3.3V HIGH-DENSITY SUPERSYNC™ II 36-BIT FIFO

1,024 x 36, 2,048 x 36
4,096 x 36, 8,192 x 36
16,384 x 36, 32,768 x 36

IDT72V3640, IDT72V3650
IDT72V3660, IDT72V3670
IDT72V3680, IDT72V3690

LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018

FEATURES:
• Choose among the following memory organizations:
 IDT72V3640 — 1,024 x 36
 IDT72V3650 — 2,048 x 36
 IDT72V3660 — 4,096 x 36
 IDT72V3670 — 8,192 x 36
 IDT72V3680 — 16,384 x 36
 IDT72V3690 — 32,768 x 36
• Up to 166 MHz Operation of the Clocks
• User selectable Asynchronous read and/or write ports (PBGA Only)
• User selectable input and output port bus-sizing
 - x36 in to x36 out
 - x36 in to x18 out
 - x36 in to x9 out
 - x18 in to x36 out
 - x9 in to x36 out
• Pin to Pin compatible to the higher density of IDT72V36100 and IDT72V36110
• Big-Endian/Little-Endian user selectable byte representation
• 5V input tolerant
• Fixed, low first word latency
• Zero latency retransmit
• Auto power down minimizes standby power consumption
• Master Reset clears entire FIFO
• Partial Reset clears data, but retains programmable settings
• Empty, Full and Half-Full flags signal FIFO status
• Programmable Almost-Empty and Almost-Full flags, each flag can default to one of eight preselected offsets
• Selectable synchronous/asynchronous timing modes for Almost-Empty and Almost-Full flags
• Programmable flags by either serial or parallel means
• Select IDT Standard timing (using EF and FF flags) or First Word Fall Through timing (using OR and IR flags)
• Output enable puts data outputs into high impedance state
• Easily expandable in depth and width
• JTAG port, provided for Boundary Scan function (PBGA Only)
• Independent Read and Write Clocks (permit reading and writing simultaneously)
• Available in a 128-pin Thin Quad Flat Pack (TQFP) or a 144-pin Plastic Ball Grid Array (PBGA) (with additional features)
• High-performance submicron CMOS technology
• Industrial temperature range (–40°C to +85°C) is available
• Green parts available, see ordering information

FUNCTIONAL BLOCK DIAGRAM
*Available on the PBGA package only.
DESCRIPTION:

The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 are exceptionally deep, high speed, CMOS First-In-First-Out (FIFO) memories with clocked read and write controls and a flexible Bus-Matching x36/x18/x9 data flow. These FIFOs offer several key user benefits:

- Flexible x36/x18/x9 Bus-Matching on both read and write ports
- The period required by the retransmit operation is fixed and short.
- The first word data latency period, from the time the first word is written to an empty FIFO to the time it can be read, is fixed and short.
- Asynchronous/Synchronous translation on the read or write ports
- High density offerings up to 1 Mbit

Bus-Matching Sync FIFOs are particularly appropriate for network, video, telecommunications, data communications and other applications that need to buffer large amounts of data and match busses of unequal sizes.

Each FIFO has a data input port (Dn) and a data output port (Qn), both of which can assume either a 36-bit, 18-bit or a 9-bit width as determined by the state of external control pins Input Width (IW), Output Width (OW), and Bus-Matching (BM) pin during the Master Reset cycle.

The input port can be selected as either a Synchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the input port is controlled by a Write Clock (WCLK) input and a Write Enable (WEN) input. Data present on the Dn data inputs is written into the FIFO on every rising edge of WCLK.

PIN CONFIGURATIONS
WCLK when WEN is asserted. During Asynchronous operation only the WR input is used to write data into the FIFO. Data is written on a rising edge of WR, the WEN input should be tied to its active state, (LOW).

The output port can be selected as either a Synchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the output port is controlled by a Read Clock (RCLK) input and Read Enable (REN) input. Data is read from the FIFO on every rising edge of RCLK when REN is asserted. During Asynchronous operation only the RD input is used to read data from the FIFO. Data is read on a rising edge of RD, the REN input should be tied to its active state, LOW. When Asynchronous operation is selected on the output port the FIFO must be configured for Standard IDT mode, and the OE input used to provide three-state control of the outputs, Qn.

The frequencies of both the RCLK and the WCLK signals may vary from 0 to \(f_{\text{MAX}} \) with complete independence. There are no restrictions on the frequency of the one clock input with respect to the other.

There are two possible timing modes of operation with these devices: IDT Standard mode and First Word Fall Through (FWFT) mode.

In IDT Standard mode, the first word written to an empty FIFO will not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN and enabling a rising RCLK edge, will shift the word from internal memory to the data output lines.

In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A REN does not have to be asserted for accessing the first word. However, subsequent

PIN CONFIGURATIONS (CONTINUED)

![A1 BALL PAD CORNER](image)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASYW</td>
<td>SEN</td>
<td>D35</td>
<td>D32</td>
<td>D21</td>
<td>D12</td>
<td>D10</td>
<td>D9</td>
<td>D18</td>
<td>D15</td>
<td>D12</td>
<td>D9</td>
</tr>
<tr>
<td>WEN</td>
<td>IW</td>
<td>D34</td>
<td>D31</td>
<td>D22</td>
<td>D13</td>
<td>D11</td>
<td>D8</td>
<td>D19</td>
<td>D16</td>
<td>D14</td>
<td>D7</td>
</tr>
<tr>
<td>WCLK</td>
<td>PRS</td>
<td>D33</td>
<td>D30</td>
<td>D23</td>
<td>D20</td>
<td>D6</td>
<td>D5</td>
<td>D20</td>
<td>D17</td>
<td>D14</td>
<td>D5</td>
</tr>
<tr>
<td>PAF</td>
<td>LD</td>
<td>FWFT/SI</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
</tr>
<tr>
<td>FF/IR</td>
<td>MRS</td>
<td>OW</td>
<td>VCC</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>HF</td>
<td>FS0</td>
<td>VCC</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>BM</td>
<td>FS1</td>
<td>VCC</td>
</tr>
<tr>
<td>EF</td>
<td>ASYR</td>
<td>BE</td>
<td>GND</td>
<td>VCC</td>
<td>Q29</td>
<td>Q28</td>
<td>Q27</td>
<td>Q26</td>
<td>Q25</td>
<td>Q24</td>
<td>Q23</td>
</tr>
<tr>
<td>RCLK</td>
<td>IP</td>
<td>PFM</td>
<td>VCC</td>
<td>Q23</td>
<td>Q22</td>
<td>Q21</td>
<td>Q20</td>
<td>Q19</td>
<td>Q18</td>
<td>Q17</td>
<td>Q16</td>
</tr>
<tr>
<td>REN</td>
<td>RT</td>
<td>PAE</td>
<td>RM</td>
<td>Q22</td>
<td>Q21</td>
<td>Q20</td>
<td>Q19</td>
<td>Q18</td>
<td>Q17</td>
<td>Q16</td>
<td>Q15</td>
</tr>
<tr>
<td>OE</td>
<td>Q3</td>
<td>Q32</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
</tr>
<tr>
<td>Q35</td>
<td></td>
</tr>
</tbody>
</table>

PBGA: 1mm pitch, 13mm x 13mm (BB144, order code: BB)

TOP VIEW

© 2019 Renesas Electronics Corporation
words written to the FIFO do require a LOW on REN for access. The state of the FWFT/SI input during Master Reset determines the timing mode in use.

For applications requiring more data capacity than a single FIFO can provide, the FWFT timing mode permits depth expansion by chaining FIFOs in series (i.e., the data outputs of one FIFO are connected to the corresponding data inputs of the next). No external logic is required.

These FIFOs have five flag pins, EF/OR (Empty Flag or Output Ready), FF/IR (Full Flag or Input Ready), HF (Half-full Flag), PAE (Programmable Almost-Empty flag) and PAF (Programmable Almost-Full flag). The EF and FF functions are selected in IDT Standard mode. The IR and OR functions are selected in FWFT mode. HF, PAE and PAF are always available for use, irrespective of timing mode.

PAE and PAF can be programmed independently to switch at any point in memory. Programmable offsets determine the flag switching threshold and can be loaded by two methods: parallel or serial. Eight default offset settings are also provided, so that PAE can be set to switch at a predefined number of locations from the empty boundary and the PAF threshold can also be set at similar predefined values from the full boundary. The default offset values are set during Master Reset by the state of the FSEL0, FSEL1, and LD pins.

For serial programming, SEN together with LD on each rising edge of WCLK, are used to load the offset registers via the Serial Input (SI). For parallel programming, WEN together with LD on each rising edge of WCLK, are used to load the offset registers via Dn. REN together with LD on each rising edge of RCLK can be used to read the offsets in parallel from Qn regardless of whether serial or parallel offset loading has been selected.

During Master Reset (MRS) the following events occur: the read and write pointers are set to the first location of the FIFO. The FWFT pin selects IDT Standard mode or FWFT mode.

The Partial Reset (PRS) also sets the read and write pointers to the first location of the memory. However, the timing mode, programmable flag programming method, and default or programmed offset settings existing before Partial Reset remain unchanged. The flags are updated according to the timing mode and offsets in effect. PRS is useful for resetting a device in mid-operation, when reprogramming programmable flags would be undesirable.

It is also possible to select the timing mode of the PAE (Programmable Almost-Empty flag) and PAF (Programmable Almost-Full flag) outputs. The timing modes can be set to be either asynchronous or synchronous for the PAE and PAF flags.

Figure 1. Single Device Configuration Signal Flow Diagram
If asynchronous PAE/PAF configuration is selected, the PAE is asserted LOW on the LOW-to-HIGH transition of RCLK. PAE is reset to HIGH on the LOW-to-HIGH transition of WCLK. Similarly, the PAF is asserted LOW on the LOW-to-HIGH transition of WCLK and PAF is reset to HIGH on the LOW-to-HIGH transition of RCLK.

If synchronous PAE/PAF configuration is selected, the PAE is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, PAF is asserted and updated on the rising edge of WCLK only and not RCLK. The mode desired is configured during Master Reset by the state of the Programmable Flag Mode (PFM) pin.

The Retransmit function allows data to be reread from the FIFO more than once. A LOW on the RT input during a rising RCLK edge initiates a retransmit operation by setting the read pointer to the first location of the memory array. A zero-latency retransmit timing mode can be selected using the Retransmit timing Mode pin (RM). During Master Reset, a LOW on RM will select zero latency retransmit. A HIGH on RM during Master Reset will select normal latency.

If zero latency retransmit operation is selected, the first data word to be retransmitted will be placed on the output register with respect to the same RCLK edge that initiated the retransmit based on RT being LOW.

Refer to Figure 11 and 12 for Retransmit Timing with normal latency. Refer to Figure 13 and 14 for Zero Latency Retransmit Timing.

The device can be configured with different input and output bus widths as shown in Table 1.

A Big-Endian/Little-Endian data word format is provided. This function is useful when data is written into the FIFO in long word format (x36/x18) and read out of the FIFO in small word (x18/x9) format. If Big-Endian mode is selected, then the most significant byte (word) of the long word written into the FIFO will be read out of the FIFO first, followed by the least significant byte. If Little-Endian format is selected, then the least significant byte of the long word written into the FIFO will be read out first, followed by the most significant byte. The mode desired is configured during master reset by the state of the Big-Endian (BE) pin. See Figure 4 for Bus-Matching Byte Arrangement.

