 65,536 for the IDT72V36100 and 131,072 for the IDT72V36110). See Figure 7, Write Cycle and Full Flag Timing (IDT Standard Mode), for the relevant timing information.

In FWFT mode, the Input Ready (IR) function is selected. IR goes LOW when memory space is available for writing in data. When there is no longer any free space left, IR goes HIGH, inhibiting further write operations. If no reads are performed after a reset (either MRS or PRS), IR will go HIGH after D writes to the FIFO (D = 65,537 for the IDT72V36100 and 131,073 for the IDT72V36110). See Figure 9, Write Timing (FWFT Mode), for the relevant timing information.

The IR status not only measures the contents of the FIFO memory, but also counts the presence of a word in the output register. Thus, in FWFT mode, the total number of writes necessary to deassert IR is one greater than needed to assert FF in IDT Standard mode.

FF/IR is synchronous and updated on the rising edge of WCLK. FF/IR are double register-buffered outputs.

EMPTY FLAG (EF/OR)

This is a dual purpose pin. In the IDT Standard mode, the Empty Flag (EF) function is selected. When the FIFO is empty, EF will go LOW, inhibiting further read operations. When EF is HIGH, the FIFO is not empty. See Figure 8, Read Cycle, Empty Flag and First Word Latency Timing (IDT Standard Mode), for the relevant timing information.

In FWFT mode, the Output Ready (OR) function is selected. OR goes LOW at the same time that the first word written to an empty FIFO appears valid on the outputs. OR stays LOW after the RCLK LOW to HIGH transition that shifts the last word from the FIFO memory to the outputs. OR goes HIGH only with a true read (RCLK with REN = LOW). The previous data stays at the outputs, indicating the last word was read. Further data reads are inhibited until OR goes LOW again. See Figure 10, Read Timing (FWFT Mode), for the relevant timing information.

EF/OR is synchronous and updated on the rising edge of RCLK.

In IDT Standard mode, EF is a double register-buffered output. In FWFT mode, OR is a triple register-buffered output.

PROGRAMMABLE ALMOST-FULL FLAG (PAF)

The Programmable Almost-Full flag (PAF) will go LOW when the FIFO reaches the almost-full condition. In IDT Standard mode, if no reads are performed after reset (MRS, PAF will go LOW after (D - m) words are written to the FIFO. The PAF will go LOW after (65,536-m) writes for the IDT72V36100 and (131,072-m) writes for the IDT72V36110. The offset “m” is the full offset value. The default setting for this value is stated in Table 1.

In FWFT mode, the PAF will go LOW after (65,537-m) writes for the IDT72V36100 and (131,073-m) writes for the IDT72V36110, where m is the full offset value. The default setting for this value is stated in Table 2.

See Figure 18, Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information.

If asynchronous PAF configuration is selected, the PAF is asserted LOW on the LOW-to-HIGH transition of the Write Clock (WCLK). PAF is reset to HIGH on the LOW-to-HIGH transition of the Read Clock (RCLK). If synchronous PAF configuration is selected, the PAF is updated on the rising edge of WCLK. See Figure 20, Asynchronous Almost-Full Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information.

PROGRAMMABLE ALMOST-EMPTY FLAG (PAE)

The Programmable Almost-Empty flag (PAE) will go LOW when the FIFO reaches the almost-empty condition. In IDT Standard mode, if no reads are performed after reset (MRS, PRS), PAE will go LOW after n words or less in the FIFO. The offset “n” is the empty offset value. The default setting for this value is stated in the footnote of Table 1.

In FWFT mode, the PAE will go LOW when there are n+1 words or less in the FIFO. The default setting for this value is stated in Table 2.

See Figure 19, Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information.

© 2019 Renesas Electronics Corporation
If asynchronous PAE configuration is selected, the PAE is asserted LOW on the LOW-to-HIGH transition of the Read Clock (RCLK). PAE is reset to HIGH on the LOW-to-HIGH transition of the Write Clock (WCLK). If synchronous PAE configuration is selected, the PAE is updated on the rising edge of RCLK. See Figure 21, Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode).

HALF-FULL FLAG (HF)
This output indicates a half-full FIFO. The rising WCLK edge that fills the FIFO beyond half-full sets HF LOW. The flag remains LOW until the difference between the write and read pointers becomes less than or equal to half of the total depth of the device; the rising RCLK edge that accomplishes this condition sets HF HIGH.

