FEATURES

- Single channel T1/E1/J1 long haul/short haul line interface
- Supports HPS (hitless protection Switching) for 1+1 protection without external relays
- Receiver sensitivity exceeds -36 dB@772KHz and -43 dB@1024 KHz
- Programmable T1/E1/J1 switchability allowing one bill of material for any line condition
- Single 3.3 V power supply with 5 V tolerance on digital interfaces
- Meets or exceeds specifications in
 - ANSI T1.102, T1.403 and T1.408
 - ITU I.431, G.703, G.736, G.775 and G.823
 - ETSI 300-166, 300-233 and TBR12/13
 - AT&T Pub 62411
- Software programmable or hardware selectable on:
 - Wave-shaping templates for short haul and long haul LBO (Line Build Out)
 - Line terminating impedance (T1:100 Ω, J1:110 Ω, E1:75 Ω/120 Ω)
 - Adjustment of arbitrary pulse shape
 - JA (Jitter Attenuator) position (receive path or transmit path)
 - Single rail/dual rail system interfaces
 - B8ZS/HDB3/AMI line encoding/decoding
 - Active edge of transmit clock (TCLK) and receive clock (RCLK)
 - Active level of transmit data (TDATA) and receive data (RDATA)
- Receiver or transmitter power down
- High impedance setting for line drivers
- PRBS (pseudo random bit sequence) generation and detection with 2^{15}-1 PRBS polynomials for E1
- QRSS (quasi random signal source) generation and detection with 2^{20}-1 QRSS polynomials for T1/J1
- 16-bit BPV (bipolar pulse violation) /excess zero/PRBS or QRSS error counter
- Analog loopback, digital loopback, remote loopback and inband loopback
- Cable attenuation indication
- Adaptive receive sensitivity
- Short circuit protection and internal protection diode for line drivers
- AIS (alarm indication signal) detection
- Supports serial control interface, Motorola and Intel multiplexed interfaces and hardware control mode
- Pin compatible 82V2041E T1/E1/J1 short haul LIU and 82V2051E E1 short haul LIU
- Package:
 - Available in 44-pin TQFP and 48-pin QFN packages

DESCRIPTION

The IDT82V2081 can be configured as a single channel T1, E1 or J1 line interface unit. In the receive path, an adaptive equalizer is integrated to remove the distortion introduced by cable attenuation. The IDT82V2081 also performs clock/data recovery, AMI/B8ZS/HDB3 line decoding and detects and reports LOS conditions. In the transmit path, there is an AMI/ B8ZS/HDB3 encoder, waveform shaper and LBOs. There is one jitter attenuator, which can be placed in either the receive path or the transmit path. The jitter attenuator can also be disabled. The IDT82V2081 supports both single rail and dual rail system interfaces. To facilitate the network maintenance, a PRBS/QRSS generation/detection circuit is integrated in the chip, and different types of loopbacks can be set according to the applications. Four different kinds of line terminating impedance, 75 Ω, 100 Ω, 110 Ω and 120 Ω are selectable. The IDT82V2081 also provides driver short-circuit protection and internal protection diodes. The IDT82V2081 can be controlled by either software or hardware.

The IDT82V2081 can be used in LAN, WAN, routers, wireless base stations, IADs, IMAs, IMAPs, gateways, frame relay access devices, CSU/DSU equipment, etc.
FUNCTIONAL BLOCK DIAGRAM

Figure-1 Block Diagram
Table of Contents

1 IDT82V2081 Pin Configurations .. 8
2 Pin Description .. 10
3 Functional Description .. 16
 3.1 Control Mode Selection .. 16
 3.2 T1/E1/J1 Mode Selection .. 16
 3.3 Transmit Path .. 16
 3.3.1 Transmit Path System Interface .. 16
 3.3.2 Encoder .. 16
 3.3.3 Pulse Shaper ... 16
 3.3.3.1 Preset Pulse Templates .. 16
 3.3.3.2 LBO (Line Build Out) .. 17
 3.3.3.3 User-Programmable Arbitrary Waveform .. 18
 3.3.4 Transmit Path Line Interface ... 22
 3.3.5 Transmit Path Power Down .. 22
 3.4 Receive Path .. 23
 3.4.1 Receive Internal Termination .. 23
 3.4.2 Line Monitor .. 24
 3.4.3 Adaptive Equalizer .. 25
 3.4.4 Receive Sensitivity .. 25
 3.4.5 Data Slicer ... 25
 3.4.6 CDR (Clock & Data Recovery) .. 25
 3.4.7 Decoder .. 25
 3.4.8 Receive Path System Interface ... 26
 3.4.9 Receive Path Power Down ... 26
 3.5 Jitter Attenuator .. 26
 3.5.1 Jitter Attenuation Function Description .. 26
 3.5.2 Jitter Attenuator Performance .. 27
 3.6 Los And AIS Detection .. 27
 3.6.1 LOS Detection .. 27
 3.6.2 AIS Detection ... 29
 3.7 Transmit And Detect Internal Patterns .. 31
 3.7.1 Transmit All Ones .. 31
 3.7.2 Transmit All Zeros .. 31
 3.7.3 PRBS/QRSS Generation And Detection ... 31
 3.8 Loopback .. 31
 3.8.1 Analog Loopback ... 31
 3.8.2 Digital Loopback .. 31
3.8.3 Remote Loopback... 31
3.8.4 Inband Loopback ... 33
 3.8.4.1 Transmit Activate/Deactivate Loopback Code............... 33
 3.8.4.2 Receive Activate/Deactivate Loopback Code............... 33
 3.8.4.3 Automatic Remote Loopback 33
3.9 Error Detection/Counting And Insertion 35
 3.9.1 Definition Of Line Coding Error 35
 3.9.2 Error Detection And Counting 35
 3.9.3 Bipolar Violation And PRBS Error Insertion 36
3.10 Line Driver Failure Monitoring .. 36
3.11 MCLK And TCLK .. 37
 3.11.1 Master Clock (MCLK) ... 37
 3.11.2 Transmit Clock (TCLK) .. 37
3.12 Microcontroller Interfaces .. 38
 3.12.1 Parallel Microcontroller Interface 38
 3.12.2 Serial Microcontroller Interface 38
3.13 Interrupt Handling .. 38
3.14 5V Tolerant I/O Pins .. 39
3.15 Reset Operation ... 39
3.16 Power Supply ... 39
4 Programming Information ... 40
 4.1 Register List And Map ... 40
 4.2 Reserved Registers .. 40
 4.3 Register Description .. 41
 4.3.1 Control Registers ... 41
 4.3.2 Transmit Path Control Registers 43
 4.3.3 Receive Path Control Registers 45
 4.3.4 Network Diagnostics Control Registers 48
 4.3.5 Interrupt Control Registers 51
 4.3.6 Line Status Registers ... 54
 4.3.7 Interrupt Status Registers ... 57
 4.3.8 Counter Registers .. 59
5 Hardware Control Pin Summary .. 60
6 Test Specifications ... 62
7 Microcontroller Interface Timing Characteristics 75
 7.1 Serial Interface Timing .. 75
 7.2 Parallel Interface Timing .. 76
List of Figures