The Interspersed/Non-Interspersed Parity (IP) bit function allows the user to select the parity bit in the word loaded into the parallel port (D0-Dn) when programming the flag offsets. If Interspersed Parity mode is selected, then the FIFO will assume that the parity bit is located in bit positions D8, D17, D26 and D35 during the parallel programming of the flag offsets. If Non-Interspersed Parity mode is selected, then D8, D17 and D26 are assumed to be valid bits and D32, D33, D34 and D35 are ignored. IP mode is selected during Master Reset by the state of the IP input pin. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO.

A JTAG test port is provided, here the FIFO has fully functional Boundary Scan feature, compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.

If, at any time, the FIFO is not actively performing an operation, the chip will automatically power down. Once in the power down state, the standby supply current consumption is minimized. Initiating any operation (by activating control inputs) will immediately take the device out of the power down state.

The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 are fabricated using IDT’s high speed submicron CMOS technology.

TABLE 1 — BUS-MATCHING CONFIGURATION MODES

<table>
<thead>
<tr>
<th>BM</th>
<th>IW</th>
<th>OW</th>
<th>Write Port Width</th>
<th>Read Port Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>x36</td>
<td>x36</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td>x36</td>
<td>x18</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>x36</td>
<td>x9</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td>x18</td>
<td>x36</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>x9</td>
<td>x36</td>
</tr>
</tbody>
</table>

NOTE:
1. Pin status during Master Reset.
PIN DESCRIPTION (TQFP AND PBGA PACKAGES)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Bus-Matching</td>
<td>I</td>
<td>BM works with IW and OW to select the bus sizes for both write and read ports. See Table 1 for bus size configuration.</td>
</tr>
<tr>
<td>BE(1)</td>
<td>Big-Endian/Little-Endian</td>
<td>I</td>
<td>During Master Reset, a LOW on BE will select Big-Endian operation. A HIGH on BE during Master Reset will select Little-Endian format.</td>
</tr>
<tr>
<td>DO–D35</td>
<td>Data Inputs</td>
<td>I</td>
<td>Data inputs for a 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused input pins are in a don’t care state.</td>
</tr>
<tr>
<td>EF/IR</td>
<td>Empty Flag/Output Ready</td>
<td>O</td>
<td>In the IDT Standard mode, the EF function is selected. EF indicates whether or not the FIFO memory is empty. In FWFT mode, the OR function is selected. OR indicates whether or not there is valid data available at the outputs.</td>
</tr>
<tr>
<td>FF/IR</td>
<td>Full Flag/Output Ready</td>
<td>O</td>
<td>In the IDT Standard mode, the FF function is selected. FF indicates whether or not the FIFO memory is full. In the FWFT mode, the IR function is selected. IR indicates whether or not there is space available for writing to the FIFO memory.</td>
</tr>
<tr>
<td>FSELO(1)</td>
<td>Flag Select Bit 0</td>
<td>I</td>
<td>During Master Reset, this input along with FSEL1 and the LD pin, will select the default offset values for the programmable flags PAE and PAF. There are up to eight possible settings available.</td>
</tr>
<tr>
<td>FSEL(1)</td>
<td>Flag Select Bit 1</td>
<td>I</td>
<td>During Master Reset, this input along with FSELO and the LD pin will select the default offset values for the programmable flags PAE and PAF. There are up to eight possible settings available.</td>
</tr>
<tr>
<td>FWFT/SI</td>
<td>First Word Fall Through/Serial In</td>
<td>I</td>
<td>During Master Reset, selects First Word Fall Through or IDT Standard mode. After Master Reset, this pin functions as a serial input for loading offset registers.</td>
</tr>
<tr>
<td>HF</td>
<td>Half-Full Flag</td>
<td>O</td>
<td>HF indicates whether the FIFO memory is more or less than half-full.</td>
</tr>
<tr>
<td>IP(1)</td>
<td>Interspersed Parity</td>
<td>I</td>
<td>During Master Reset, a LOW on IP will select Non-Interspersed Parity mode. A HIGH will select Interspersed Parity mode. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO.</td>
</tr>
<tr>
<td>IW(1)</td>
<td>Input Width</td>
<td>I</td>
<td>This pin, along with OW and MB, selects the bus width of the write port. See Table 1 for bus size configuration.</td>
</tr>
<tr>
<td>LD</td>
<td>Load</td>
<td>I</td>
<td>This is a dual purpose pin. During Master Reset, the state of the LD input along with FSELO and FSEL1, determines one of eight default offset values for the PAE and PAF flags, along with the method by which these offset registers can be programmed, parallel or serial (see Table 2). After Master Reset, this pin enables writing to and reading from the offset registers.</td>
</tr>
<tr>
<td>OE</td>
<td>Output Enable</td>
<td>I</td>
<td>OE controls the output impedance of Qn.</td>
</tr>
<tr>
<td>OW(1)</td>
<td>Output Width</td>
<td>I</td>
<td>This pin, along with IW and BM, selects the bus width of the read port. See Table 1 for bus size configuration.</td>
</tr>
<tr>
<td>MRS</td>
<td>Master Reset</td>
<td>I</td>
<td>MRS initializes the read and write pointers to zero and sets the output register to all zeroes. During Master Reset, the FIFO is configured for either FWFT or IDT Standard mode, Bus-Matching configurations, one of eight programmable default settings, serial or parallel programming of the offset settings, Big-Endian/Little-Endian format, zero latency timing mode, interspersed parity, and synchronous versus asynchronous programmable flag timing modes.</td>
</tr>
<tr>
<td>PAE</td>
<td>Programmable Almost-Empty Flag</td>
<td>O</td>
<td>PAE goes LOW if the number of words in the FIFO memory is less than offset n, which is stored in the Empty Offset flag register. PAE goes HIGH if the number of words in the FIFO memory is greater than or equal to offset n.</td>
</tr>
<tr>
<td>PAF</td>
<td>Programmable Almost-Full Flag</td>
<td>O</td>
<td>PAF goes HIGH if the number of free locations in the FIFO memory is more than offset m, which is stored in the Full Offset flag register. PAF goes LOW if the number of free locations in the FIFO memory is less than or equal to offset m.</td>
</tr>
<tr>
<td>PFM(1)</td>
<td>Programmable Flag Mode</td>
<td>I</td>
<td>During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM will select Synchronous Programmable flag timing mode.</td>
</tr>
<tr>
<td>PRS</td>
<td>Partial Reset</td>
<td>I</td>
<td>PRS initializes the read and write pointers to zero and sets the output register to all zeroes. During Partial Reset, the existing mode (IDT or FWFT), programming method (serial or parallel), and programmable flag settings are all retained.</td>
</tr>
<tr>
<td>Q0–Q35</td>
<td>Data Outputs</td>
<td>O</td>
<td>Data outputs for an 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused output pins are in a don’t care state. Outputs are not 5V tolerant regardless of the state of OE.</td>
</tr>
<tr>
<td>RCLK/RD</td>
<td>Read Clock/Read Strobe</td>
<td>I</td>
<td>If Synchronous operation of the read port has been selected, when enabled by REN, the rising edge of RCLK reads data from the FIFO memory and offsets from the programmable registers. If LD is LOW, the values loaded into the offset registers is output on a rising edge of RCLK. If Asynchronous operation of the read port has been selected, a rising edge on RD reads data from the FIFO in an Asynchronous manner. REN should be tied LOW. Asynchronous operation of the RCLK/RD input is only available in the PBGA package.</td>
</tr>
<tr>
<td>REN</td>
<td>Read Enable</td>
<td>I</td>
<td>REN enables RCLK for reading data from the FIFO memory and offset registers.</td>
</tr>
<tr>
<td>RM(1)</td>
<td>Retransmit Timing Mode</td>
<td>I</td>
<td>During Master Reset, a LOW on RM will select zero latency Retransmit timing Mode. A HIGH on RM will select normal latency mode.</td>
</tr>
<tr>
<td>RT</td>
<td>Retransmit</td>
<td>I</td>
<td>RT asserted on the rising edge of RCLK initializes the READ pointer to zero, sets the EF flag to LOW (OR to HIGH in FWFT mode) and does not disturb the write pointer, programming method, existing timing mode or programmable flag settings. RT is useful to reread data from the first physical location of the FIFO.</td>
</tr>
</tbody>
</table>

NOTE:

1. Inputs should not change state after Master Reset.

© 2019 Renesas Electronics Corporation
PIN DESCRIPTION (PBGA PACKAGE ONLY)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASYR¹</td>
<td>Asynchronous Read Port</td>
<td>I</td>
<td>A HIGH on this input during Master Reset will select Synchronous read operation for the output port. A LOW will select Asynchronous operation. If Asynchronous is selected the FIFO must operate in IDT Standard mode.</td>
</tr>
<tr>
<td>ASYW¹</td>
<td>Asynchronous Write Port</td>
<td>I</td>
<td>A HIGH on this input during Master Reset will select Synchronous write operation for the input port. A LOW will select Asynchronous operation.</td>
</tr>
<tr>
<td>TCK²</td>
<td>JTAG Clock</td>
<td>I</td>
<td>Clock input for JTAG function. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to TCK. Data from TMS and TDI are sampled on the rising edge of TCK and outputs change on the falling edge of TCK. If the JTAG function is not used this signal needs to be tied to GND.</td>
</tr>
<tr>
<td>TDI²</td>
<td>JTAG Test Data Input</td>
<td>I</td>
<td>One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded via the TDI on the rising edge of TCK to either the Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDI HIGH if left unconnected.</td>
</tr>
<tr>
<td>TDO²</td>
<td>JTAG Test Data Output</td>
<td>O</td>
<td>One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded output via the TDO on the falling edge of TCK from either the Instruction Register, ID Register and Bypass Register. This output is high impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.</td>
</tr>
<tr>
<td>TMS²</td>
<td>JTAG Mode Select</td>
<td>I</td>
<td>TMS is a serial input pin. One of four terminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pull-up resistor forces TMS HIGH if left unconnected.</td>
</tr>
<tr>
<td>TRST²</td>
<td>JTAG Reset</td>
<td>I</td>
<td>TRST is an asynchronous reset pin for the JTAG controller. The JTAG TAP controller does not automatically reset upon power-up, thus it must be reset by either this signal or by setting TMS = HIGH for five TCK cycles. If the TAP controller is not properly reset then the FIFO outputs will always be in high-impedance. If the JTAG function is used but the user does not want to use TRST, then TRST can be tied with MRS to ensure proper FIFO operation. If the JTAG function is not used then this signal needs to be tied to GND.</td>
</tr>
</tbody>
</table>

NOTE:
1. Inputs should not change state after Master Reset.
2. These pins are for the JTAG port. Please refer to pages 42-45 and Figures 31-33.
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Rating</th>
<th>Com’l & Ind’l</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTERM(2)</td>
<td>Terminal Voltage with respect to GND</td>
<td>–0.5 to +4.5</td>
<td>V</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>–55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>IOUT</td>
<td>DC Output Current</td>
<td>–50 to +50</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminal only.

RECOMMENDED DC OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC(n)</td>
<td>Supply Voltage Com’l/Ind’l</td>
<td>3.15</td>
<td>3.3</td>
<td>3.45</td>
<td>V</td>
</tr>
<tr>
<td>GND</td>
<td>Supply Voltage Com’l/Ind’l</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>VIL(3)</td>
<td>Input Low Voltage Com’l/Ind’l</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>TA</td>
<td>Operating Temperature Com’l</td>
<td>0</td>
<td>—</td>
<td>70</td>
<td>°C</td>
</tr>
<tr>
<td>TA</td>
<td>Operating Temperature Ind’ustrial</td>
<td>—</td>
<td>—</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
1. Vcc = 3.3V ± 0.15V, JEDEC JESD8-A compliant.
2. Outputs are not 5V tolerant.
3. 1.5V undershoots are allowed for 10ns once per cycle.