In IDT Standard mode, if no reads are performed after reset (MRS or PRS), HF will go LOW after \((D/2 + 1) \) writes to the FIFO, where \(D = 65,536 \) for the IDT72V36100 and 131,072 for the IDT72V36110.

In FWFT mode, if no reads are performed after reset (MRS or PRS), HF will go LOW after \((D-1/2 + 2) \) writes to the FIFO, where \(D = 65,537 \) for the IDT72V36100 and 131,073 for the IDT72V36110.

See Figure 22, Half-Full Flag Timing (IDT Standard and FWFT Modes), for the relevant timing information. Because HF is updated by both RCLK and WCLK, it is considered asynchronous.

DATA OUTPUTS (Q0-Qn)
(Q0-Q35) are data outputs for 36-bit wide data, (Q0-Q17) are data outputs for 18-bit wide data or (Q0-Q8) are data outputs for 9-bit wide data.
BYTE ORDER ON INPUT PORT:

<table>
<thead>
<tr>
<th>D35-D27</th>
<th>D26-D18</th>
<th>D17-D9</th>
<th>D8-D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Write to FIFO

BYTE ORDER ON OUTPUT PORT:

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

- **(a) x36 INPUT to x36 OUTPUT**
- **(b) x36 INPUT to x18 OUTPUT - BIG-ENDIAN**
- **(c) x36 INPUT to x18 OUTPUT - LITTLE-ENDIAN**
- **(d) x36 INPUT to x9 OUTPUT - BIG-ENDIAN**
- **(e) x36 INPUT to x9 OUTPUT - LITTLE-ENDIAN**

Figure 4. Bus-Matching Byte Arrangement

<table>
<thead>
<tr>
<th>BYTE ORDER ON INPUT PORT:</th>
<th>D35-D27</th>
<th>D26-D18</th>
<th>D17-D9</th>
<th>D8-D0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Write to FIFO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BYTE ORDER ON OUTPUT PORT:</th>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Read from FIFO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1st: Read from FIFO**
- **2nd: Read from FIFO**
- **3rd: Read from FIFO**
- **4th: Read from FIFO**
Figure 4. Bus-Matching Byte Arrangement (Continued)
Figure 5. Master Reset Timing

- **MRS**
- **REN**
- **WEN**
- **FWFT/SI**
- **LD**
- **ASYW, ASYR**
- **FSEL0, FSEL1**
- **BM, OW, IW**
- **BE**
- **RM**
- **PFM**
- **IP**
- **RT**
- **SEN**

Timing:
- **tRS**
- **tRSS**
- **tRSR**
- **tRSF**

Conditions:
- If FWFT = HIGH, \(\overline{OE} = \text{HIGH} \)
- If FWFT = LOW, \(EF = \text{LOW} \)
- If FWFT = LOW, \(FF = \text{HIGH} \)
- If FWFT = HIGH, \(IR = \text{LOW} \)
- \(\overline{OE} = \text{HIGH} \)
- \(\overline{OE} = \text{LOW} \)
Figure 6. Partial Reset Timing
NOTES:
1. \(t_{\text{SKEW1}} \) is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that \(\mathbb{F} \) will go HIGH (after one WCLK cycle plus \(t_{\text{WFF}} \)). If the time between the rising edge of the RCLK and the rising edge of the WCLK is less than \(t_{\text{SKEW1}} \), then the \(\mathbb{F} \) deassertion may be delayed one extra WCLK cycle.
2. \(\mathbb{L} \mathbb{D} = \text{HIGH}, \mathbb{O} \mathbb{E} = \text{LOW}, \mathbb{E} \mathbb{F} = \text{HIGH} \)

Figure 7. Write Cycle and Full Flag Timing (IDT Standard Mode)

NOTES:
1. \(t_{\text{SKEW1}} \) is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that \(\mathbb{F} \) will go HIGH (after one RCLK cycle plus \(t_{\text{WFF}} \)). If the time between the rising edge of the WCLK and the rising edge of the RCLK is less than \(t_{\text{SKEW1}} \), then the \(\mathbb{F} \) deassertion may be delayed one extra RCLK cycle.
2. \(\mathbb{L} \mathbb{D} = \text{HIGH}, \mathbb{O} \mathbb{E} = \text{LOW}, \mathbb{E} \mathbb{F} = \text{HIGH} \)

