FEATURES:
- Typical tSK(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- VCC = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4μW typ. static)
- All inputs, outputs, and I/O are 5V tolerant
- Supports hot insertion
- Available in SSOP and TSSOP packages

DRIVE FEATURES:
- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:
- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:
This 16-bit bus transceiver is built using advanced dual metal CMOS technology. This high-speed, low power transceiver is ideal for asynchronous communication between two busses (A and B). The Direction and Output Enable controls are designed to operate this device as either two independent 8-bit transceivers or one 16-bit transceiver. The direction control pin (DIR) controls the direction of data flow. The output enable pin (OE) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVC16245A has been designed with a ±24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.
Pin Configuration

```
1DIR  1  48  1OE
1B1   2  47  1A1
1B2   3  46  1A2
GND   4  45  GND
1B3   5  44  1A3
1B4   6  43  1A4
VCC   7  42  VCC
1B5   8  41  1A5
1B6   9  40  1A6
GND   10 39  GND
1B7   11 38  1A7
1B8   12 37  1A8
2B1   13 36  2A1
2B2   14 35  2A2
GND   15 34  GND
2B3   16 33  2A3
2B4   17 32  2A4
VCC   18 31  VCC
2B5   19 30  2A5
2B6   20 29  2A6
GND   21 28  GND
2B7   22 27  2A7
2B8   23 26  2A8
2DIR  24 25  2OE
```

Absolute Maximum Ratings (1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTERM(2)</td>
<td>Terminal Voltage with Respect to GND</td>
<td>–0.5 to +6.5</td>
<td>V</td>
</tr>
<tr>
<td>VTERM(3)</td>
<td>Terminal Voltage with Respect to GND</td>
<td>–0.5 to +6.5</td>
<td>V</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>IOUT</td>
<td>DC Output Current</td>
<td>–50 to +50</td>
<td>mA</td>
</tr>
<tr>
<td>Iok</td>
<td>Continuous Clamp Current, Vi < 0 or V0 < 0</td>
<td>–50</td>
<td>mA</td>
</tr>
<tr>
<td>ICC</td>
<td>Continuous Current through each Vcc or GND</td>
<td>±100</td>
<td>mA</td>
</tr>
</tbody>
</table>

Notes:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc.

Capacitance (TA = +25°C, F = 1.0MHz)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter(1)</th>
<th>Conditions</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Input Capacitance</td>
<td>VIN = 0V</td>
<td>4.5</td>
<td>6</td>
<td>pF</td>
</tr>
<tr>
<td>COUT</td>
<td>Output Capacitance</td>
<td>VOUT = 0V</td>
<td>6.5</td>
<td>8</td>
<td>pF</td>
</tr>
<tr>
<td>CIO</td>
<td>I/O Port Capacitance</td>
<td>VIN = 0V</td>
<td>6.5</td>
<td>8</td>
<td>pF</td>
</tr>
</tbody>
</table>

Notes:
1. As applicable to the device type.

Pin Description

<table>
<thead>
<tr>
<th>Pin Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xŒ</td>
<td>Output Enable Inputs (Active LOW)</td>
</tr>
<tr>
<td>xDIR</td>
<td>Direction Control Input</td>
</tr>
<tr>
<td>xAx</td>
<td>Side A Inputs or 3-State Outputs</td>
</tr>
<tr>
<td>xBx</td>
<td>Side B Inputs or 3-State Outputs</td>
</tr>
</tbody>
</table>

Function Table (Each 8-Bit Section)(1)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
</tr>
</tbody>
</table>