Figure-1 Block Diagram ... 2
Figure-2 IDT82V2081 TQFP Package Pin Assignment ... 8
Figure-3 IDT82V2081 NLG Package Pin Assignment ... 9
Figure-4 E1 Waveform Template Diagram .. 17
Figure-5 E1 Pulse Template Test Circuit ... 17
Figure-6 DSX-1 Waveform Template .. 17
Figure-7 Receive Monitor Gain Adaptive Equalizer ... 23
Figure-8 Transmit/Receive Line Circuit .. 24
Figure-9 Monitoring Receive Line in Another Chip ... 24
Figure-10 Monitor Transmit Line in Another Chip .. 24
Figure-11 Jitter Attenuator .. 26
Figure-12 LOS Declare and Clear .. 27
Figure-13 Analog Loopback .. 32
Figure-14 Digital Loopback ... 32
Figure-15 Remote Loopback ... 33
Figure-16 Auto Report Mode .. 35
Figure-17 Manual Report Mode .. 36
Figure-18 TCLK Operation Flowchart .. 37
Figure-19 Serial Microcontroller Interface Function Timing ... 38
Figure-20 Transmit System Interface Timing .. 69
Figure-21 Receive System Interface Timing .. 69
Figure-22 E1 Jitter Tolerance Performance .. 70
Figure-23 /J1 Jitter Tolerance Performance .. 71
Figure-24 E1 Jitter Transfer Performance .. 73
Figure-25 Serial Interface Write Timing ... 75
Figure-26 Serial Interface Read Timing with SCLKE=1 ... 75
Figure-27 Serial Interface Read Timing with SCLKE=0 ... 75
Figure-28 Multiplexed Motorola Read Timing .. 76
Figure-29 Multiplexed Motorola Write Timing ... 77
Figure-30 Multiplexed Intel Read Timing .. 78
Figure-31 Multiplexed Intel Write Timing ... 79
<table>
<thead>
<tr>
<th>Table-1</th>
<th>Pin Description</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table-2</td>
<td>Transmit Waveform Value For E1 75 ohm</td>
<td>18</td>
</tr>
<tr>
<td>Table-3</td>
<td>Transmit Waveform Value For E1 120 ohm</td>
<td>19</td>
</tr>
<tr>
<td>Table-4</td>
<td>Transmit Waveform Value For T1 0~133 ft.</td>
<td>19</td>
</tr>
<tr>
<td>Table-5</td>
<td>Transmit Waveform Value For T1 133~266 ft.</td>
<td>19</td>
</tr>
<tr>
<td>Table-6</td>
<td>Transmit Waveform Value For T1 266~399 ft.</td>
<td>19</td>
</tr>
<tr>
<td>Table-7</td>
<td>Transmit Waveform Value For T1 399~533 ft.</td>
<td>20</td>
</tr>
<tr>
<td>Table-8</td>
<td>Transmit Waveform Value For T1 533~655 ft.</td>
<td>20</td>
</tr>
<tr>
<td>Table-9</td>
<td>Transmit Waveform Value For J1 0~655 ft.</td>
<td>20</td>
</tr>
<tr>
<td>Table-10</td>
<td>Transmit Waveform Value For DS1 0 dB LBO</td>
<td>20</td>
</tr>
<tr>
<td>Table-11</td>
<td>Transmit Waveform Value For DS1 -7.5 dB LBO</td>
<td>21</td>
</tr>
<tr>
<td>Table-12</td>
<td>Transmit Waveform Value For DS1 -15.0 dB LBO</td>
<td>21</td>
</tr>
<tr>
<td>Table-13</td>
<td>Transmit Waveform Value For DS1 -22.5 dB LBO</td>
<td>21</td>
</tr>
<tr>
<td>Table-14</td>
<td>Impedance Matching for Transmitter</td>
<td>22</td>
</tr>
<tr>
<td>Table-15</td>
<td>Impedance Matching for Receiver</td>
<td>23</td>
</tr>
<tr>
<td>Table-16</td>
<td>Criteria of Starting Speed Adjustment</td>
<td>27</td>
</tr>
<tr>
<td>Table-17</td>
<td>LOS Declare and Clear Criteria for Short Haul Mode</td>
<td>28</td>
</tr>
<tr>
<td>Table-18</td>
<td>LOS Declare and Clear Criteria for Long Haul Mode</td>
<td>29</td>
</tr>
<tr>
<td>Table-19</td>
<td>AIS Condition</td>
<td>30</td>
</tr>
<tr>
<td>Table-20</td>
<td>Criteria for Setting/Clearing the PRBS_S Bit</td>
<td>31</td>
</tr>
<tr>
<td>Table-21</td>
<td>EXZ Definition</td>
<td>35</td>
</tr>
<tr>
<td>Table-22</td>
<td>Interrupt Event</td>
<td>39</td>
</tr>
<tr>
<td>Table-23</td>
<td>Register List and Map</td>
<td>40</td>
</tr>
<tr>
<td>Table-24</td>
<td>ID: Device Revision Register</td>
<td>41</td>
</tr>
<tr>
<td>Table-25</td>
<td>RST: Reset Register</td>
<td>41</td>
</tr>
<tr>
<td>Table-26</td>
<td>GCF: Global Configuration Register</td>
<td>41</td>
</tr>
<tr>
<td>Table-27</td>
<td>TERM: Transmit and Receive Termination Configuration Register</td>
<td>41</td>
</tr>
<tr>
<td>Table-28</td>
<td>JACF: Jitter Attenuation Configuration Register</td>
<td>42</td>
</tr>
<tr>
<td>Table-29</td>
<td>TCF0: Transmitter Configuration Register 0</td>
<td>43</td>
</tr>
<tr>
<td>Table-30</td>
<td>TCF1: Transmitter Configuration Register 1</td>
<td>43</td>
</tr>
<tr>
<td>Table-31</td>
<td>TCF2: Transmitter Configuration Register 2</td>
<td>44</td>
</tr>
<tr>
<td>Table-32</td>
<td>TCF3: Transmitter Configuration Register 3</td>
<td>44</td>
</tr>
<tr>
<td>Table-33</td>
<td>TCF4: Transmitter Configuration Register 4</td>
<td>44</td>
</tr>
<tr>
<td>Table-34</td>
<td>RCF0: Receiver Configuration Register 0</td>
<td>45</td>
</tr>
<tr>
<td>Table-35</td>
<td>RCF1: Receiver Configuration Register 1</td>
<td>46</td>
</tr>
<tr>
<td>Table-36</td>
<td>RCF2: Receiver Configuration Register 2</td>
<td>47</td>
</tr>
<tr>
<td>Table-37</td>
<td>MAINT0: Maintenance Function Control Register 0</td>
<td>48</td>
</tr>
<tr>
<td>Table-38</td>
<td>MAINT1: Maintenance Function Control Register 1</td>
<td>48</td>
</tr>
<tr>
<td>Table-39</td>
<td>MAINT2: Maintenance Function Control Register 2</td>
<td>49</td>
</tr>
<tr>
<td>Table-40</td>
<td>MAINT3: Maintenance Function Control Register 3</td>
<td>49</td>
</tr>
<tr>
<td>Table-41</td>
<td>MAINT4: Maintenance Function Control Register 4</td>
<td>49</td>
</tr>
</tbody>
</table>
Table-42 MAINT5: Maintenance Function Control Register 5... 49
Table-43 MAINT6: Maintenance Function Control Register 6... 50
Table-44 INTM0: Interrupt Mask Register 0 .. 51
Table-45 INTM1: Interrupt Masked Register 1 ... 52
Table-46 INTES: Interrupt Trigger Edge Select Register ... 53
Table-47 STAT0: Line Status Register 0 (real time status monitor) .. 54
Table-48 STAT1: Line Status Register 1 (real time status monitor) ... 56
Table-49 INTS0: Interrupt Status Register 0 .. 57
Table-50 INTS1: Interrupt Status Register 1 .. 58
Table-51 CNT0: Error Counter L-byte Register 0 ... 59
Table-52 CNT1: Error Counter H-byte Register 1 ... 59
Table-53 Hardware Control Pin Summary .. 60
Table-54 Absolute Maximum Rating .. 62
Table-55 Recommended Operation Conditions .. 62
Table-56 Power Consumption .. 63
Table-57 DC Characteristics ... 63
Table-58 E1 Receiver Electrical Characteristics ... 64
Table-59 T1/J1 Receiver Electrical Characteristics .. 65
Table-60 E1 Transmitter Electrical Characteristics ... 66
Table-61 T1/J1 Transmitter Electrical Characteristics .. 67
Table-62 Transmitter and Receiver Timing Characteristics .. 68
Table-63 Jitter Tolerance .. 69
Table-64 Jitter Attenuator Characteristics ... 72
Table-65 Serial Interface Timing Characteristics .. 75
Table-66 Multiplexed Motorola Read Timing Characteristics ... 76
Table-67 Multiplexed Motorola Write Timing Characteristics ... 77
Table-68 Multiplexed Intel Read Timing Characteristics ... 78
Table-69 Multiplexed Intel Write Timing Characteristics .. 79
1 IDT82V2081 PIN CONFIGURATIONS