Figure 8. Read Cycle, Empty Flag and First Data Word Latency Timing (IDT Standard Mode)
NOTES:
1. \(t_{SKEW1} \) is the minimum time between a rising \(WCLK \) edge and a rising \(RCLK \) edge to guarantee that \(OR \) will go LOW after two \(RCLK \) cycles plus \(t_{REF} \). If the time between the rising edge of \(WCLK \) and the rising edge of \(RCLK \) is less than \(t_{SKEW1} \), then \(OR \) assertion may be delayed one extra \(RCLK \) cycle.
2. \(t_{SKEW2} \) is the minimum time between a rising \(WCLK \) edge and a rising \(RCLK \) edge to guarantee that \(PAE \) will go HIGH after one \(RCLK \) cycle plus \(t_{PAE} \). If the time between the rising edge of \(WCLK \) and the rising edge of \(RCLK \) is less than \(t_{SKEW2} \), then the \(PAE \) deassertion may be delayed one extra \(RCLK \) cycle.
3. \(LD = \) HIGH, \(OE = \) LOW.
4. \(n = PAE \) offset, \(m = PAF \) offset and \(D = \) maximum FIFO depth.
5. \(D = 65,537 \) for the IDT72V36100 and 131,073 for the IDT72V36110.
6. First data word latency = \(2 \times t_{SKEW1} + 2 \times t_{RCLK} + t_{REF} \).

Figure 9. Write Timing (First Word Fall Through Mode)
NOTES:

1. \(t_{SKEW1}\) is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that \(\text{IR}\) will go LOW after one WCLK cycle plus \(t_{WFF}\). If the time between the rising edge of RCLK and the rising edge of WCLK is less than \(t_{SKEW1}\), then the \(\text{IR}\) assertion may be delayed one extra WCLK cycle.

2. \(t_{SKEW2}\) is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that \(\text{PAF}\) will go HIGH after one WCLK cycle plus \(t_{PAFS}\). If the time between the rising edge of RCLK and the rising edge of WCLK is less than \(t_{SKEW2}\), then the \(\text{PAF}\) deassertion may be delayed one extra WCLK cycle.

3. \(\text{LD} = \text{HIGH}\)

4. \(n = \text{PAE}\) offset, \(m = \text{PAF}\) offset and \(D = \text{maximum FIFO depth}\).

5. \(D = 65,537\) for the IDT72V36100 and 131,073 for the IDT72V36110.

\[W_{D-n} W_{D-n+1} \ldots W_{D-1} W_0]\]

\[617awa15\]
NOTES:
1. Retransmit setup is complete after EF returns HIGH, only then can a read operation begin.
2. OE = LOW.
3. W1 = first word written to the FIFO after Master Reset, W2 = second word written to the FIFO after Master Reset.
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure.
 D = 65,536 for the IDT72V36100 and 131,072 for the IDT72V36110.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set HIGH during MRS.

Figure 11. Retransmit Timing (IDT Standard Mode)
NOTES:
1. Retransmit setup is complete after OR returns LOW.
2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure. D = 65,537 for the IDT72V36100 and 131,073 for the IDT72V36110.
3. OE = LOW.
4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set HIGH during MRS.

Figure 12. Retransmit Timing (FWFT Mode)
33

IDT72V36100/72V36110 3.3V HIGH DENSITY SUPERSYNC II-36-BIT FIFO
65,536 x 36 and 131,072 x 36

COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES

NOTES:
1. If the part is empty at the point of Retransmit, the empty flag (EF) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.
2. OE = LOW.
3. W1 = first word written to the FIFO after Master Reset, W2 = second word written to the FIFO after Master Reset.
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure.
 D = 65,536 for the IDT72V36100 and 131,072 for the IDT72V36110.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set LOW during MRS.

Figure 13. Zero Latency Retransmit Timing (IDT Standard Mode)
NOTES:
1. If the part is empty at the point of Retransmit, the output ready flag (OR) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.
2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure.
 D = 65,537 for the IDT72V36100 and 131,073 for the IDT72V36110.
3. OE = LOW.
4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set LOW during MRS.