DC ELECTRICAL CHARACTERISTICS

(Commercial: Vcc = 3.3V ± 0.15V, TA = 0°C to +70°C; Industrial: Vcc = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter(1)</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILi(2)</td>
<td>Input Leakage Current</td>
<td>V IN = 0V</td>
<td>–1</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>ILO(3)</td>
<td>Output Leakage Current</td>
<td>V OUT = 0V</td>
<td>–10</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>VOH</td>
<td>Output Logic “1” Voltage, IOH = –2 mA</td>
<td></td>
<td>2.4</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>VOL</td>
<td>Output Logic “0” Voltage, IOL = 8 mA</td>
<td></td>
<td>—</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>ICC1(4,5,6)</td>
<td>Active Power Supply Current</td>
<td></td>
<td>—</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>ICC2(7)</td>
<td>Standby Current</td>
<td></td>
<td>—</td>
<td>15</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES:
1. Industrial temperature range product for the 7-5ns and 15ns speed grades are available as a standard device. All other speed grades are available by special order.
2. Measurements with 0.4 ≤ V IN ≤ Vcc.
3. OE ≥ VIL, 0.4 ≤ VOUT ≤ Vcc.
4. Tested with outputs open (IOUT = 0).
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz.
6. Typical ICC1 = 4.2 + 1.4*fs + 0.002*C L*fs (in mA) with Vcc = 3.3V, ta = 25°C, fs = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at fs/2.
4. CL = capacitive load (in pF).
7. All Inputs = Vcc – 0.2V or GND + 0.2V, except RCLK and WCLK, which toggle at 20 MHz.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter(1)</th>
<th>Conditions</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN(2)</td>
<td>Input Capacitance</td>
<td>V IN = 0V</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>Cout(1,2)</td>
<td>Output Capacitance</td>
<td>V OUT = 0V</td>
<td>10</td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTES:
1. With output deselected, (OE ≥ VIL).
2. Characterized values, not currently tested.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Commercial PBGA & TQFP</th>
<th>Com’l & Ind’l(2) PBGA & TQFP</th>
<th>Commercial TQFP Only</th>
<th>Com’l & Ind’l(2) TQFP Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>fS</td>
<td>Clock Cycle Frequency</td>
<td>166</td>
<td>133.3</td>
<td>100</td>
<td>66.7</td>
</tr>
<tr>
<td>iA</td>
<td>Data Access Time(3)</td>
<td>14</td>
<td>51</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>tCLK</td>
<td>Clock Cycle Time</td>
<td>6</td>
<td>7.5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>tCLKH</td>
<td>Clock High Time</td>
<td>2.7</td>
<td>3.5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>tCLE</td>
<td>Clock Low Time</td>
<td>2.7</td>
<td>3.5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>tDS</td>
<td>Data Setup Time</td>
<td>2</td>
<td>2.5</td>
<td>3.5</td>
<td>6</td>
</tr>
<tr>
<td>tDH</td>
<td>Data Hold Time</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>tENS</td>
<td>Enable Setup Time</td>
<td>2</td>
<td>2.5</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>tENH</td>
<td>Enable Hold Time</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>tLD</td>
<td>Load Setup Time</td>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>tLH</td>
<td>Load Hold Time</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>iFS</td>
<td>Reset Pulse Width(3)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>iRSS</td>
<td>Reset Setup Time</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>iSRR</td>
<td>Reset Recovery Time</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>iSFR</td>
<td>Reset to Flag and Output Time</td>
<td>—</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>iRTS</td>
<td>Retransmit Setup Time</td>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>tOE</td>
<td>Enable Output to Output Valid(3)</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>tOEH</td>
<td>Output Enable to Output in High-Z(4,2)</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>tWFF</td>
<td>Write Clock to FF or IR</td>
<td>4</td>
<td>5</td>
<td>6.5</td>
<td>10</td>
</tr>
<tr>
<td>tREF</td>
<td>Read Clock to EF or OR</td>
<td>—</td>
<td>4</td>
<td>5</td>
<td>6.5</td>
</tr>
<tr>
<td>tPAFA</td>
<td>Clock to Asynchronous Programmable Almost-Flag</td>
<td>—</td>
<td>10</td>
<td>12.5</td>
<td>16</td>
</tr>
<tr>
<td>tPAFS</td>
<td>Write Clock to Asynchronous Programmable Almost-Flag</td>
<td>—</td>
<td>4</td>
<td>5</td>
<td>6.5</td>
</tr>
<tr>
<td>tPAEA</td>
<td>Clock to Asynchronous Programmable Almost-Empty Flag</td>
<td>—</td>
<td>10</td>
<td>12.5</td>
<td>16</td>
</tr>
<tr>
<td>tPAES</td>
<td>Read Clock to Asynchronous Programmable Almost-Empty Flag</td>
<td>—</td>
<td>4</td>
<td>5</td>
<td>6.5</td>
</tr>
<tr>
<td>tHF</td>
<td>Clock to FF</td>
<td>—</td>
<td>10</td>
<td>12.5</td>
<td>16</td>
</tr>
<tr>
<td>tSKEN1</td>
<td>Skew time between RCLK and WCLK for EF/OR and FF/IR</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>tSKEN2</td>
<td>Skew time between RCLK and WCLK for PAE and PAF</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

NOTES:
1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Industrial temperature range product for 7.5ns and 15ns speed grades are available as standard device. All other speed grades are available by special order.
3. Pulse widths less than minimum values are not allowed.
4. Values guaranteed by design, not currently tested.
5. TQFP package only: for speed grades 7.5ns, 10ns and 15ns, the minimum for iA, iOE, and iOEH is 2ns.
AC ELECTRICAL CHARACTERISTICS(1) — ASYNCHRONOUS TIMING
(Commercial: Vcc = 3.3V ± 0.15V, TA = 0°C to +70°C; Industrial: Vcc = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Commercial</th>
<th>Com’l & Ind’l</th>
</tr>
</thead>
<tbody>
<tr>
<td>fA(4)</td>
<td>Cycle Frequency (Asynchronous mode)</td>
<td>— 100</td>
<td>— 83 MHz</td>
</tr>
<tr>
<td>tAA(4)</td>
<td>Data Access Time</td>
<td>0.6 8</td>
<td>0.6 10 ns</td>
</tr>
<tr>
<td>tCYC(4)</td>
<td>Cycle Time</td>
<td>10 — 12</td>
<td>— ns</td>
</tr>
<tr>
<td>tCYH(4)</td>
<td>Cycle HIGH Time</td>
<td>4.5 — 5</td>
<td>— ns</td>
</tr>
<tr>
<td>tCYL(4)</td>
<td>Cycle LOW Time</td>
<td>4.5 — 5</td>
<td>— ns</td>
</tr>
<tr>
<td>tRPE(4)</td>
<td>Read Pulse after EF HIGH</td>
<td>8 — 10</td>
<td>— ns</td>
</tr>
<tr>
<td>tFFA(4)</td>
<td>Clock to Asynchronous FF</td>
<td>— 8</td>
<td>— 10 ns</td>
</tr>
<tr>
<td>tEFA(4)</td>
<td>Clock to Asynchronous EF</td>
<td>— 8</td>
<td>— 10 ns</td>
</tr>
<tr>
<td>tFAFA(4)</td>
<td>Clock to Asynchronous Programmable Almost-Full Flag</td>
<td>— 8</td>
<td>— 10 ns</td>
</tr>
<tr>
<td>tFAEA(4)</td>
<td>Clock to Asynchronous Programmable Almost-Empty Flag</td>
<td>— 8</td>
<td>— 10 ns</td>
</tr>
</tbody>
</table>

NOTES:
1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Pulse widths less than minimum values are not allowed.
3. Values guaranteed by design, not currently tested.
4. Parameters apply to the PBGA package only.
AC TEST CONDITIONS

<table>
<thead>
<tr>
<th>Input Pulse Levels</th>
<th>GND to 3.0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Rise/Fall Times</td>
<td>3ns(1)</td>
</tr>
<tr>
<td>Input Timing Reference Levels</td>
<td>1.5V</td>
</tr>
<tr>
<td>Output Reference Levels</td>
<td></td>
</tr>
<tr>
<td>Output Load for tCLK = 10ns, 15ns</td>
<td>See Figure 2a</td>
</tr>
<tr>
<td>Output Load for tCLK = 6ns, 7.5ns</td>
<td>See Figure 2b & 2c</td>
</tr>
</tbody>
</table>

NOTE:
1. For 166MHz and 133MHz operation input rise/fall times are 1.5ns.

AC TEST LOADS - 6ns, 7.5ns Speed Grades

![Figure 2b. AC Test Load](image)

AC TEST LOADS - 10ns, 15ns Speed Grades

![Figure 2a. Output Load](image)

* Includes jig and scope capacitances.

![Figure 2c. Lumped Capacitive Load, Typical Derating](image)

OUTPUT ENABLE & DISABLE TIMING

![Diagram](image)

NOTE:
1. REN is HIGH.
FUNCTIONAL DESCRIPTION

TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH (FWFT) MODE

The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 support two different timing modes of operation: IDT Standard mode or First Word Fall Through (FWFT) mode. The selection of which mode will operate is determined during Master Reset, by the state of the FWFT/SI input.

If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag (EF) to indicate whether or not there are any words present in the FIFO. It also uses the Full Flag function (FF) to indicate whether or not the FIFO has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable (REN) and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready (OR) to indicate whether or not there is valid data at the data outputs (Qn). It also uses Input Ready (IR) to indicate whether or not the FIFO has any free space for writing. In the FWFT mode, the first word written to an empty FIFO goes directly to Qn after three RCLK rising edges. Subsequent words must be accessed using the Read Enable (REN) and RCLK.

Various signals, both input and output signals operate differently depending on which timing mode is in effect.

IDT STANDARD MODE

In this mode, the status flags, FF, PAF, HF, PAE, and EF operate in the manner outlined in Table 3. To write data into the FIFO, Write Enable (WEN) must be LOW. Data presented to the DATA IN lines will be clocked into the FIFO on subsequent transitions of the Write Clock (WCLK). After the first write is performed, the Empty Flag (EF) will go HIGH. Subsequent writes will continue to fill up the FIFO. The Programmable Almost-Empty flag (PAE) will go HIGH after n + 1 words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are stated in the footnote of Table 2. This parameter is also user programmable. See section on Programmable Flag Offset Loading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the Half-Full flag (HF) would toggle to LOW once the 513rd word for the IDT72V3640, 1,025th word for the IDT72V3650, 2,049th word for the IDT72V3660, 4,097th word for the IDT72V3670, 8,193th word for the IDT72V3680 and 16,385th word for the IDT72V3690, respectively was written into the FIFO. Continuing to write data into the FIFO will cause the Programmable Almost-Full flag (PAF) to go LOW. Again, if no reads are performed, the PAF will go LOW after (D + 1,024) writes for the IDT72V3640, (2,048-m) writes for the IDT72V3650, (4,096-m) writes for the IDT72V3660, (8,192-m) writes for the IDT72V3670, (16,384-m) writes for the IDT72V3680 and (32,768-m) writes for the IDT72V3690. The offset “m” is the full offset value. The default setting for these values are stated in the footnote of Table 2. This parameter is also user programmable. See section on Programmable Flag Offset Loading.