![Figure-2 IDT82V2081 TQFP Package Pin Assignment](image-url)
Figure-3 IDT82V2081 NLG Package Pin Assignment
2 Pin Description

Table-1 Pin Description

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>TQFP 44 Pin No.</th>
<th>QFN 48 Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTIP</td>
<td>Analog output</td>
<td>37</td>
<td>40</td>
<td>TTIP/TRING: Transmit Bipolar Tip/Ring</td>
</tr>
<tr>
<td>TRING</td>
<td></td>
<td>36</td>
<td>39</td>
<td>These pins are the differential line driver outputs. They will be in high impedance state under the following conditions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• THZ pin is high;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• THZ bit is set to 1;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Loss of MCLK;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Loss of TCLK (exceptions: Remote Loopback; transmit internal pattern by MCLK);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Transmit path power down;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• After software reset; pin reset and power on.</td>
</tr>
<tr>
<td>RTIP</td>
<td>Analog Input</td>
<td>41</td>
<td>44</td>
<td>RTIP/RRING: Receive Bipolar Tip/Ring</td>
</tr>
<tr>
<td>RRING</td>
<td></td>
<td>40</td>
<td>43</td>
<td>These signals are the differential receiver inputs.</td>
</tr>
<tr>
<td>TD/TDP</td>
<td>I</td>
<td>2</td>
<td>2</td>
<td>TD: Transmit Data</td>
</tr>
<tr>
<td>TDN</td>
<td></td>
<td>3</td>
<td>3</td>
<td>When the device is in single rail mode, the NRZ data to be transmitted is input on this pin. Data on TD pin is sampled into the device on the active edge of TCLK and is encoded by AMI, HDB3 or B8ZS line code rules before being transmitted. In this mode, TDN should be connected to ground.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDP/TDN: Positive/Negative Transmit Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When the device is in dual rail mode, the NRZ data to be transmitted for positive/negative pulse is input on these pins. Data on TDP/TDN pin is sampled into the device on the active edge of TCLK. The line code in dual rail mode is as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD/RDP</td>
<td>O</td>
<td>5</td>
<td>5</td>
<td>RD: Receive Data output</td>
</tr>
<tr>
<td>CV/RDN</td>
<td></td>
<td>6</td>
<td>6</td>
<td>In single rail mode, this pin outputs NRZ data. The data is decoded according to AMI, HDB3 or B8ZS line code rules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CV: Code Violation indication</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In single rail mode, the BPV/CV code violation will be reported by driving the CV pin to high level for a full clock cycle. B8ZS/HDB3 line code violation can be indicated if the B8ZS/HDB3 decoder is enabled. When AMI decoder is selected, bipolar violation will be indicated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In hardware control mode, the EXZ, BPV/CV errors in received data stream are always monitored by the CV pin if single rail mode is chosen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RDP/RDN: Positive/Negative Receive Data output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In dual rail mode, this pin outputs the re-timed NRZ data when CDR is enabled, or directly outputs the raw RZ slicer data if CDR is bypassed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Active edge and level select:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data on RDP/RDN or RD is clocked with either the rising or the falling edge of RCLK. The active polarity is also selectable.</td>
</tr>
</tbody>
</table>