Figure 14. Zero Latency Retransmit Timing (FWFT Mode)

NOTE:
1. X = 15 for the IDT72V36100 and X = 16 for the IDT72V36110.

Figure 15. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

IDT72V36100/72V36110 3.3V HIGH DENSITY SUPERSYNC II® 36-BIT FIFO
65,536 x 36 and 131,072 x 36

COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

NOTES:
1. m = PAF offset.
2. D = maximum FIFO depth.
 In IDT Standard mode: D = 65,536 for the IDT72V36100 and 131,072 for the IDT72V36110.
 In FWFT mode: D = 65,537 for the IDT72V36100 and 131,073 for the IDT72V36110.
3. tskew2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH (after one WCLK cycle plus tPAFS). If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskew2, then the PAF deassertion time may be delayed one extra WCLK cycle.
4. PAF is asserted and updated on the rising edge of WCLK only.
5. Select this mode by setting PFM HIGH during Master Reset.

Figure 16. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)

Figure 17. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes)

Figure 18. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)
IDT72V36100/72V36110 3.3V HIGH DENSITY SUPERSYNC II® 36-BIT FIFO
65,536 x 36 and 131,072 x 36

COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES

NOTES:
1. $n = PAE$ offset.
2. For IDT Standard mode.
3. For FWFT mode.
4. t_{SKEW2} is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH (after one RCLK cycle plus t_{PAES}). If the time between the rising edge of WCLK and the rising edge of RCLK is less than t_{SKEW2}, then the PAE deassertion may be delayed one extra RCLK cycle.
5. PAE is asserted and updated on the rising edge of WCLK only.
6. Select this mode by setting PFM HIGH during Master Reset.

Figure 19. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:
1. $m = PAF$ offset.
2. $D =$ maximum FIFO Depth.
 - In IDT Standard Mode: $D = 65,536$ for the IDT72V36100 and $131,072$ for the IDT72V36110.
 - In FWFT Mode: $D = 65,537$ for the IDT72V36100 and $131,073$ for the IDT72V36110.
3. PAF is asserted to LOW on WCLK transition and reset to HIGH on RCLK transition.
4. Select this mode by setting PFM LOW during Master Reset.

Figure 20. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)
NOTES:
1. \(n = \text{PAE offset.} \)
2. For IDT Standard Mode.
3. For FWFT Mode.
4. \(\text{PAE} \) is asserted LOW on RCLK transition and reset to HIGH on WCLK transition.
5. Select this mode by setting PFM LOW during Master Reset.

Figure 21. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:
1. In IDT Standard mode: \(D = \) maximum FIFO depth. \(D = 65,536 \) for the IDT72V36100 and 131,072 for the IDT72V36110.
2. In FWFT mode: \(D = \) maximum FIFO depth. \(D = 65,537 \) for the IDT72V36100 and 131,073 for the IDT72V36110.

Figure 22. Half-Full Flag Timing (IDT Standard and FWFT Modes)
NOTE:
1. \(\text{OE} = \text{LOW} \) and \(\text{WEN} = \text{LOW} \).

Figure 23. Asynchronous Write, Synchronous Read, Full Flag Operation (IDT Standard Mode)

NOTE:
1. \(\text{OE} = \text{LOW} \) and \(\text{WEN} = \text{LOW} \).

Figure 24. Asynchronous Write, Synchronous Read, Empty Flag Operation (IDT Standard Mode)

© 2019 Renesas Electronics Corporation
NOTE:
1. OE = LOW and REN = LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 25. Synchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)

NOTE:
1. OE = LOW and REN = LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 26. Synchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)
NOTES:
1. OE = LOW, WEN = LOW, and REN = LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 27. Asynchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTES:
1. OE = LOW, WEN = LOW, and REN = LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 28. Asynchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)
OPTIONAL CONFIGURATIONS

WIDTH EXPANSION CONFIGURATION

Word width may be increased simply by connecting together the control signals of multiple devices. Status flags can be detected from any one device. The exceptions are the EF and FF functions in IDT Standard mode and the IR and OR functions in FWFT mode. Because of variations in skew between RCLK and WCLK, it is possible for EF/FF deassertion and IR/OR assertion to vary by one cycle between FIFOs. In IDT Standard mode, such problems can be avoided by creating composite flags, that is, ANDing EF of every FIFO, and separately ANDing FF of every FIFO. In FWFT mode, composite flags can be created by ORing OR of every FIFO, and separately ORing IR of every FIFO.