When the FIFO is full, the Full Flag (FF) will go LOW, inhibiting further write operations. If no reads are performed after a reset, IR will go HIGH after D writes to the FIFO. D = 1,024 writes for the IDT72V3640, 2,048 writes for the IDT72V3650, 4,096 writes for the IDT72V3660, 8,192 writes for the IDT72V3670, 16,384 writes for the IDT72V3680 and 32,768 writes for the IDT72V3690, respectively.

If the FIFO is full, the first read operation will cause FF to go HIGH. Subsequent read operations will cause PAF and HF to go HIGH at the conditions described in Table 3. If further read operations occur, without write operations, PAE will go LOW when there are n words in the FIFO, where n is the empty offset value. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, the FF will go LOW inhibiting further read operations. REN is ignored when the FIFO is empty.

When configured in IDT Standard mode, the EF and FF outputs are double register-buffered outputs.

Relevant timing diagrams for IDT Standard mode can be found in Figure 7,8,11 and 13.

FIRST WORD FALL THROUGH MODE (FWFT)

In this mode, the status flags, IR, PAF, HF, PAE, and OR operate in the manner outlined in Table 4. To write data into the FIFO, WEN must be LOW. Data presented to the DATA IN lines will be clocked into the FIFO on subsequent transitions of WCLK. After the first write is performed, the Output Ready (OR) flag will go LOW. Subsequent writes will continue to fill up the FIFO. PAE will go HIGH after n + 2 words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are stated in the footnote of Table 2. This parameter is also user programmable. See section on Programmable Flag Offset Loading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the HF would toggle to LOW once the 514th word for the IDT72V3640, 1,026th word for the IDT72V3650, 2,050th word for the IDT72V3660, 4,098th word for the IDT72V3670, 8,194th word for the IDT72V3680, 16,386th word for the IDT72V3690, respectively was written into the FIFO. Continuing to write data into the FIFO will cause the PAF to go LOW. Again, if no reads are performed, the PAF will go LOW after (1,025-m) writes for the IDT72V3640, (2,049-m) writes for the IDT72V3650, (4,097-m) writes for the IDT72V3660 and (8,193-m) writes for the IDT72V3670, (16,385-m) writes for the IDT72V3680 and (32,769-m) writes for the IDT72V3690, where m is the full offset value. The default setting for these values are stated in the footnote of Table 2.

When the FIFO is full, the Input Ready (IR) flag will go HIGH, inhibiting further write operations. If no reads are performed after a reset, IR will go HIGH after D writes to the FIFO. D = 1,025 writes for the IDT72V3640, 2,049 writes for the IDT72V3650, 4,097 writes for the IDT72V3660 and 8,193 writes for the IDT72V3670, 16,385 writes for the IDT72V3680 and 32,769 writes for the IDT72V3690, respectively. Note that the additional word in FWFT mode is due to the capacity of the memory plus output register.

If the FIFO is full, the first read operation will cause the IR flag to go LOW. Subsequent read operations will cause the PAE and HF to go HIGH at the conditions described in Table 4. If further read operations occur, without write operations, the PAE will go LOW when there are n + 1 words in the FIFO, where n is the empty offset value. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, OR will go HIGH inhibiting further read operations. REN is ignored when the FIFO is empty.

When configured in FWFT mode, the OR flag output is triple register-buffered, and the IR flag output is double register-buffered.

Relevant timing diagrams for FWFT mode can be found in Figure 9,10,12, and 14.
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNCH™ 36-BIT FIFO

PROGRAMMING FLAG OFFSETS

Full and Empty Flag offset values are user programmable. The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 have internal registers for these offsets. There are eight default offset values selectable during Master Reset. These offset values are shown in Table 2. Offset values can also be programmed into the FIFO in one of two ways; serial or parallel loading method. The selection of the loading method is done using the LD (Load) pin. During Master Reset, the state of the LD input determines whether serial or parallel flag offset programming is enabled. A HIGH on LD during Master Reset selects serial loading of offset values. A LOW on LD during Master Reset selects parallel loading of offset values.

In addition to loading offset values into the FIFO, it is also possible to read the current offset values. Offset values can be read via the parallel output port Q0-Qn, regardless of the programming mode selected (serial or parallel). It is not possible to read the offset values in serial fashion.

Figure 3, Programmable Flag Offset Programming Sequence, summaries the control pins and sequence for both serial and parallel programming modes. For a more detailed description, see discussion that follows.

The offset registers may be programmed (and reprogrammed) any time after Master Reset, regardless of whether serial or parallel programming has been selected. Valid programming ranges are from 0 to D-1.

SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG TIMING SELECTION

The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 can be configured during the Master Reset cycle with either synchronous or asynchronous timing for PAF and PAE flags by use of the PFM pin.

If synchronous PAF/PAE configuration is selected (PFM, HIGH during MRS), the PAF is asserted and updated on the rising edge of WCLK only and not RCLK. Similarly, PAE is asserted and updated on the rising edge of RCLK only and not WCLK. For detail timing diagrams, see Figure 17 for synchronous PAF timing and Figure 18 for synchronous PAE timing.

If asynchronous PAF/PAE configuration is selected (PFM, LOW during MRS), the PAF is asserted LOW on the LOW-to-HIGH transition of WCLK and PAF is reset to HIGH on the LOW-to-HIGH transition of RCLK. Similarly, PAE is asserted LOW on the LOW-to-HIGH transition of RCLK. PAE is reset to HIGH on the LOW-to-HIGH transition of WCLK. For detail timing diagrams, see Figure 19 for asynchronous PAF timing and Figure 20 for asynchronous PAE timing.

TABLE 2 — DEFAULT PROGRAMMABLE FLAG OFFSETS

<table>
<thead>
<tr>
<th>IDT72V3640, 72V3650</th>
<th>LD</th>
<th>FSEL1</th>
<th>FSEL0</th>
<th>Offsets n,m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDT72V3660, 72V3670, 72V3680, 72V3690</th>
<th>LD</th>
<th>FSEL1</th>
<th>FSEL0</th>
<th>Offsets n,m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>1,023</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDT72V3640, 72V3650</th>
<th>LD</th>
<th>FSEL1</th>
<th>FSEL0</th>
<th>Program Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>Serial[3]</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>X</td>
<td>X</td>
<td>Parallel[4]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDT72V3640, 72V3650</th>
<th>LD</th>
<th>FSEL1</th>
<th>FSEL0</th>
<th>Program Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>Serial[3]</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>X</td>
<td>X</td>
<td>Parallel[4]</td>
</tr>
</tbody>
</table>

NOTES:
1. n = empty offset for PAE.
2. m = full offset for PAF.
3. As well as selecting serial programming mode, one of the default values will also be loaded depending on the state of FSEL0 & FSEL1.
4. As well as selecting parallel programming mode, one of the default values will also be loaded depending on the state of FSEL0 & FSEL1.

© 2019 Renesas Electronics Corporation
TABLE 3 — STATUS FLAGS FOR IDT STANDARD MODE

<table>
<thead>
<tr>
<th>Number of Words in FIFO</th>
<th>IDT72V3640</th>
<th>IDT72V3650</th>
<th>IDT72V3660</th>
<th>FF</th>
<th>PAF</th>
<th>HF</th>
<th>PAE</th>
<th>EF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1 to n<sup>(1)</sup></td>
<td>1 to n<sup>(1)</sup></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>(n+1) to (n+1)</td>
<td>1 to 1,024</td>
<td>(n+1) to 2,048</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>513 to (2,048-(m+1))</td>
<td>1,025 to (2,048-(m+1))</td>
<td>2,049 to (4,096-(m+1))</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>(1,024-m) to 1,023</td>
<td>(2,048-m) to 2,047</td>
<td>(4,096-m) to 4,095</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>1,024</td>
<td>2,048</td>
<td>4,096</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

NOTE:
1. See table 2 for values for n, m.

TABLE 4 — STATUS FLAGS FOR FWFT MODE

<table>
<thead>
<tr>
<th>Number of Words in FIFO</th>
<th>IDT72V3640</th>
<th>IDT72V3650</th>
<th>IDT72V3660</th>
<th>IR</th>
<th>PAF</th>
<th>HF</th>
<th>PAE</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1 to n+1</td>
<td>1 to n+1</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>(n+2) to 513</td>
<td>1 to n+1</td>
<td>1 to n+1</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>514 to (1,025-(m+1))</td>
<td>1,026 to (2,049-(m+1))</td>
<td>2,050 to (4,097-(m+1))</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>(1,025-m) to 1,024</td>
<td>(2,049-m) to 2,047</td>
<td>(4,097-m) to 4,096</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>1,025</td>
<td>2,049</td>
<td>4,097</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

NOTE:
1. See table 2 for values for n, m.
Programmable Flag Offset Programming Sequence

<table>
<thead>
<tr>
<th>LDI</th>
<th>WEN</th>
<th>REN</th>
<th>SEN</th>
<th>WCLK</th>
<th>RCLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parallel write to registers:
- Empty Offset (LSB)
- Empty Offset (MSB)
- Full Offset (LSB)
- Full Offset (MSB)

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>X</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parallel read from registers:
- Empty Offset (LSB)
- Empty Offset (MSB)
- Full Offset (LSB)
- Full Offset (MSB)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>X</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Serial shift into registers:
- 20 bits for the 72V3640
- 22 bits for the 72V3650
- 24 bits for the 72V3660
- 26 bits for the 72V3670
- 28 bits for the 72V3680
- 30 bits for the 72V3690
- 1 bit for each rising WCLK edge

Notes:
1. The programming method can only be selected at Master Reset.
2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected.
3. The programming sequence applies to both IDT Standard and FWFT modes.

Figure 3. Programmable Flag Offset Programming Sequence
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

16

Figure 3. Programmable Flag Offset Programming Sequence (Continued)
SERIAL PROGRAMMING MODE

If Serial Programming mode has been selected, as described above, then programming of PAE and PAF values can be achieved by using a combination of the LD, SEN, WCLK and Sl input pins. Programming PAE and PAF proceeds as follows: when LD and SEN are set LOW, data on the Sl input are written, one bit for each WCLK rising edge, starting with the Empty Offset LSB and ending with the Full Offset MSB. A total of 20 bits for the IDT72V3640, 22 bits for the IDT72V3650, 24 bits for the IDT72V3660, 26 bits for the IDT72V3670, 28 bits for the IDT72V3680 and 30 bits for the IDT72V3690. See Figure 15, Serial Loading of Programmable Flag Registers, for the timing diagram for this mode.

Using the serial method, individual registers cannot be programmed selectively. PAE and PAF can show a valid status only after the complete set of bits (for all offset registers) has been entered. The registers can be reprogrammed as long as the complete set of new offset bits is entered. When LD is LOW and SEN is HIGH, no serial write to the registers can occur.

Write operations to the FIFO are allowed before and during the serial programming sequence. In this case, the programming of all offset bits does not have to occur at once. A select number of bits can be written to the Sl input and then, by bringing LD and SEN HIGH, data can be written to FIFO memory via Dn by toggling WEN. When WEN is brought HIGH with LD and SEN restored to a LOW, the next offset bit in sequence is written to the registers via Sl. If an interruption of serial programming is desired, it is sufficient either to set LD LOW and deactivate SEN or to set SEN LOW and deactivate LD. Once LD and SEN are both restored to a LOW level, serial offset programming continues.

From the time serial programming has begun, neither programable flag will be valid until the full set of bits required to fill all the offset registers has been written. Measuring from the rising WCLK edge that achieves the above criteria, PAF will be valid after two more rising WCLK edges plus tPAE. PAF will be valid after the next two rising RCLK edges plus tPAE plus tSKEW2.

It is only possible to read the flag offset values via the parallel output port Qn.