Notes:

1. TCLK missing: the state of TCLK continues to be high level or low level over 70 MCLK cycles.
RCLK: Receive Clock output
This pin outputs 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode receive clock. Under LOS condition with AIS enabled (bit AISE=1), RCLK is derived from MCLK. In clock recovery mode, this signal provides the clock recovered from the RTIP/RRING signal. The receive data (RD in single rail mode or RDP and RDN in dual rail mode) is clocked out of the device on the active edge of RCLK. If clock recovery is bypassed, RCLK is the exclusive OR (XOR) output of the dual rail slicer data RDP and RDN. This signal can be used in applications with external clock recovery circuitry.

MCLK: Master Clock input
A built-in clock system that accepts selectable 2.048MHz reference for E1 operating mode and 1.544MHz reference for T1/J1 operating mode. This reference clock is used to generate several internal reference signals:
- Timing reference for the integrated clock recovery unit.
- Timing reference for the integrated digital jitter attenuator.
- Timing reference for microcontroller interface.
- Generation of RCLK signal during a loss of signal condition.
- Reference clock to transmit All Ones, all zeros, PRBS/QRSS pattern as well as activate or deactivate Inband Loopback code if MCLK is selected as the reference clock. Note that for ATAO and AIS, MCLK is always used as the reference clock.
- Reference clock during the Transmit All Ones (TAO) condition or sending PRBS/QRSS in hardware control mode. The loss of MCLK will turn TTIP/TRING into high impedance status.

LOS: Loss of Signal Output
This is an active high signal used to indicate the loss of received signal. When LOS pin becomes high, it indicates the loss of received signal. The LOS pin will become low automatically when valid received signal is detected again. The criteria of loss of signal are described in 3.6 Los And AIS Detection.

REF: reference resister
An external resistor (3 KΩ, 1%) is used to connect this pin to ground to provide a standard reference current for internal circuit.

MODE[1:0]: operation mode of Control interface select
The level on this pin determines which control mode is used to control the device as follows:

<table>
<thead>
<tr>
<th>MODE[1:0]</th>
<th>Control Interface mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Hardware interface</td>
</tr>
<tr>
<td>01</td>
<td>Serial Microcontroller Interface</td>
</tr>
<tr>
<td>10</td>
<td>Parallel –Multiplexed -Motorola Interface</td>
</tr>
<tr>
<td>11</td>
<td>Parallel –Multiplexed -Intel Interface</td>
</tr>
</tbody>
</table>

- The serial microcontroller Interface consists of CS, SCLK, SCLKE, SDI, SDO and INT pins. SCLKE is used for the selection of the active edge of SCLK.
- The parallel multiplexed microcontroller interface consists of CS, AD[7:0], DS/RD, R/W/WR, ALE/AS, ACK/RDY and INT pins. (refer to 3.12 Microcontroller Interfaces for details)
- Hardware interface consists of PULS[3:0], THZ, RCLKE, LP[1:0], PATT[1:0], JA[1:0], MONT, TERM, EQ, RPD, MODE[1:0] and RXTXM[1:0]

RCLKE: the active edge of RCLK select
In hardware control mode, this pin selects the active edge of RCLK:
- L= select the rising edge as the active edge of RCLK
- H= select the falling edge as the active edge of RCLK