Figure 29 demonstrates a width expansion using two IDT72V36100/72V36110 devices. D0-D35 from each device form a 72-bit wide input bus and Q0-Q35 from each device form a 72-bit wide output bus. Any word width can be attained by adding additional IDT72V36100/72V36110 devices.

NOTES:
1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.
2. Do not connect any output control signals directly together.
3. FIFO #1 and FIFO #2 must be the same depth, but may be different word widths.

Figure 29. Block Diagram of 65,536 x 72 and 131,072 x 72 Width Expansion
DEPTH EXPANSION CONFIGURATION (FWFT MODE ONLY)

The IDT72V36100 can easily be adapted to applications requiring depths greater than 65,536 and 131,072 for the IDT72V36110, with an 36-bit bus width. In FWFT mode, the FIFOs can be connected in series (the data outputs of one FIFO connected to the data inputs of the next) with no external logic necessary. The resulting configuration provides a total depth equivalent to the sum of the depths associated with each single FIFO. Figure 30 shows a depth expansion using two IDT72V36100/72V36110 devices.

Care should be taken to select FWFT mode during Master Reset for all FIFOs in the depth expansion configuration. The first word written to an empty configuration will pass from one FIFO to the next ("ripple down") until it finally appears at the outputs of the last FIFO in the chain – no read operation is necessary but the RCLK of each FIFO must be free-running. Each time the data word appears at the outputs of one FIFO, that device’s OR line goes LOW, enabling a write to the next FIFO in line.

For an empty expansion configuration, the amount of time it takes for the OR of the last FIFO in the chain to go LOW (i.e. valid data to appear on the last FIFO’s outputs) after a word has been written to the first FIFO is the sum of the delays for each individual FIFO:

\[(N - 1)*(4*\text{transfer clock}) + 3*\text{TRCLK}\]

where N is the number of FIFOs in the expansion and TRCLK is the RCLK period. Note that extra cycles should be added for the possibility that the \text{tsKEW1} specification is not met between WCLK and transfer clock, or RCLK and transfer clock, for the OR flag.

The "ripple down" delay is only noticeable for the first word written to an empty depth expansion configuration. There will be no delay evident for subsequent words written to the configuration.

The first free location created by reading from a full depth expansion configuration will "bubble up" from the last FIFO to the previous one until it finally moves into the first FIFO of the chain. Each time a free location is created in one FIFO of the chain, that FIFO’s IR line goes LOW, enabling the preceding FIFO to write a word to fill it.

For a full expansion configuration, the amount of time it takes for the IR of the first FIFO in the chain to go LOW after a word has been read from the last FIFO is the sum of the delays for each individual FIFO:

\[(N - 1)*(3*\text{transfer clock}) + 2*\text{TWCLK}\]

where N is the number of FIFOs in the expansion and TWCLK is the WCLK period. Note that extra cycles should be added for the possibility that the \text{tsKEW1} specification is not met between RCLK and transfer clock, or WCLK and transfer clock, for the IR flag.

The Transfer Clock line should be tied to either WCLK or RCLK, whichever is faster. Both these actions result in data moving, as quickly as possible, to the end of the chain and free locations to the beginning of the chain.
NOTE:
1. During power up, TRST could be driven low or not be used since the JTAG circuit resets automatically. TRST is an optional JTAG reset.

Figure 31. Standard JTAG Timing

JTAG AC ELECTRICAL CHARACTERISTICS

(VCC = 3.3V ± 5%, Tcase = 0°C to +85°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTAG Clock Input Period</td>
<td>tTCK</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Clock HIGH</td>
<td>tJTCKH</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Clock Low</td>
<td>tJTCKL</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Clock Rise Time</td>
<td>tJTCKR</td>
<td>-</td>
<td>-</td>
<td>5(1)</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Clock Fall Time</td>
<td>tJTCKF</td>
<td>-</td>
<td>-</td>
<td>5(1)</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Reset</td>
<td>tJRST</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Reset Recovery</td>
<td>tJRSR</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

NOTE:
1. 50pf loading on external output signals.

NOTE:
1. Guaranteed by design.
JTAG INTERFACE

Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. The IDT72V36100/72V36110 incorporates the necessary tap controller and modified pad cells to implement the JTAG facility. Note that IDT provides appropriate Boundary Scan Description Language program files for these devices.