PARALLEL MODE

If Parallel Programming mode has been selected, as described above, then programming of PAE and PAF values can be achieved by using a combination of the LD, WCLK, WEN and Dn input pins. Programming PAE and PAF proceeds as follows: LD and WEN must be set LOW. For x36 bit input bus width, data on the inputs Dn are written into the Empty Offset Register on the first LOW-to-HIGH transition of WCLK. Upon the second LOW-to-HIGH transition of WCLK, data are written into the Full Offset Register. The third transition of WCLK writes, once again, to the Empty Offset Register. For x18 bit input bus width, data on the inputs Dn are written into the Empty Offset Register LSB on the first LOW-to-HIGH transition of WCLK. Upon the second LOW-to-HIGH transition of WCLK data are written into the Empty Offset Register MSB. The third transition of WCLK writes to the Full Offset Register LSB, the fourth transition of WCLK then writes to the Full Offset Register MSB. The fifth transition of WCLK writes once again to the Empty Offset Register LSB. A total of four writes to the offset registers is required to load values using a x18 input bus width. For an input bus width of x9 bits, a total of six write cycles to the offset registers is required to load values. See Figure 3, Programmable Flag Offset Programming Sequence. See Figure 16, Parallel Loading of Programmable Flag Registers, for the timing diagram for this mode.

The act of writing offsets in parallel employs a dedicated write offset register pointer. The act of reading offsets employs a dedicated read offset register pointer. The two pointers operate independently; however, a read and a write should not be performed simultaneously to the offset registers. A Master Reset initializes both pointers to the Empty Offset (LSB) register. A Partial Reset has no effect on the position of these pointers.

Write operations to the FIFO are allowed before and during the parallel programming sequence. In this case, the programming of all offset registers does not have to occur at one time. One, two or more offset registers can be written and then by bringing LD HIGH, write operations can be redirected to the FIFO memory. When LD is set LOW again, and WEN is LOW, the next offset register in sequence is written to. As an alternative to holding WEN LOW and toggling LD, parallel programming can also be interrupted by setting LD LOW and toggling WEN.

Note that the status of a programable flag (PAE or PAF) output is invalid during the programming process. From the time parallel programming has begun, a programable flag output will not be valid until the appropriate offset word has been written to the register(s) pertaining to that flag. Measuring from the rising WCLK edge that achieves the above criteria; PAF will be valid after two more rising WCLK edges plus tPAF. PAF will be valid after the next two rising RCLK edges plus tPAE plus tSKEW2.

The act of reading the offset registers employs a dedicated read offset register pointer. The contents of the offset registers can be read on the Q0-Qn pins when LD is set LOW and REN is set LOW. For x36 output bus width, data are read via Qn from the Empty Offset Register on the first LOW-to-HIGH transition of RCLK. Upon the second LOW-to-HIGH transition of RCLK, data are read from the Full Offset Register. The third transition of RCLK reads, once again, from the Empty Offset Register. For x18 output bus width, a total of four read cycles are required to obtain the values of the offset registers. Starting with the Empty Offset Register LSB and finishing with the Full Offset Register MSB. For x9 output bus width, a total of six read cycles must be performed on the offset registers. See Figure 3, Programmable Flag Offset Programming Sequence. See Figure 17, Parallel Read of Programmable Flag Registers, for the timing diagram for this mode.

It is permissible to interrupt the offset register read sequence with reads or writes to the FIFO. The interruption is accomplished by deasserting REN, LD, or both together. When REN and LD are restored to a LOW level, reading of the offset registers continues where it left off. It should be noted, and care should be taken from the fact that when a parallel read of the flag offsets is performed, the data word that was present on the output lines Qn will be overwritten.

Parallel reading of the offset registers is always permitted regardless of which timing mode (IDT Standard or FWFT modes) has been selected.

RETRANSMIT OPERATION

The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normal latency and zero latency. There are two stages to Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual retransmit, which consists of reading out the memory contents, starting at the beginning of memory.

Retransmit setup is initiated by holding RT LOW during a rising RCLK edge. REN and WEN must be HIGH before bringing RT LOW. When zero latency is utilized, REN does not need to be HIGH before bringing RT LOW. At least two words, but no more than D-2 words should have been written into the FIFO, and read from the FIFO, between Reset (Master or Partial) and the time of Retransmit setup. D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. In FWFT mode, D = 1,025 for the IDT72V2640, 2,049 for the IDT72V2650, 4,097 for the IDT72V2660, 8,193 for the IDT72V2670, 16,385 for the IDT72V2680 and 32,769 for the IDT72V2690.

If IDT Standard mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting EF LOW. The change in level will only be noticeable.
if EF was HIGH before setup. During this period, the internal read pointer is initialized to the first location of the RAM array.

When EF goes HIGH, Retransmit setup is complete and read operations may begin starting with the first location in memory. Since IDT Standard mode is selected, every word read including the first word following Retransmit setup requires a LOW on REN to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.

If FWFT mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting OR HIGH. During this period, the internal read pointer is set to the first location of the RAM array.

When OR goes LOW, Retransmit setup is complete; at the same time, the contents of the first location appear on the outputs. Since FWFT mode is selected, the first word appears on the outputs, no LOW on REN is necessary. Reading all subsequent words requires a LOW on REN to enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFT Mode), for the relevant timing diagram.

For either IDT Standard mode or FWFT mode, updating of the PAE, HF and PAF flags begin with the rising edge of RCLK that RT is setup. PAE is synchronized to RCLK, thus on the second rising edge of RCLK after RT is setup, the PAE flag will be updated. HF is asynchronous, thus the rising edge of RCLK that RT is setup will update HF. PAF is synchronized to WCLK, thus the second rising edge of WCLK that occurs tsKEW after the rising edge of RCLK that RT is setup will update PAF. RT is synchronized to RCLK.

The Retransmit function has the option of two modes of operation, either “normal latency” or “zero latency”. Figure 11 and Figure 12 mentioned previously, relate to “normal latency”. Figure 13 and Figure 14 show “zero latency” retransmit operation. Zero latency basically means that the first data word to be retransmitted, is placed onto the output register with respect to the RCLK pulse that initiated the retransmit.
SIGNAL DESCRIPTION

INPUTS:
DATA IN (D0 - Dn)
Data inputs for 36-bit wide data (D0 - D35), data inputs for 18-bit wide data (D0 - D17) or data inputs for 9-bit wide data (D0 - D8).

CONTROLS:
MASTER RESET (MRS)
A Master Reset is accomplished whenever the MRS input is taken to a LOW state. This operation sets the internal read and write pointers to the first location of the RAM array. PWE will go LOW, PAF will go HIGH, and FF will go HIGH.
If FWFT/SI is LOW during Master Reset then the IDT Standard mode, along with EF and FF are selected. EF will go LOW and FF will go HIGH. If FWFT/SI is HIGH, then the First Word Fall Through mode (FWFT), along with IIR and OR, are selected. OR will go HIGH and IIR will go LOW.
All control settings such as OW, IW, BM, BE, RM, PFM and IP are defined during the Master Reset cycle.
During a Master Reset, the output register is initialized to all zeroes. A Master Reset is required after power up, before a write operation can take place. MRS is asynchronous.
See Figure 5, Master Reset Timing, for the relevant timing diagram.

PARTIAL RESET (PRS)
A Partial Reset is accomplished whenever the PRS input is taken to a LOW state. As in the case of the Master Reset, the internal read and write pointers are set to the first location of the RAM array. PWE goes LOW, PAF goes HIGH, and FF goes HIGH.
Whenever mode is active at the time of Partial Reset, IDT Standard mode or First Word Fall Through, that mode will remain selected. If the IDT Standard mode is active, then FF will go HIGH and EF will go LOW. If the First Word Fall Through mode is active, then OR will go HIGH, and IIR will go LOW.
Following Partial Reset, all values held in the offset registers remain unchanged. The programming method (parallel or serial) currently active at the time of Partial Reset is also retained. The output register is initialized to all zeroes. PRS is asynchronous.
A Partial Reset is useful for resetting the device during the course of operation, when reprogramming programmable flag offset settings may not be convenient.
See Figure 6, Partial Reset Timing, for the relevant timing diagram.

ASYNCHRONOUS WRITE (ASYW)
The write port can be configured for either Synchronous or Asynchronous mode of operation. If during Master Reset the ASYW input is LOW, then Asynchronous operation of the write port will be selected. During Asynchronous operation of the write port the WCLK input becomes WR input, this is the Asynchronous write strobe input. A rising edge on WR will write data present on the Dn inputs into the FIFO. (WEN must be tied LOW when using the write port in Asynchronous mode).
When the write port is configured for Asynchronous operation the full flag (FF) operates in an asynchronous manner, that is, the full flag will be updated based in both a write operation and read operation. Note, if Asynchronous mode is selected, FWFT is not permissible. Refer to Figures 23, 24, 27 and 28 for relevant timing and operational waveforms.

ASYNCHRONOUS READ (ASYR)
The read port can be configured for either Synchronous or Asynchronous mode of operation. If during a Master Reset the ASYR input is LOW, then Asynchronous operation of the read port will be selected. During Asynchronous operation of the read port the RCLK input becomes RD input, this is the Asynchronous read strobe input. A rising edge on RD will read data from the FIFO via the output register and Qn port. (REN must be tied LOW during Asynchronous operation of the read port).
The OE input provides three-state control of the Qn output bus, in an asynchronous manner.
When the read port is configured for Asynchronous operation the device must be operating on IDT standard mode, FWFT mode is not permissible if the read port is Asynchronous. The Empty Flag (EF) operates in an Asynchronous manner, that is, the empty flag will be updated based on both a read operation and a write operation. Refer to figures 25, 26, 27 and 28 for relevant timing and operational waveforms.

RETRANSMIT (RT)
The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normal latency and zero latency. There are two stages to Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual retransmit, which consists of reading out the memory contents, starting at the beginning of the memory.
Retransmit setup is initiated by holding RT LOW during a rising RCLK edge. REN and WEN must be HIGH before bringing RT LOW. When zero latency is utilized, REN does not need to be HIGH before bringing RT LOW.
If IDT Standard mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting EF LOW. The change in level will only be noticeable if EF was HIGH before setup. During this period, the internal read pointer is initialized to the first location of the RAM array.
When EF goes HIGH, Retransmit setup is complete and read operations may begin starting with the first location in memory. Since IDT Standard mode is selected, every word read including the first word following Retransmit setup requires a LOW on REN to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.
If FWFT mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting OR HIGH. During this period, the internal read pointer is set to the first location of the RAM array.
When OR goes LOW, Retransmit setup is complete; at the same time, the contents of the first location appear on the outputs. Since FWFT mode is selected, the first word appears on the outputs, no LOW on REN is necessary. Reading all subsequent words requires a LOW on REN to enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFT Mode), for the relevant timing diagram.
In Retransmit operation, zero latency mode can be selected using the Retransmit Mode (RM) pin during a Master Reset. This can be applied to both IDT Standard mode and FWFT mode.

FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)
This is a dual purpose pin. During Master Reset, the state of the FWFT/SI input determines whether the device will operate in IDT Standard mode or First Word Fall Through (FWFT) mode.
If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag (EF) to indicate whether or
not there are any words present in the FIFO memory. It also uses the Full Flag (FF) to indicate whether or not the FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable (REN) and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready (OR) to indicate whether or not there is valid data at the data outputs (Qn). It also uses Input Ready (IR) to indicate whether or not the FIFO memory has any free space for writing. In the FWFT mode, the first word written to an empty FIFO goes directly to Qn after three RCLK rising edges, REN = LOW is not necessary. Subsequent words must be accessed using the Read Enable (REN) and RCLK.