In software control mode, this pin should be connected to GNDIO.
Table 1 Pin Description (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>TQFP 44 Pin No.</th>
<th>QFN 48 Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>I</td>
<td>21</td>
<td>23</td>
<td>CS: Chip Select</td>
</tr>
<tr>
<td>RXTXM1</td>
<td></td>
<td></td>
<td></td>
<td>In serial or parallel microcontroller interface mode, this is the active low enable signal. A low level on this pin enables serial or parallel microcontroller interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RXTXM[1:0]: Receive and transmit path operation mode select</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In hardware control mode, these pins are used to select the single rail or dual rail operation modes as well as AMI or HDB3/B8ZS line coding:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 00= single rail with HDB3/B8ZS coding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 01= single rail with AMI coding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 10= dual rail interface with CDR enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 11= slicer mode (dual rail interface with CDR disabled)</td>
</tr>
<tr>
<td>INT</td>
<td>O</td>
<td>20</td>
<td>22</td>
<td>INT: Interrupt Request</td>
</tr>
<tr>
<td>RXTXM0</td>
<td>I</td>
<td></td>
<td></td>
<td>In software control mode, this pin outputs the general interrupt request for all interrupt sources. These interrupt sources can be masked individually via registers (INTM0, 14H) and (INTM1, 15H). The interrupt status is reported via the registers (INTS0, 19H) and (INTS1, 1AH). Output characteristics of this pin can be defined to be push-pull (active high or active low) or open-drain (active low) by setting INT_PIN[1:0] (GCF, 02H).</td>
</tr>
<tr>
<td>SCLK</td>
<td>I</td>
<td>25</td>
<td>27</td>
<td>SCLK: Shift Clock</td>
</tr>
<tr>
<td>ALE</td>
<td></td>
<td></td>
<td></td>
<td>In serial microcontroller interface mode, this signal is the shift clock for the serial interface. Configuration data on SDI pin is sampled on the rising edge of SCLK. Configuration and status data on SDO pin is clocked out of the device on the falling edge of SCLK if SCLKE pin is high, or on the rising edge of SCLK if SCLKE pin is low.</td>
</tr>
<tr>
<td>AS</td>
<td></td>
<td></td>
<td></td>
<td>ALE: Address Latch Enable</td>
</tr>
<tr>
<td>LP1</td>
<td></td>
<td></td>
<td></td>
<td>In parallel microcontroller interface mode with multiplexed Intel interface, the address on AD[7:0] is sampled into the device on the falling edge of ALE.</td>
</tr>
<tr>
<td>LP0</td>
<td></td>
<td></td>
<td></td>
<td>AS: Address Strobe</td>
</tr>
<tr>
<td>SDI</td>
<td>I</td>
<td>24</td>
<td>26</td>
<td>In parallel microcontroller interface mode with multiplexed Motorola interface, the address on AD[7:0] is latched into the device on the falling edge of AS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LP[1:0]: Loopback mode select</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When the chip is configured by hardware, this pin is used to select loopback operation modes (Inband Loopback is not provided in hardware control mode):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 00= no loopback</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 01= analog loopback</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 10= digital loopback</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 11= remote loopback</td>
</tr>
<tr>
<td>WR</td>
<td></td>
<td></td>
<td></td>
<td>WR: Write Strobe</td>
</tr>
<tr>
<td>R/W</td>
<td></td>
<td></td>
<td></td>
<td>In Intel parallel multiplexed interface mode, this pin is asserted low by the microcontroller to initiate a write cycle. The data on AD[7:0] is sampled into the device in a write operation.</td>
</tr>
<tr>
<td>LP0</td>
<td></td>
<td></td>
<td></td>
<td>R/W: Read/Write Select</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In Motorola parallel multiplexed interface mode, this pin is low for write operation and high for read operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LP0: See LP1 above.</td>
</tr>
</tbody>
</table>

© 2019 Renesas Electronics Corporation
Table-1 Pin Description (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>TQFP 44 Pin No.</th>
<th>QFN 48 Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDO</td>
<td>O</td>
<td>23 25</td>
<td></td>
<td>SDO: Serial Data Output In serial microcontroller interface mode, this signal is the output data of the serial interface. Configuration or Status data at SDO pin is clocked out of the device on the falling edge of SCLK if SCLKE pin is high, or on the rising edge of SCLK if SCLKE pin is low.</td>
</tr>
<tr>
<td>ACK</td>
<td></td>
<td></td>
<td></td>
<td>ACK: Acknowledge Output In Motorola parallel mode interface, the low level on this pin means: • The valid information is on the data bus during a read operation. • The write data has been accepted during a write cycle.</td>
</tr>
<tr>
<td>RDY</td>
<td>I</td>
<td>22 24</td>
<td></td>
<td>RDY: Ready signal output In Intel parallel mode interface, the low level on this pin means a read or write operation is in progress; a high acknowledges a read or write operation has been completed.</td>
</tr>
<tr>
<td>TERM</td>
<td>I</td>
<td>22 24</td>
<td></td>
<td>TERM: Internal or external termination select in hardware mode This pin selects internal or external impedance matching for both receiver and transmitter. • 0 = ternary interface with external impedance matching network • 1 = ternary interface with internal impedance matching network</td>
</tr>
<tr>
<td>SCLKE</td>
<td>I</td>
<td>22 24</td>
<td></td>
<td>SCLKE: Serial Clock Edge Select In serial microcontroller interface mode, this signal selects the active edge of SCLK for outputting SDO. The output data is valid after some delay from the active clock edge. It can be sampled on the opposite edge of the clock. The active clock edge which clocks the data out of the device is selected as shown below:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCLKE</td>
</tr>
<tr>
<td>Low</td>
<td>Rising edge is the active edge.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>Falling edge is the active edge.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td></td>
<td></td>
<td></td>
<td>RD: Read Strobe In Intel parallel multiplexed interface mode, the data is driven to AD[7:0] by the device during low level of RD in a read operation.</td>
</tr>
<tr>
<td>DS</td>
<td></td>
<td></td>
<td></td>
<td>DS: Data Strobe In Motorola parallel multiplexed interface mode, this signal is the data strobe of the parallel interface. In a write operation (R/W = 0), the data on AD[7:0] is sampled into the device. In a read operation (R/W = 1), the data is driven to AD[7:0] by the device.</td>
</tr>
<tr>
<td>MONT</td>
<td></td>
<td></td>
<td></td>
<td>MONT: Receive Monitor gain select In hardware control mode with ternary interface, this pin selects the receive monitor gain of receiver: 0 = 0 dB 1 = 26 dB</td>
</tr>
<tr>
<td>AD7</td>
<td>I/O</td>
<td>33 35</td>
<td></td>
<td>AD7: Address/Data Bus bit7 In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor.</td>
</tr>
<tr>
<td>PULS3</td>
<td>I</td>
<td></td>
<td></td>
<td>PULS[3:0]: these pins are used to select the following functions in hardware control mode: • T1/J1/E1 mode • Transmit pulse template • Internal termination impedance (75Ω/120Ω/100Ω/110Ω)</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>TQFP 44 Pin No.</td>
<td>QFN 48 Pin No.</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| AD6 | I/O | 32 | 34 | **AD6: Address/Data Bus bit6**
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. |
| PULS2 | I | | | See above. |
| AD5 | I/O | 31 | 33 | **AD5: Address/Data Bus bit5**
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. |
| PULS1 | I | | | See above. |
| AD4 | I/O | 30 | 32 | **AD4: Address/Data Bus bit4**
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. |
| PULS0 | I | | | See above. |
| AD3 | I/O | 29 | 31 | **AD3: Address/Data Bus bit3**
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. |
| EQ | I | | | **EQ: Receive Equalizer on/off control in hardware control mode**
- 0= short haul (10 dB)
- 1= long haul (36 dB for T1/J1, 43 dB for E1) |
| AD2 | I/O | 28 | 30 | **AD2: Address/Data Bus bit2**
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. |
| RPD | I | | | **RPD: Receiver power down control in hardware control mode**
- 0= normal operation
- 1= receiver power down |
| AD1 | I/O | 27 | 29 | **AD1: Address/Data Bus bit1**
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. |
| PATT1 | I | | | **PATT[1:0]: Transmit pattern select**
In hardware control mode, this pin selects the transmit pattern
- 00= normal
- 01= All Ones
- 10= PRBS
- 11= transmitter power down |
| AD0 | I/O | 26 | 28 | **AD0: Address/Data Bus bit0**
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. |
| PATT0 | I | | | See above. |
Table-1 Pin Description (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>TQFP 44 Pin No.</th>
<th>QFN 48 Pin No.</th>
<th>Description</th>
</tr>
</thead>
</table>
| JA1 | I | 15 | 17 | JA[1:0]: Jitter attenuation position, bandwidth and the depth of FIFO select (only used for hardware control mode)
| | | | | • 00 = JA is disabled
| | | | | • 01 = JA in receiver, broad bandwidth, FIFO=64 bits
| | | | | • 10 = JA in receiver, narrow bandwidth, FIFO=128 bits
| | | | | • 11 = JA in transmitter, narrow bandwidth, FIFO=128 bits
| | | | | In software control mode, this pin should be connected to ground. |
| JA0 | I | 14 | 16 | See above. |
| RST | I | 12 | 14 | RST: Hardware reset
| | | | | The chip is forced to reset state if a low signal is input on this pin for more than 100 ns. MCLK must be active during reset. |
| THZ | I | 13 | 15 | THZ: Transmitter Driver High Impedance Enable
| | | | | This signal enables or disables transmitter driver. A low level on this pin enables the driver while a high level on this pin places driver in high impedance state. Note that the functionality of the internal circuits is not affected by this signal. |