The Standard JTAG interface consists of four basic elements:
- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide a brief description of each element. For a complete description refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture

Figure 32. Boundary Scan Architecture

TEST ACCESS PORT (TAP)

The Tap interface is a general-purpose port that provides access to the internal of the processor. It consists of four input ports (TCLK, TMS, TDI, TRST) and one output port (TDO).

THE TAP CONTROLLER

The Tap controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and update of data.
Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram.

All state transitions within the TAP controller occur at the rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controller takes precedence over the Queue and must be reset after power up of the device. See TRST description for more details on TAP controller reset.

Test-Logic-Reset All test logic is disabled in this controller state enabling the normal operation of the IC. The TAP controller state machine is designed in such a way that, no matter what the initial state of the controller is, the Test-Logic-Reset state can be entered by holding TMS at high and pulsing TCK five times. This is the reason why the Test Reset (TRST) pin is optional.

Run-Test-Idle In this controller state, the test logic in the IC is active only if certain instructions are present. For example, if an instruction activates the self test, then it will be executed when the controller enters this state. The test logic in the IC is idles otherwise.

Select-DR-Scan This is a controller state where the decision to enter the Data Path or the Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the Instruction Path is made. The Controller can return to the Test-Logic-Reset state otherwise.

Capture-DR In this controller state, the shift register bank in the Instruction Register parallel loads a pattern of fixed values on the rising edge of TCK. The last two significant bits are always required to be “01”.

Shift-IR In this controller state, the instruction register gets connected between TDI and TDO, and the captured pattern gets shifted on each rising edge of TCK. The instruction available on the TDI pin is also shifted in to the instruction register.

Exit1-IR This is a controller state where a decision to enter either the Pause-IR state or Update-IR state is made.

Pause-IR This state is provided in order to allow the shifting of instruction register to be temporarily halted.

Exit2-DR This is a controller state where a decision to enter either the Shift-IR state or Update-IR state is made.

Update-IR In this controller state, the instruction in the instruction register is latched in to the latch bank of the Instruction Register on every falling edge of TCK. This instruction also becomes the current instruction once it is latched.

Capture-DR In this controller state, the data is parallel loaded in to the data registers selected by the current instruction on the rising edge of TCK.

Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

NOTE:
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.

Figure 33. TAP Controller State Diagram
THE INSTRUCTION REGISTER
The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data register to be accessed, or both. The instruction shifted into the register is latched at the completion of the shifting process when the TAP controller is at Update-IR state.

The instruction register must contain 4 bit instruction register-based cells which can hold instruction data. These mandatory cells are located nearest the serial outputs they are the least significant bits.

TEST DATA REGISTER
The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a complete description, refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER
The register is used to allow test data to flow through the device from TDI to TDO. It contains a single stage shift register for a minimum length in serial path. When the bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in the Capture-DR state.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER
The Boundary Scan Register allows serial data TDI be loaded in to or read out of the processor input/output ports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER
The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction.

IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity is dropped in the 11-bit Manufacturer ID field.

For the IDT72V36100/72V36110, the Part Number field contains the following values:

<table>
<thead>
<tr>
<th>Device</th>
<th>Part# Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDT72V36100</td>
<td>04DE</td>
</tr>
<tr>
<td>IDT72V36110</td>
<td>04DF</td>
</tr>
</tbody>
</table>

The required SAMPLE/PRELOAD instruction allows the IC to remain in a normal functional mode and selects the boundary-scan register to be connected between TDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip via the boundary outputs and receive test data off-chip via the boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE Std 1149.1, providing for probe-less testing of solder-joint opens/shorts and of logic cluster function.

IDCODE
The optional IDCODE instruction allows the IC to remain in its functional mode and selects the optional device identification register to be connected between TDI and TDO. The device identification register is a 32-bit shift register containing information regarding the IC manufacturer, device type, and version code. Accessing the device identification register does not interfere with the operation of the IC. Also, access to the device identification register should be immediately available, via a TAP data-scan operation, after power-up of the IC or after the TAP has been reset using the optional TRST pin or by otherwise moving to the Test-Logic-Reset state.