Notes:
1. H = HIGH Voltage Level
2. X = Don’t Care
3. L = LOW Voltage Level
4. Z = High-Impedance
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: \(Ta = -40°C \) to +85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.(^{(1)})</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input HIGH Voltage Level</td>
<td>(V_{CC} = 2.3V) to 2.7V</td>
<td>1.7</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.7V) to 3.6V</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input LOW Voltage Level</td>
<td>(V_{CC} = 2.3V) to 2.7V</td>
<td>—</td>
<td>—</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.7V) to 3.6V</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>Input Leakage Current</td>
<td>(V_{CC} = 3.6V)</td>
<td>—</td>
<td>—</td>
<td>±5</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td></td>
<td>(V_{I} = 0) to 5.5V</td>
<td>—</td>
<td>—</td>
<td>±10</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{OZH})</td>
<td>High Impedance Output Current (3-State Output pins)</td>
<td>(V_{CC} = 3.6V)</td>
<td>—</td>
<td>—</td>
<td>±10</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{OFL})</td>
<td></td>
<td>(V_{O} = 0) to 5.5V</td>
<td>—</td>
<td>—</td>
<td>±50</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(V_{IK})</td>
<td>Clamp Diode Voltage</td>
<td>(V_{CC} = 2.3V), (I_{IN} = -18mA)</td>
<td>—</td>
<td>—</td>
<td>−0.7</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Input Hysteresis</td>
<td>(V_{CC} = 3.3V)</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>mV</td>
</tr>
<tr>
<td>(I_{CCL})</td>
<td>Quiescent Power Supply Current</td>
<td>(V_{CC} = 3.6V)</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td></td>
<td>(3.6 \leq V_{IN} \leq 5.5V)</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(\Delta I_{CC})</td>
<td>Quiescent Power Supply Current Variation</td>
<td>One input at (V_{CC} - 0.6V), other inputs at (V_{CC}) or GND</td>
<td>—</td>
<td>—</td>
<td>500</td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>

NOTES:

1. Typical values are at \(V_{CC} = 3.3V \), +25°C ambient.
2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions(^{(1)})</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>Output HIGH Voltage</td>
<td>(V_{CC} = 2.3V) to 3.6V</td>
<td>(I_{OH} = -0.1mA)</td>
<td>(V_{CC} - 0.2)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.3V)</td>
<td>(I_{OH} = -6mA)</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.3V)</td>
<td>(I_{OH} = -12mA)</td>
<td>1.7</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.7V)</td>
<td>—</td>
<td>—</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 3V)</td>
<td>—</td>
<td>—</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 3V)</td>
<td>(I_{OH} = -24mA)</td>
<td>2.2</td>
<td>—</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output LOW Voltage</td>
<td>(V_{CC} = 2.3V) to 3.6V</td>
<td>(I_{OL} = 0.1mA)</td>
<td>—</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.3V)</td>
<td>(I_{OL} = 6mA)</td>
<td>—</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.3V)</td>
<td>(I_{OL} = 12mA)</td>
<td>—</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.7V)</td>
<td>(I_{OL} = 12mA)</td>
<td>—</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 3V)</td>
<td>(I_{OL} = 24mA)</td>
<td>—</td>
<td>0.55</td>
</tr>
</tbody>
</table>

NOTE:

1. \(V_{OH} \) and \(V_{OL} \) must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate \(V_{CC} \) range. \(Ta = -40°C \) to +85°C.
OPERATING CHARACTERISTICS, \(V_{CC} = 3.3\, V \pm 0.3\, V, T_A = 25^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Typical</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPD</td>
<td>Power Dissipation Capacitance per Transceiver Outputs enabled</td>
<td>(C_L = 0, pF, f = 10, MHz)</td>
<td>38</td>
<td>pF</td>
</tr>
<tr>
<td>CPD</td>
<td>Power Dissipation Capacitance per Transceiver Outputs disabled</td>
<td></td>
<td>4</td>
<td>pF</td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>(V_{CC} = 2.7, V)</th>
<th>(V_{CC} = 3.3, V \pm 0.3, V)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PLH})</td>
<td>Propagation Delay (xA_x) to (xB_x) to (xA_x)</td>
<td>—</td>
<td>4.7</td>
<td>1</td>
</tr>
<tr>
<td>(t_{PHL})</td>
<td></td>
<td>—</td>
<td>6.7</td>
<td>1.5</td>
</tr>
<tr>
<td>(t_{PZH})</td>
<td>Output Enable Time (xO\bar{E}) to (xA_x) or (xB_x)</td>
<td>—</td>
<td>7.1</td>
<td>1.5</td>
</tr>
<tr>
<td>(t_{PZH})</td>
<td>Output Disable Time (xO\bar{E}) to (xA_x) or (xB_x)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. \(T_A = –40^\circ C \) to +85°C.
2. Skew between any two outputs of the same package and switching in the same direction.
TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>$V_{CC(1)}=3.3\text{V±0.3V}$</th>
<th>$V_{CC(1)}=2.7\text{V}$</th>
<th>$V_{CC(2)}=2.5\text{V±0.2V}$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{LOAD}</td>
<td>6</td>
<td>6</td>
<td>$2 \times V_{CC}$</td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>2.7</td>
<td>2.7</td>
<td>V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>V_{T}</td>
<td>1.5</td>
<td>1.5</td>
<td>$V_{CC}/2$</td>
<td>V</td>
</tr>
<tr>
<td>V_{LZ}</td>
<td>300</td>
<td>300</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>V_{HZ}</td>
<td>300</td>
<td>300</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>C_L</td>
<td>50</td>
<td>50</td>
<td>30</td>
<td>pF</td>
</tr>
</tbody>
</table>

DEFINITIONS:

C_L = Load capacitance: includes jig and probe capacitance.
R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; $t_f \leq 2.5\text{ns}$; $t_R \leq 2.5\text{ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; $t_f \leq 2\text{ns}$; $t_R \leq 2\text{ns}$.

SWITCH POSITION

<table>
<thead>
<tr>
<th>Test</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Drain</td>
<td>V_{LOAD}</td>
</tr>
<tr>
<td>Disable Low</td>
<td>GND</td>
</tr>
<tr>
<td>Enable Low</td>
<td>V_{LOAD}</td>
</tr>
<tr>
<td>Disable High</td>
<td>GND</td>
</tr>
<tr>
<td>Enable High</td>
<td>V_{LOAD}</td>
</tr>
<tr>
<td>All Other Tests</td>
<td>Open</td>
</tr>
</tbody>
</table>

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Define and Disable Times

DATA INPUT	V_{IH}	V_T	0V
ASYNCHRONOUS CONTROL	V_{IH}	V_T	0V
SYNCHRONOUS CONTROL	V_{IH}	V_T	0V

Set-up, Hold, and Release Times

Pulse Width

Output Skew - $t_{SK(x)}$

$|t_{SK(x)}|=|t_{PHL2}-t_{PLH1}|$ or $|t_{PLH2}-t_{PHL1}|$

NOTES:

1. For $t_{SK(o)}$ OUTPUT1 and OUTPUT2 are any two outputs.
2. For $t_{SK(b)}$ OUTPUT1 and OUTPUT2 are in the same bank.
INDUSTRIAL TEMPERATURE RANGE

IDT74LVC16245A
3.3V CMOS 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>XX</th>
<th>LVC</th>
<th>X</th>
<th>XX</th>
<th>XXXX</th>
<th>XX</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. Range</td>
<td></td>
<td>Bus-Hold</td>
<td>Family</td>
<td>Device Type</td>
<td>Package</td>
<td></td>
</tr>
</tbody>
</table>

- **Blank** Tube or Tray
- **Blank** Tape and Reel
- **PVG** Shrink Small Outline Package - Green
- **PAG** Thin Shrink Small Outline Package - Green
- **245A** 16-Bit Bus Transceiver with 3-State Outputs
- **16** Double-Density, ±24mA
- **Blank** No Bus-hold
- **74** -40°C to +85°C
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades; “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.