Power Supplies and Grounds

- **VDDIO** - 3.3 V I/O power supply
- **GNDIO** - I/O ground
- **VDDT** - 3.3 V power supply for transmitter driver
- **GNDT** - Analog ground for transmitter driver
- **VDDA** - 3.3 V analog core power supply
- **GNDA** - Analog core ground
- **VDDD** - Digital core power supply
- **GNDD** - Digital core ground

Others

- **IC1** - Internal connection
 Internal Use. This pin should be left open when in normal operation.
- **IC2** - Internal connection
 Internal Use. This pin should be connected to ground when in normal operation.
- **nc** - Not connected
 These pins should be left open.
3 FUNCTIONAL DESCRIPTION

3.1 CONTROL MODE SELECTION

The IDT82V2081 can be configured by software or by hardware. The software control mode supports Serial Control Interface, Motorola Multiplexed Control Interface and Intel Multiplexed Control Interface. The control mode is selected by MODE1 and MODE0 pins as follows:

<table>
<thead>
<tr>
<th>Control Interface mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Hardware interface</td>
</tr>
<tr>
<td>01</td>
<td>Serial Microcontroller Interface.</td>
</tr>
<tr>
<td>10</td>
<td>Parallel –Multiplexed -Motorola Interface</td>
</tr>
<tr>
<td>11</td>
<td>Parallel –Multiplexed -Intel Interface</td>
</tr>
</tbody>
</table>

- The serial microcontroller Interface consists of CS, SCLK, SCLKE, SDI, SDO and INT pins. SCLKE is used for the selection of active edge of SCLK.
- The parallel Multiplexed microcontroller Interface consists of CS, AD[7:0], DS/DR, RI/RW, ALE/AS, ACK/RDY and INT pins.
- Hardware interface consists of PULS[3:0], THZ, RCLKE, LP[1:0], PATT[1:0], JA[1:0], MONT, TERM, EQ, RPD, MODE[1:0] and RXTXM[1:0]. Refer to chapter 5 Hardware Control Pin Summary for details about hardware control.

3.2 T1/E1/J1 MODE SELECTION

When the chip is configured by software, T1/E1/J1 mode is selected by the T1E1 bit (GCF, 02H). In E1 application, the T1E1 bit (GCF, 02H) should be set to ‘0’. In T1/J1 application, the T1E1 bit should be set to ‘1’.

When the chip is configured by hardware, T1/E1/J1 mode is selected by PULS[3:0] pins. These pins also determine transmit pulse template and internal termination impedance. Refer to 5 Hardware Control Pin Summary for details.

3.3 TRANSMIT PATH

The transmit path of IDT82V2081 consists of an Encoder, an optional Jitter Attenuator, a Waveform Shaper, a set of LBOs, a Line Driver and a Programmable Transmit Termination.

3.3.1 TRANSMIT PATH SYSTEM INTERFACE

The transmit path system interface consists of TCLK pin, TD/TDP pin and TDN pin. In E1 mode, TCLK is a 2.048 MHz clock. In T1/J1 mode, TCLK is a 1.544 MHz clock. If TCLK is missing for more than 70 MCLK cycles, an interrupt will be generated if it is not masked.

Transmit data is sampled on the TD/TDP and TDN pins by the active edge of TCLK. The active edge of TCLK can be selected by the TCLK_SEL bit (TCF0, 05H). And the active level of the data on TD/TDP and TDN can be selected by the TD_INV bit (TCF0, 05H). In hardware control mode, the falling edge of TCLK and the active high of transmit data are always used.

The transmit data from the system side can be provided in two different ways: Single Rail and Dual Rail. In Single Rail mode, only TD pin is used for transmitting data and the T_MD[1] bit (TCF0, 05H) should be set to ‘0’. In Dual Rail mode, both TDP and TDN pin are used for transmitting data, the T_MD[1] bit (TCF0, 05H) should be set to ‘1’.