SAMPLE/PRELOAD
The required SAMPLE/PRELOAD instruction allows the IC to remain in a normal functional mode and selects the boundary-scan register to be connected between TDI and TDO. During this instruction, the boundary-scan register can be accessed via a date scan operation, to take a sample of the functional data entering and leaving the IC. This instruction is also used to preload test data into the boundary-scan register before loading a EXTEST instruction.

Table 6. JTAG Instruction Register Decoding

<table>
<thead>
<tr>
<th>Hex Value</th>
<th>Instruction</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>EXTEST</td>
<td>Select Boundary Scan Register</td>
</tr>
<tr>
<td>0x02</td>
<td>IDCODE</td>
<td>Select Chip Identification data register</td>
</tr>
<tr>
<td>0x01</td>
<td>SAMPLE/PRELOAD</td>
<td>Select Boundary Scan Register</td>
</tr>
<tr>
<td>0x03</td>
<td>HIGH-IMPEDANCE</td>
<td>JTAG</td>
</tr>
<tr>
<td>0x0F</td>
<td>BYPASS</td>
<td>Select Bypass Register</td>
</tr>
</tbody>
</table>

The following sections provide a brief description of each instruction. For a complete description refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1-1990).

EXTEST
The required EXTEST instruction places the IC into an external boundary-test mode and selects the boundary-scan register to be connected between TDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip via the boundary outputs and receive test data off-chip via the boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE Std 1149.1, providing for probe-less testing of solder-joint opens/shorts and of logic cluster function.
HIGH-IMPEDANCE
The optional High-Impedance instruction sets all outputs (including two-state as well as three-state types) of an IC to a disabled (high-impedance) state and selects the one-bit bypass register to be connected between TDI and TDO. During this instruction, data can be shifted through the bypass register from TDI to TDO without affecting the condition of the IC outputs.

BYPASS
The required BYPASS instruction allows the IC to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Power</th>
<th>Speed</th>
<th>Package</th>
<th>Process / Temperature Range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXX</td>
<td>XX</td>
<td>X</td>
<td>X</td>
<td>BLANK 8</td>
<td>Tray</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BLANK 8</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G(2)</td>
<td>Commercial (0°C to +70°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PF</td>
<td>Industrial (-40°C to +85°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BB</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Thin Plastic Quad Flatpack (PK128, PKG128)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7-5</td>
<td>Plastic Ball Grid Array (BB144, BBG144)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>Commercial Only, PBGA & TQFP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>Com’l & Ind’l, PBGA & TQFP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>Clock Cycle Time (tCLK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Speed in Nanoseconds</td>
</tr>
<tr>
<td></td>
<td>65,536 x 36</td>
<td>3.3V SuperSync™ FIFO</td>
<td>Commercial Only, PBGA & TQFP</td>
<td>61787800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>131,072 x 36</td>
<td>3.3V SuperSync™ FIFO</td>
<td>Com’l & Ind’l, TQFP Only</td>
<td>61787800</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Industrial temperature range product for 7-5ns and 15ns are available as standard device. All other speed grades are available by special order.
2. Green parts are available. For specific speeds and packages contact your sales office.

DATASHEET DOCUMENT HISTORY

- **05/25/2000**: pgs. 1, 6, 7, 8, 34, and 35.
- **07/28/2000**: pgs. 13, 14, and 34.
- **12/14/2000**: pgs. 6, 7, and 8.
- **03/27/2001**: pg. 7.
- **04/06/2001**: pgs. 4, 5, and 18.
- **12/14/2001**: pgs. 1-36.
- **12/16/2002**: pgs. 1-11, 20, 21, 26, and 38-47.
- **02/11/2003**: pgs. 7, and 45.
- **06/26/2003**: pgs. 1, 3, 9, 10, and 47.
- **07/15/2003**: pgs. 3, 20, and 38-40.
- **07/21/2003**: pgs. 7, 43, and 45-47.
- **09/29/2003**: pg. 8.
- **11/02/2005**: pgs. 1, 8-10, and 48.
- **04/06/2006**: pg. 4.
- **10/22/2008**: pg. 48.
- **12/06/2016**: pg. 2, 3, 5, and 48.
- **03/19/2018**: Product Discontinuation Notice - PDN# SP-17-02

Last time buy expires June 15, 2018.
Notice

1. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - **Standard**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - **High Quality**: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.