After Master Reset, FWFT/SI acts as a serial input for loading PAE and PAF offsets into the programmable registers. The serial input function can only be used when the serial loading method has been selected during Master Reset. Serial programming using the FWFT/SI pin functions the same way in both IDT Standard and FWFT modes.

WRITE STROBE & WRITE CLOCK (WR/WCLK)

If Synchronous operation of the write port has been selected via ASYW, this input behaves as WCLK.

A write cycle is initiated on the rising edge of the WCLK input. Data setup and hold times must be met with respect to the LOW-to-HIGH transition of the WCLK. It is permissible to stop the WCLK. Note that while WCLK is idle, the FF/IR, PAF, and HF flags will not be updated. (Note that WCLK is only capable of updating FF flag to LOW). The Write and Read Clocks can either be independent or coincident.

If Asynchronous operation has been selected this input is WR (write strobe). Data is Asynchronously written into the FIFO via the Dn inputs whenever there is a rising edge on WR. In this mode the WEN input must be tied LOW.

WRITE ENABLE (WEN)

When the WEN input is LOW, data may be loaded into the FIFO RAM array on the rising edge of every WCLK cycle if the device is not full. Data is stored in the RAM array sequentially and independently of any ongoing read operation.

When WEN is HIGH, no new data is written in the RAM array on each WCLK cycle.

To prevent data overflow in the IDT Standard mode, FF will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, FF will go HIGH allowing a write to occur. The FF is updated by two WCLK cycles + tSKEW after the RCLK cycle.

To prevent data overflow in the FWFT mode, IR will go HIGH, inhibiting further write operations. Upon the completion of a valid read cycle, IR will go LOW allowing a write to occur. The IR flag is updated by two WCLK cycles + tSKEW after the valid RCLK cycle.

WEN is ignored when the FIFO is full in either FWFT or IDT Standard mode.

If Asynchronous operation of the write port has been selected, then WEN must be held active, (tied LOW).

READ STROBE & READ CLOCK (RD/RCLK)

If Synchronous operation of the read port has been selected via ASYR, this input behaves as RCLK. A read cycle is initiated on the rising edge of the RCLK input. Data can be read on the outputs, on the rising edge of the RCLK input. It is permissible to stop the RCLK. Note that while RCLK is idle, the EF/IR, PAE and HF flags will not be updated. (Note that RCLK is only capable of updating the HF flag to HIGH). The Write and Read Clocks can be independent or coincident.

If Asynchronous operation has been selected this input is RD (Read Strobe). Data is Asynchronously read from the FIFO via the output register whenever there is a rising edge on RD. In this mode the REN input must be tied LOW. The OE input is used to provide Asynchronous control of the three-state Qn outputs.

READ ENABLE (REN)

When Read Enable is LOW, data is loaded from the RAM array into the output register on the rising edge of every RCLK cycle if the device is not empty.

When the REN input is HIGH, the output register holds the previous data and no new data is loaded into the output register. The data outputs Q0-Qn maintain the previous data value.

In the IDT Standard mode, every word accessed at Qn, including the first word written to an empty FIFO, must be requested using REN. When the last word has been read from the FIFO, the Empty Flag (EF) will go LOW, inhibiting further read operations. REN is ignored when the FIFO is empty. Once a write is performed, EF will go HIGH allowing a read to occur. The EF flag is updated by two RCLK cycles + tSKEW after the valid WCLK cycle.

In the FWFT mode, the first word written to an empty FIFO automatically goes to the outputs Qn, on the third valid LOW-to-HIGH transition of RCLK + tSKEW after the first write. REN does not need to be asserted LOW. In order to access all other words, a read must be executed using REN. The RCLK LOW-to-HIGH transition after the last word has been read from the FIFO, Output Ready (OR) will go HIGH with a true read (RCLK with REN = LOW), inhibiting further read operations. REN is ignored when the FIFO is empty.

If Asynchronous operation of the Read port has been selected, then REN must be held active, (tied LOW).

SERIAL ENABLE (SEN)

The SEN input is an enable used only for serial programming of the offset registers. The serial programming method must be selected during Master Reset. SEN is always used in conjunction with LD. When these lines are both LOW, data at the SI input can be loaded into the program register one bit for each LOW-to-HIGH transition of WCLK.

When SEN is HIGH, the programmable registers retains the previous settings and no offsets are loaded. SEN functions the same way in both IDT Standard and FWFT modes.

OUTPUT ENABLE (OE)

When Output Enable is enabled (LOW), the parallel output buffers receive data from the output register. When OE is HIGH, the output data bus (Qn) goes into a high impedance state.

LOAD (LD)

This is a dual purpose pin. During Master Reset, the state of the LD input, along with FSEL0 and FSEL1, determines one of eight default offset values for the PAE and PAF flags, along with the method by which these offset registers can be programmed, parallel or serial (see Table 2). After Master Reset, LD enables write operations to and read operations from the offset registers. Only the offset loading method currently selected can be used to write to the registers. Offset registers can be read only in parallel.

After Master Reset, the LD pin is used to activate the programming process of the flag offset values PAE and PAF. Pulling LD LOW will begin a serial loading or parallel load or read of these offset values.

BUS-MATCHING (BM, IW, OW)

The pins BM, IW and OW are used to define the input and output bus widths. During Master Reset, the state of these pins is used to configure the device bus sizes. See Table 1 for control settings. All flags will operate on the word/byte size boundary as defined by the selection of bus width. See Figure 4 for Bus-Matching Byte Arrangement.
BIG-ENDIAN/LITTLE-ENDIAN (BE/Little-Endian)

During Master Reset, a LOW on BE will select Big-Endian operation. A HIGH on BE during Master Reset will select Little-Endian format. This function is useful when the following input to output bus widths are implemented: x36 to x18, x36 to x9, x18 to x36, and x9 to x36. If Big-Endian mode is selected, then the most significant byte (word) of the long word written into the FIFO will be read out of the FIFO first, followed by the least significant byte. If Little-Endian format is selected, then the least significant byte of the long word written into the FIFO will be read out first, followed by the most significant byte. The mode desired is configured during master reset by the state of the Big-Endian (BE) pin. See Figure 4 for Bus-Matching Byte Arrangement.

PROGRAMMABLE FLAG MODE (PFM)

During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM will select Synchronous Programmable flag timing mode. If asynchronous PAF/PAE configuration is selected (PFM, LOW during MRS), the PAE is asserted LOW on the LOW-TO-HIGH transition of RCLK. PAF is reset to HIGH on the LOW-TO-HIGH transition of WCLK. Similarly, the PAF is asserted LOW on the LOW-TO-HIGH transition of WCLK and PAF is reset to HIGH on the LOW-TO-HIGH transition of RCLK.

If synchronous PAE/PAF configuration is selected (PFM, HIGH during MRS), the PAE is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, PAF is asserted and updated on the rising edge of WCLK only and not RCLK. The mode desired is configured during master reset by the state of the Programmable Flag Mode (PFM) pin.

INTERSPERSED PARITY (IP)

During Master Reset, a LOW on IP will select Non-Interspersed Parity mode. A HIGH will select Interspersed Parity mode. The IP bit function allows the user to select the parity bit in the word loaded into the parallel port (D0-Dn) when programming the flag offsets. If Interspersed Parity mode is selected, then the FIFO will assume that the parity bits are located in bit position D8, D17, D26 and D35 during the parallel programming of the flag offsets. If Non-Interspersed Parity mode is selected, then D8, D17 and D28 are assumed to be valid bits and D32, D33, D34 and D35 are ignored. IP mode is selected during Master Reset by the state of the IP input pin. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO.

Outputs:

FULL FLAG (FF/IR)

This is a dual purpose pin. In IDT Standard mode, the Full Flag (FF) function is selected. When the FIFO is full, FF will go LOW, inhibiting further write operations. When FF is HIGH, the FIFO is not full. If no reads are performed after a reset (either MRS or PRS), FF will go LOW after D writes to the FIFO. FF will go LOW after D writes to the FIFO (D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. See Figure 7, Write Cycle and Full Flag Timing (IDT Standard Mode), for the relevant timing information.

In FWFT mode, the Input Ready (IR) function is selected. IR goes LOW when memory space is available for writing in data. When there is no longer any free space left, IR goes HIGH, inhibiting further write operations. If no reads are performed after a reset (either MRS or PRS), IR will go HIGH after D writes to the FIFO (D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. See Figure 9, Write Timing (FWFT Mode), for the relevant timing information.

The IR status not only measures the contents of the FIFO memory, but also counts the presence of a word in the output register. Thus, in FWFT mode, the total number of writes necessary to deassert IR is one greater than needed to assert FF in IDT Standard mode. FF/IR is synchronous and updated on the rising edge of WCLK. FF/IR are double register-buffered outputs.

EMPTY FLAG (EF/IR)

This is a dual purpose pin. In the IDT Standard mode, the Empty Flag (EF) function is selected. When the FIFO is empty, EF will go LOW, inhibiting further read operations. When EF is HIGH, the FIFO is not empty. See Figure 8, Read Cycle, Empty Flag and First Word Latency Timing (IDT Standard Mode), for the relevant timing information.

In FWFT mode, the Output Ready (OR) function is selected. OR goes LOW at the same time that the first word written to an empty FIFO appears valid on the outputs. OR stays LOW after the RCLK LOW to HIGH transition that shifts the last word from the FIFO memory to the outputs. OR goes HIGH only with a true read (RCLK with REN = LOW). The previous data stays at the outputs, indicating the last word was read. Further data reads are inhibited until OR goes LOW again. See Figure 10, Read Timing (FWFT Mode), for the relevant timing information.

EF/IR is synchronous and updated on the rising edge of RCLK.

In IDT Standard mode, EF is a double register-buffered output. In FWFT mode, OR is a triple register-buffered output.

PROGRAMMABLE ALMOST-FULL FLAG (PAF)

The Programmable Almost-Full flag (PAF) will go LOW when the FIFO reaches the almost-full condition. In IDT Standard mode, if no reads are performed after reset (MRS), PAF will go LOW after (D - m) words are written to the FIFO. The PAF will go LOW after (1,024-m) writes for the IDT72V3640, (2,048-m) writes for the IDT72V3650, (4,096-m) writes for the IDT72V3660, (8,192-m) writes for the IDT72V3670, (16,384-m) writes for the IDT72V3680 and (32,768-m) writes for the IDT72V3690. The offset “m” is the full offset value.

The default setting for this value is stated in the footnote of Table 1.

In FWFT mode, the PAF will go LOW after (1,025-m) writes for the IDT72V3640, (2,049-m) writes for the IDT72V3650, (4,097-m) writes for the IDT72V3660 and (8,193-m) writes for the IDT72V3670, (16,385-m) writes for the IDT72V3680 and (32,769-m) writes for the IDT72V3690, where m is the full offset value. The default setting for this value is stated in Table 2.

See Figure 18, Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information.

Asynchronous Almost-Full Flag Timing (IDT Standard and FWFT Mode)

If asynchronous PAF configuration is selected, the PAF is asserted LOW on the LOW-TO-HIGH transition of the Write Clock (WCLK). PAF is reset to HIGH on the LOW-TO-HIGH transition of the Read Clock (RCLK). If synchronous PAF configuration is selected, the PAF is updated on the rising edge of WCLK. See Figure 20, Asynchronous Almost-Full Flag Timing (IDT Standard and FWFT Mode).

PROGRAMMABLE ALMOST-EMPTY FLAG (PAE)

The Programmable Almost-Empty flag (PAE) will go LOW when the FIFO reaches the almost-empty condition. In IDT Standard mode, PAE will go LOW when there are n words or less in the FIFO. The offset “n” is the empty offset value. The default setting for this value is stated in the footnote of Table 1.