3.3.2 ENCODER

In Single Rail mode, when T1/J1 mode is selected, the Encoder can be configured to be a B8ZS encoder or an AMI encoder by setting T_MD[0] bit (TCF0, 05H).

In Single Rail mode, when E1 mode is selected, the Encoder can be configured to be an HDB3 encoder or an AMI encoder by setting T_MD[0] bit (TCF0, 05H).

In both T1/J1 mode and E1 mode, when Dual Rail mode is selected (bit T_MD[1] is ‘1’), the Encoder is by-passed. In Dual Rail mode, a logic ‘1’ on the TDP pin and a logic ‘0’ on the TDN pin results in a negative pulse on the TTIP/TRING. A logic ‘0’ on TDP pin and a logic ‘1’ on TDN pin results in a positive pulse on the TTIP/TRING. If both TDP and TDN are high or low, the TTIP/TRING outputs a space (Refer to TD/TDP, TDN Pin Description).

In hardware control mode, the operation mode of receive and transmit path can be selected by setting RXTXM1 and RXTXM0 pins. Refer to 5 Hardware Control Pin Summary for details.

3.3.3 PULSE SHAPER

The IDT82V2081 provides three ways of manipulating the pulse shape before sending it. The first is to use preset pulse templates for short haul application, the second is to use LBO (Line Build Out) for long haul application and the other way is to use user-programmable arbitrary waveform template.

In software control mode, the pulse shape can be selected by setting the related registers.

In hardware control mode, the pulse shape can be selected by setting PULS[3:0] pins. Refer to 5 Hardware Control Pin Summary for details.

3.3.3.1 PRESET PULSE TEMPLATES

For E1 applications, the pulse shape is shown in Figure-4 according to the G.703 and the measuring diagram is shown in Figure-5. In internal impedance matching mode, if the cable impedance is 75 Ω, the PULS[3:0] bits (TCF1, 06H) should be set to ‘0000’; if the cable impedance is 120 Ω, the PULS[3:0] bits (TCF1, 06H) should be set to ‘0001’. In external impedance matching mode, for both E1/75 Ω and E1/120 Ω cable impedance, PULS[3:0] should be set to ‘0001’.
For T1 applications, the pulse shape is shown in Figure-6 according to the T1.102 and the measuring diagram is shown in Figure-6. This also meets the requirement of G.703, 2001. The cable length is divided into five grades, and there are five pulse templates used for each of the cable length. The pulse template is selected by PULS[3:0] bits (TCF1, 06H).

TCF1, 06H) should be set to ‘0111’. Table-14 lists these values.

3.3.3.2 LBO (LINE BUILD OUT)

To prevent the cross-talk at the far end, the output of TTIP/TRING could be attenuated before transmission for long haul applications. The FCC Part 68 Regulations specifies four grades of attenuation with a step of 7.5 dB. Three LBOs are used to implement the pulse attenuation. The PULS[3:0] bits (TCF1, 06H) are used to select the attenuation grade. Both Table-14 and Table-15 list these values.
3.3.3.3 USER-PROGRAMMABLE ARBITRARY WAVEFORM

When the PULS[3:0] bits are set to ‘11xx’, user-programmable arbitrary waveform generator mode can be used. This allows the transmitter performance to be tuned for a wide variety of line condition or special application.

Each pulse shape can extend up to 4 UIs (Unit Interval), addressed by UI[1:0] bits (TCF3, 08H) and each UI is divided into 16 sub-phases, addressed by the SAMP[3:0] bits (TCF3, 08H). The pulse amplitude of each phase is represented by a binary byte, within the range from +63 to -63, stored in WDAT[6:0] bits (TCF4, 09H) in signed magnitude form. The most positive number +63 (D) represents the positive maximum amplitude of the transmit pulse while the most negative number -63 (D) represents the maximum negative amplitude of the transmit pulse. Therefore, up to 64 bytes are used.

There are twelve standard templates which are stored in an on-chip ROM. User can select one of them as reference and make some changes to get the desired waveform.

User can change the wave shape and the amplitude to get the desired pulse shape. In order to do this, firstly, users can choose a set of waveform value from the following twelve tables, which is the most similar to the desired pulse shape. Table-2, Table-3, Table-4, Table-5, Table-6, Table-7, Table-8, Table-9, Table-10, Table-11, Table-12 and Table-13 list the sample data and scaling data of each of the twelve templates. Then modify the corresponding sample data to get the desired transmit pulse shape.

Secondly, through the value of SCAL[5:0] bits increased or decreased by 1, the pulse amplitude can be scaled up or down at the percentage ratio against the standard pulse amplitude if needed. For different pulse shapes, the value of SCAL[5:0] bits and the scaling percentage ratio are different. The following twelve tables list these values.

Do the followings step by step, the desired waveform can be programmed, based on the selected waveform template:

1. Select the UI by UI[1:0] bits (TCF3, 08H)
2. Specify the sample address in the selected UI by SAMP [3:0] bits (TCF3, 08H)
3. Write sample data to WDAT[6:0] bits (TCF4, 09H). It contains the data to be stored in the RAM, addressed by the selected UI and the corresponding sample address.
4. Set the RW bit (TCF3, 08H) to ‘0’ to implement writing data to RAM, or to ‘1’ to implement read data from RAM
5. Implement the Read from RAM/Write to RAM by setting the DONE bit (TCF3, 08H)

Repeat the above steps until all the sample data are written to or read from the internal RAM.

6. Write the scaling data to SCAL[5:0] bits (TCF2, 07H) to scale the amplitude of the waveform based on the selected standard pulse amplitude

When more than one UI is used to compose the pulse template, the overlap of two consecutive pulses could make the pulse amplitude overflow (exceed the maximum limitation) if the pulse amplitude is not set properly. This overflow is captured by DAC_OV_IS bit (INTS1, 1AH), and, if enabled by the DAC_OV_IM bit (INTM1, 15H), an interrupt will be generated.

The following tables give all the sample data based on the preset pulse templates and LBOs in detail for reference. For preset pulse templates and LBOs, scaling up/down against the pulse amplitude is not supported.