In FWFT mode, the PAE will go LOW when there are n+1 words or less in the FIFO. The default setting for this value is stated in Table 2.

See Figure 19, Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information.
If asynchronous PAE configuration is selected, the PAE is asserted LOW on the LOW-to-HIGH transition of the Read Clock (RCLK). PAE is reset to HIGH on the LOW-to-HIGH transition of the Write Clock (WCLK). If synchronous PAE configuration is selected, the PAE is updated on the rising edge of RCLK. See Figure 21, Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode).

HALF-FULL FLAG (HF)

This output indicates a half-full FIFO. The rising WCLK edge that fills the FIFO beyond half-full sets HF LOW. The flag remains LOW until the difference between the write and read pointers becomes less than or equal to half of the total depth of the device; the rising RCLK edge that accomplishes this condition sets HF HIGH.

In IDT Standard mode, if no reads are performed after reset (MRS or PRS), HF will go LOW after \((D/2 + 1)\) writes to the FIFO, where \(D = 1,024\) for the IDT72V3640, \(4,096\) for the IDT72V3650, \(8,192\) for the IDT72V3660, \(16,384\) for the IDT72V3670, \(32,768\) for the IDT72V3680 and \(65,536\) for the IDT72V3690.

In FWFT mode, if no reads are performed after reset (MRS or PRS), HF will go LOW after \((D-1/2 + 2)\) writes to the FIFO, where \(D = 1,025\) for the IDT72V3640, \(2,049\) for the IDT72V3650, \(4,097\) for the IDT72V3660, \(8,193\) for the IDT72V3670, \(16,385\) for the IDT72V3680 and \(32,769\) for the IDT72V3690.

See Figure 22, Half-Full Flag Timing (IDT Standard and FWFT Modes), for the relevant timing information. Because HF is updated by both RCLK and WCLK, it is considered asynchronous.

DATA OUTPUTS (Q0-Qn)

(Q0-Q35) are data outputs for 36-bit wide data, (Q0-Q17) are data outputs for 18-bit wide data or (Q0-Q8) are data outputs for 9-bit wide data.
BYTE ORDER ON INPUT PORT:

<table>
<thead>
<tr>
<th>D35-D27</th>
<th>D26-D18</th>
<th>D17-D9</th>
<th>D8-D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Write to FIFO

BYTE ORDER ON OUTPUT PORT:

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Read from FIFO

(a) x36 INPUT to x36 OUTPUT

<table>
<thead>
<tr>
<th>BE</th>
<th>BM</th>
<th>IW</th>
<th>OW</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

1st: Read from FIFO

(b) x36 INPUT to x18 OUTPUT - BIG-ENDIAN

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

2nd: Read from FIFO

(c) x36 INPUT to x18 OUTPUT - LITTLE-ENDIAN

<table>
<thead>
<tr>
<th>BE</th>
<th>BM</th>
<th>IW</th>
<th>OW</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

1st: Read from FIFO

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

2nd: Read from FIFO

(d) x36 INPUT to x9 OUTPUT - BIG-ENDIAN

<table>
<thead>
<tr>
<th>BE</th>
<th>BM</th>
<th>IW</th>
<th>OW</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

1st: Read from FIFO

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

2nd: Read from FIFO

3rd: Read from FIFO

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

3rd: Read from FIFO

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

4th: Read from FIFO

(e) x36 INPUT to x9 OUTPUT - LITTLE-ENDIAN

<table>
<thead>
<tr>
<th>BE</th>
<th>BM</th>
<th>IW</th>
<th>OW</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

1st: Read from FIFO

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

2nd: Read from FIFO

3rd: Read from FIFO

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

3rd: Read from FIFO

<table>
<thead>
<tr>
<th>Q35-Q27</th>
<th>Q26-Q18</th>
<th>Q17-Q9</th>
<th>Q8-Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

4th: Read from FIFO

(e) x36 INPUT to x9 OUTPUT - LITTLE-ENDIAN

Figure 4. Bus-Matching Byte Arrangement
BYTE ORDER ON INPUT PORT:

D35-D27 D26-D18 D17-D9 D8-D0

1st: Write to FIFO

D35-D27 D26-D18 D17-D9 D8-D0

2nd: Write to FIFO

D35-D27 D26-D18 D17-D9 D8-D0

3rd: Write to FIFO

D35-D27 D26-D18 D17-D9 D8-D0

4th: Write to FIFO

BYTE ORDER ON OUTPUT PORT:

Q35-Q27 Q26-Q18 Q17-Q9 Q8-Q0

Read from FIFO

Read from FIFO

Read from FIFO

(a) x18 INPUT to x36 OUTPUT - BIG-ENDIAN

(b) x18 INPUT to x36 OUTPUT - LITTLE-ENDIAN

BYTE ORDER ON INPUT PORT:

D35-D27 D26-D18 D17-D9 D8-D0

1st: Write to FIFO

D35-D27 D26-D18 D17-D9 D8-D0

2nd: Write to FIFO

D35-D27 D26-D18 D17-D9 D8-D0

3rd: Write to FIFO

D35-D27 D26-D18 D17-D9 D8-D0

4th: Write to FIFO

BYTE ORDER ON OUTPUT PORT:

Q35-Q27 Q26-Q18 Q17-Q9 Q8-Q0

Read from FIFO

Read from FIFO

Read from FIFO

(a) x9 INPUT to x36 OUTPUT - BIG-ENDIAN

(b) x9 INPUT to x36 OUTPUT - LITTLE-ENDIAN

Figure 4. Bus-Matching Byte Arrangement (Continued)
Figure 5. Master Reset Timing
Figure 6. Partial Reset Timing
Figure 7. Write Cycle and Full Flag Timing (IDT Standard Mode)

Figure 8. Read Cycle, Empty Flag and First Data Word Latency Timing (IDT Standard Mode)
NOTES:

1. tslew1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that OR will go LOW after two RCLK cycles plus tREF. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tslew1, then OR assertion may be delayed one extra RCLK cycle.

2. tslew2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH after one RCLK cycle plus tPAES. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tslew2, then the PAE deassertion may be delayed one extra RCLK cycle.

3. LD = HIGH, OE = LOW

4. n = PAE offset, m = PAF offset and D = maximum FIFO depth.

5. D = 1,025 for IDT72V3640, 2,049 for IDT72V3650, 4,097 for IDT72V3660, 8,193 for IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690.

6. First data word latency = tslew1 + 2*TRCLK + tREF.

Figure 9. Write Timing (First Word Fall Through Mode)
NOTES:
1. "tSKEW1" is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that IR will go LOW after one WCLK cycle plus tWFF. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then the IR assertion may be delayed one extra WCLK cycle.
2. "tSKEW2" is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH after one WCLK cycle plus tPAFS. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW2, then the PAF deassertion may be delayed one extra WCLK cycle.
3. LD = HIGH
4. n = PAE offset, m = PAF offset and D = maximum FIFO depth.
5. D = 1,025 for IDT72V3640, 2,049 for IDT72V3650, 4,097 for IDT72V3660, 8,193 for IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690.

Figure 10. Read Timing (First Word Fall Through Mode)
NOTES:
1. Retransmit setup is complete after EF returns HIGH, only then can a read operation begin.
2. OE = LOW.
3. W1 = first word written to the FIFO after Master Reset, W2 = second word written to the FIFO after Master Reset.
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure. D = 1,024 for IDT72V3640, 2,048 for IDT72V3650, 4,096 for IDT72V3660, 8,192 for IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set HIGH during MRS.

Figure 11. Retransmit Timing (IDT Standard Mode)
NOTES:
1. Retransmit setup is complete after OR returns LOW.
2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure. D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690.
3. OE = LOW.
4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set HIGH during MRS.

Figure 12. Retransmit Timing (FWFT Mode)
NOTES:
1. If the part is empty at the point of Retransmit, the empty flag (EF) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.
2. OE = LOW.
3. W₁ = first word written to the FIFO after Master Reset, W₂ = second word written to the FIFO after Master Reset.
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure.
 D = 1,024 for IDT72V3640, 2,048 for IDT72V3650, 4,096 for IDT72V3660, 8,192 for IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690.
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.
6. RM is set LOW during MRS.

Figure 13. Zero Latency Retransmit Timing (IDT Standard Mode)
NOTE:
1. X = 9 for the IDT72V3640, X = 10 for the IDT72V3650, X = 11 for the IDT72V3660, X = 12 for the IDT72V3670, X = 13 for the IDT72V3680 and X = 14 for the IDT72V3690.
2. If the part is empty at the point of Retransmit, the output ready flag (\text{\text{OR}}) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.
3. D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690.
4. \text{OE} = \text{LOW}.
5. \text{W1}, \text{W2}, \text{W3} = \text{first, second and third words written to the FIFO after Master Reset.}
6. \text{RM} is set \text{LOW} during MRS.

Figure 14. Zero Latency Retransmit Timing (FWFT Mode)

NOTE:
1. \text{X} = 9 for the IDT72V3640, \text{X} = 10 for the IDT72V3650, \text{X} = 11 for the IDT72V3660, \text{X} = 12 for the IDT72V3670, \text{X} = 13 for the IDT72V3680 and \text{X} = 14 for the IDT72V3690.

Figure 15. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC™ 36-BIT FIFO
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36

NOTE:
1. This timing diagram illustrates programming with an input bus width of 36 bits.

Figure 16. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)

NOTE:
1. OE = LOW.
2. The timing diagram illustrates reading of offset registers with an output bus width of 36 bits.

Figure 17. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes)

NOTE:
1. m = PAF offset.
2. D = maximum FIFO depth.
 In IDT Standard mode: D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660 and 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690.
 In FWFT mode: D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690.
3. tsKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH (after one WCLK cycle plus tPAFS). If the time between the rising edge of RCLK and the rising edge of WCLK is less than tsKEW2, then the PAF deassertion time may be delayed one extra WCLK cycle.
4. PAF is asserted and updated on the rising edge of WCLK only.
5. Select this mode by setting PFM HIGH during Master Reset.

Figure 18. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)

© 2019 Renesas Electronics Corporation
Figure 19. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

Figure 20. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC™ 36-BIT FIFO
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36

NOTES:
1. n = PAE offset.
2. For IDT Standard Mode.
3. For FWFT Mode.
4. PAE is asserted LOW on RCLK transition and reset to HIGH on WCLK transition.
5. Select this mode by setting PFM LOW during Master Reset.

Figure 21. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:
1. In IDT Standard mode: D = maximum FIFO depth. D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690.
2. In FWFT mode: D = maximum FIFO depth. D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690.

Figure 22. Half-Full Flag Timing (IDT Standard and FWFT Modes)

© 2019 Renesas Electronics Corporation
Figure 23. Asynchronous Write, Synchronous Read, Full Flag Operation (IDT Standard Mode)

Figure 24. Asynchronous Write, Synchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTE:
1. OE = LOW and WEN = LOW.
NOTE:
1. OE = LOW and REN = LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 25. Synchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)

NOTE:
1. OE = LOW and REN = LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 26. Synchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)
NOTES:
1. OE = LOW, WEN = LOW, and REN = LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 27. Asynchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTES:
1. OE = LOW, WEN = LOW, and REN = LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 28. Asynchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)
OPTIONAL CONFIGURATIONS

WIDTH EXPANSION CONFIGURATION

Word width may be increased simply by connecting together the control signals of multiple devices. Status flags can be detected from any one device. The exceptions are the EF and FF functions in IDT Standard mode and the IR and OR functions in FWFT mode. Because of variations in skew between RCLK and WCLK, it is possible for EF/FF deassertion and IR/OR assertion to vary by one cycle between FIFOs. In IDT Standard mode, such problems can be avoided by creating composite flags, that is, ANDing EF of every FIFO, and separately ANDing FF of every FIFO. In FWFT mode, composite flags can be created by ORing OR of every FIFO, and separately ORing IR of every FIFO.

Figure 29 demonstrates a width expansion using two IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 devices. D0-D35 from each device form a 72-bit wide input bus and Q0-Q35 from each device form a 72-bit wide output bus. Any word width can be attained by adding additional IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 devices.

NOTES:
1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.
2. Do not connect any output control signals directly together.
3. FIFO #1 and FIFO #2 must be the same depth, but may be different word widths.

Figure 29. Block Diagram of 1,024 x 72, 2,048 x 72, 4,096 x 72, 8,192 x 72, 16,384 x 72 and 32,768 x 72 Width Expansion
DEPTCH EXPANSION CONFIGURATION (FWFT MODE ONLY)

The IDT72V3640 can easily be adapted to applications requiring depths greater than 1024, 2048 for the IDT72V3650, 4096 for the IDT72V3660, 8192 for the IDT72V3670, 16384 for the IDT72V3680 and 32768 for the IDT72V3690 with 36-bit bus width. In FWFT mode, the FIFOs can be connected in series (the data outputs of one FIFO connected to the data inputs of the next) with no external logic necessary. The resulting configuration provides a total depth equivalent to the sum of the depths associated with each single FIFO. Figure 30 shows a depth expansion using two IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 devices.

Care should be taken to select FWFT mode during Master Reset for all FIFOs in the depth expansion configuration. The first word written to an empty configuration will pass from one FIFO to the next ("ripple down") until it finally appears at the outputs of the last FIFO in the chain — no read operation is necessary but the RCLK of each FIFO must be free-running. Each time the data word appears at the outputs of one FIFO, that device’s OR line goes LOW, enabling a write to the next FIFO in line.

For an empty expansion configuration, the amount of time it takes for OR of the last FIFO in the chain to go LOW (i.e., valid data to appear on the last FIFO’s outputs) after a word has been written to the first FIFO is the sum of the delays for each individual FIFO:

\[(N – 1)*(4*\text{transfer clock}) + 3*\text{TRCLK}\]

where N is the number of FIFOs in the expansion and TRCLK is the RCLK period. Note that extra cycles should be added for the possibility that the tSKEW1 specification is not met between WCLK and transfer clock, or RCLK and transfer clock, for the OR flag.

The "ripple down" delay is only noticeable for the first word written to an empty depth expansion configuration. There will be no delay evident for subsequent words written to the configuration.

The first free location created by reading from a full depth expansion configuration will "bubble up" from the last FIFO to the previous one until it finally moves into the first FIFO of the chain. Each time a free location is created in one FIFO of the chain, that FIFO’s IR line goes LOW, enabling the preceding FIFO to write a word to fill it.

For a full expansion configuration, the amount of time it takes for IR of the first FIFO in the chain to go LOW after a word has been read from the last FIFO is the sum of the delays for each individual FIFO:

\[(N – 1)*(3*\text{transfer clock}) + 2*\text{TWCLK}\]

where N is the number of FIFOs in the expansion and TWCLK is the WCLK period. Note that extra cycles should be added for the possibility that the tSKEW1 specification is not met between RCLK and transfer clock, or WCLK and transfer clock, for the IR flag.

The Transfer Clock line should be tied to either WCLK or RCLK, whichever is faster. Both these actions result in data moving, as quickly as possible, to the end of the chain and free locations to the beginning of the chain.
System Interface Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>IDT72V3640</th>
<th>IDT72V3650</th>
<th>IDT72V3660</th>
<th>IDT72V3670</th>
<th>IDT72V3680</th>
<th>IDT72V3690</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Output</td>
<td>tDO = Max</td>
<td>Min.</td>
<td>Max.</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Data Output Hold</td>
<td>tDOH(1)</td>
<td>0</td>
<td>-</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Data Input</td>
<td>tDS</td>
<td>trise=3ns</td>
<td>10</td>
<td>-</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>tDH</td>
<td>tfall=3ns</td>
<td>10</td>
<td>-</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

NOTE:
1. 50pF loading on external output signals.

JTAG AC Electrical Characteristics

(Vcc = 3.3V ± 5%; Tcase = 0°C to +85°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTAG Clock Input Period</td>
<td>tTCK</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Clock HIGH</td>
<td>tTCKHIGH</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Clock Low</td>
<td>tTCKLOW</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Clock Rise Time</td>
<td>tTCKRise</td>
<td>-</td>
<td>-</td>
<td>5(1)</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Clock Fall Time</td>
<td>tTCKFall</td>
<td>-</td>
<td>-</td>
<td>5(1)</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Reset</td>
<td>trST</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>JTAG Reset Recovery</td>
<td>trSR</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

NOTE:
1. Guaranteed by design.
The Standard JTAG interface consists of four basic elements:
- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide a brief description of each element. For a complete description refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture.

Figure 32. Boundary Scan Architecture

TEST ACCESS PORT (TAP)

The Tap interface is a general-purpose port that provides access to the internal of the processor. It consists of four input ports (TCLK, TMS, TDI, TRST) and one output port (TDO).

THE TAP CONTROLLER

The Tap controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and update of data.
Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram.

All state transitions within the TAP controller occur at the rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controller takes precedence over the FIFO memory and must be reset after power up of the device. See TRST description for more details on TAP controller reset.

CAPTURE-DR
Data is loaded from the parallel input pins or core outputs into the Data Register.

SHIFT-DR
The previously captured data is shifted in serially, LSB first at the rising edge of TCLK in the TDI/TDO path and shifted out serially, LSB first at the falling edge of TCLK towards the output.

UPDATE-DR
The shifting process has been completed. The data is latched into their parallel outputs in this state to be accessed through the internal bus.

EXIT1-DR / EXIT2-DR
This is a temporary controller state. If TMS is held high, a rising edge applied to TCK while in this state causes the controller to enter the Update-DR state. This terminates the scanning process. All test data registers selected by the current instruction retain their previous state unchanged.

PAUSE-DR
This controller state allows shifting of the test data register in the serial path between TDI and TDO to be temporarily halted. All test data registers selected by the current instruction retain their previous state unchanged.

Capture-IR, Shift-IR and Update-IR, Exit-IR and Pause-IR are similar to Data registers. These instructions operate on the instruction registers.

NOTES:
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).
3. TAP controller must be reset before normal FIFO operations can begin.

Figure 33. TAP Controller State Diagram
THE INSTRUCTION REGISTER

The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data register to be accessed, or both. The instruction shifted into the register is latched at the completion of the shifting process when the TAP controller is at Update-IR state.

The instruction register must contain 4 bit instruction register-based cells which can hold instruction data. These mandatory cells are located nearest the serial outputs they are the least significant bits.

TEST DATA REGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a complete description, refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI to TDO. It contains a single stage shift register for a minimum length in serial path. When the bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in the Capture-DR state.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The Boundary Scan Register allows serial data TDI be loaded in to or read out of the processor input/output ports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction.

IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity is dropped in the 11-bit Manufacturer ID field.

For the IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690, the Part Number field contains the following values:

<table>
<thead>
<tr>
<th>Device</th>
<th>Part# Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDT72V3640</td>
<td>04E5</td>
</tr>
<tr>
<td>IDT72V3650</td>
<td>04E4</td>
</tr>
<tr>
<td>IDT72V3660</td>
<td>04E3</td>
</tr>
<tr>
<td>IDT72V3670</td>
<td>04E2</td>
</tr>
<tr>
<td>IDT72V3680</td>
<td>04E1</td>
</tr>
<tr>
<td>IDT72V3690</td>
<td>04E0</td>
</tr>
</tbody>
</table>

JTAG INSTRUCTION REGISTER

The Instruction register allows instruction to be serially input into the device when the TAP controller is in the Shift-IR state. The instruction is decoded to perform the following:

- Select test data registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register.
- Define the serial test data register path that is used to shift data between TDI and TDO during data register scanning.

The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded as follows.

<table>
<thead>
<tr>
<th>Hex Value</th>
<th>Instruction</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>EXTEST</td>
<td>Select Boundary Scan Register</td>
</tr>
<tr>
<td>0x02</td>
<td>IDCODE</td>
<td>Select Chip Identification data register</td>
</tr>
<tr>
<td>0x01</td>
<td>SAMPLE/PRELOAD</td>
<td>Select Boundary Scan Register</td>
</tr>
<tr>
<td>0x03</td>
<td>HI-Z</td>
<td>JTAG</td>
</tr>
<tr>
<td>0x0F</td>
<td>BYPASS</td>
<td>Select Bypass Register</td>
</tr>
</tbody>
</table>

Table 6. JTAG Instruction Register Decoding

The following sections provide a brief description of each instruction. For a complete description refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1-1990).

EXTEST

The mandatory EXTEST instruction is provided for external circuitry and board level interconnection check.

IDCODE

This instruction is provided to select Device Identification Register to read out manufacture’s identity, part number and version number.

SAMPLE/PRELOAD

The mandatory SAMPLE/PRELOAD instruction allows data values to be loaded onto the latched parallel outputs of the boundary-scan shift register prior to selection of the boundary-scan test instruction. The SAMPLE instruction allows a snapshot of data flowing from the system pins to the on-chip logic or vice versa.

HIGH-Z

This instruction places all the output pins on the device into a high impedance state.

BYPASS

The Bypass instruction contains a single shift-register stage and is set to provide a minimum-length serial path between the TDI and the TDO pins of the device when no test operation of the device is required.
ORDERING INFORMATION

Device Type Power Speed Package

Process / Temperature Range

BLANK Tube or Tray
8 Tape and Reel
BLANK Commercial (0°C to +70°C)
G Industrial (-40°C to +85°C)
PF
BB

Low Power

Package

Commercial, TQFP Only
Commercial, PBGA & TQFP
Commercial Only, PBGA & TQFP

Clock Cycle Time (tCLK)

Speed in Nanoseconds

Com'l & Ind'l, TQFP Only
Com'l & Ind'l, PBGA & TQFP

Green parts are available. For specific speeds and packages contact your sales office.

NOTES:
1. Industrial temperature range product for 7-5ns and 15ns are available as standard device. All other speed grades are available by special order.
2. Green parts are available. For specific speeds and packages contact your sales office.

LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN# SP-17-02

DATASHEET DOCUMENT HISTORY

05/25/2000 pgs. 1, 6, 7, 8, 34, and 35.
07/28/2000 pgs. 13, 14, and 34.
12/14/2000 pgs. 6, 7, and 8.
03/27/2001 pg. 7.
04/06/2001 pgs. 4, 5, and 18.
12/14/2001 pgs. 1-46.
12/20/2001 pg. 9.
03/25/2002 pg. 42.
04/19/2002 pg. 3.
05/24/2002 pgs. 3, and 11.
01/20/2003 pgs. 1, 7, 9, 10, and 16.
02/11/2003 pgs. 7, and 44.
09/29/2003 pg. 8.
11/02/2005 pgs. 1, 8-10, and 46.
04/06/2006 pg. 4.
10/22/2008 pg. 46.
10/31/2014 pg. 1-3 and 46.
03/19/2018 Product Discontinuation Notice - PDN# SP-17-02

Last time buy expires June 15, 2018.
08/06/2018 pg. 3.
Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement of any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
 (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
 (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

© 2019 Renesas Electronics Corporation. All rights reserved.