Table-2 Transmit Waveform Value For E1 75 ohm

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>2</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>3</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>4</td>
<td>00011000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>5</td>
<td>01100000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>6</td>
<td>01100000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>7</td>
<td>01100000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>8</td>
<td>01100000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>9</td>
<td>01100000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>10</td>
<td>01100000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>11</td>
<td>01100000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>12</td>
<td>01100000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>13</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>14</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>15</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>16</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0] results in 3% scaling up/down against the pulse amplitude.
Table 3: Transmit Waveform Value For E1 120 ohm

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>2</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>3</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>4</td>
<td>0001111</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>5</td>
<td>0111100</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>6</td>
<td>0111100</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>7</td>
<td>0111100</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>8</td>
<td>0111100</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>9</td>
<td>0111100</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>10</td>
<td>0111100</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>11</td>
<td>0111100</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>12</td>
<td>0111100</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>13</td>
<td>0000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>14</td>
<td>0000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>15</td>
<td>0000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>16</td>
<td>0000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

SCAL[5:0] = 100001 (default). One step change of this value of SCAL[5:0] results in 3% scaling up/down against the pulse amplitude.

Table 4: Transmit Waveform Value For T1 0~133 ft

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00010111</td>
<td>10000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>2</td>
<td>0100110</td>
<td>10000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>3</td>
<td>0100110</td>
<td>10000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>4</td>
<td>0100110</td>
<td>10000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>5</td>
<td>0100110</td>
<td>10000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>6</td>
<td>0100110</td>
<td>10000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>7</td>
<td>0100110</td>
<td>10000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>8</td>
<td>0100110</td>
<td>10000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>9</td>
<td>0100110</td>
<td>10000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>10</td>
<td>1001001</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>11</td>
<td>1001001</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>12</td>
<td>1001001</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>13</td>
<td>1001001</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>14</td>
<td>1001001</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>15</td>
<td>1001001</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>16</td>
<td>1001001</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

SCAL[5:0] = 110110 1 (default). One step change of this value of SCAL[5:0] results in 2% scaling up/down against the pulse amplitude.

1. In T1 mode, when arbitrary pulse for short haul application is configured, users should write ‘110110’ to SCAL[5:0] bits if no scaling is required.
Table-7 Transmit Waveform Value For T1 399~533 ft

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0100000</td>
<td>1000011</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>2</td>
<td>0111011</td>
<td>1000010</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>3</td>
<td>0110101</td>
<td>1000001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>4</td>
<td>0101111</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>5</td>
<td>0101110</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>6</td>
<td>0101101</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>7</td>
<td>0101100</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>8</td>
<td>0101010</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>9</td>
<td>0101000</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>10</td>
<td>1011000</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>11</td>
<td>1010011</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>12</td>
<td>1001100</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>13</td>
<td>1001010</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>14</td>
<td>1000110</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>15</td>
<td>1000100</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>16</td>
<td>1000011</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
</tbody>
</table>

See Table-4

Table-8 Transmit Waveform Value For T1 533~655 ft

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0100000</td>
<td>1000011</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>2</td>
<td>0111111</td>
<td>1000010</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>3</td>
<td>0111001</td>
<td>1000001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>4</td>
<td>0101111</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>5</td>
<td>0101110</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>6</td>
<td>0101101</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>7</td>
<td>0101100</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>8</td>
<td>0101010</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>9</td>
<td>0101001</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>10</td>
<td>1011111</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>11</td>
<td>1010011</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>12</td>
<td>1001101</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>13</td>
<td>1001011</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>14</td>
<td>1000111</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>15</td>
<td>1000101</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>16</td>
<td>1000011</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
</tbody>
</table>

See Table-4

Table-9 Transmit Waveform Value For J1 0~655 ft

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0010111</td>
<td>1000010</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>2</td>
<td>0100111</td>
<td>1000001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>3</td>
<td>0100101</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>4</td>
<td>0100100</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>5</td>
<td>1001010</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>6</td>
<td>1001010</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>7</td>
<td>1001001</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>8</td>
<td>1000111</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>9</td>
<td>1000101</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>10</td>
<td>1000100</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>11</td>
<td>1000011</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
</tbody>
</table>

SCAL[5:0] = 110110 (default), One step change of this Value results in 2% scaling up/down against the pulse amplitude.

Table-10 Transmit Waveform Value For DS1 0 dB LBO

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0010111</td>
<td>1000010</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>2</td>
<td>0100111</td>
<td>1000001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>3</td>
<td>0100101</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>4</td>
<td>0100100</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>5</td>
<td>1001010</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>6</td>
<td>1001010</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>7</td>
<td>1001001</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>8</td>
<td>1000111</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>9</td>
<td>1000101</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>10</td>
<td>1000100</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>11</td>
<td>1000011</td>
<td>0000000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
</tbody>
</table>

SCAL[5:0] = 110110 (default), One step change of this Value results in 2% scaling up/down against the pulse amplitude.
Table-11 Transmit Waveform Value For DS1 -7.5 dB LBO

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000000</td>
<td>0101000</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>2</td>
<td>0000010</td>
<td>0100010</td>
<td>0000010</td>
<td>0000010</td>
</tr>
<tr>
<td>3</td>
<td>0010001</td>
<td>0001100</td>
<td>0000010</td>
<td>0000000</td>
</tr>
<tr>
<td>4</td>
<td>0011101</td>
<td>0001100</td>
<td>0000010</td>
<td>0000000</td>
</tr>
<tr>
<td>5</td>
<td>0100101</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>6</td>
<td>0101011</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>7</td>
<td>0100011</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>8</td>
<td>0110001</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>9</td>
<td>0110101</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>10</td>
<td>0110111</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>11</td>
<td>0111001</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>12</td>
<td>0111011</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>13</td>
<td>0111101</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>14</td>
<td>0110000</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>15</td>
<td>0101000</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
<tr>
<td>16</td>
<td>0100111</td>
<td>0001001</td>
<td>0000000</td>
<td>0000000</td>
</tr>
</tbody>
</table>

SCAL[5:0] = 010001 (default), One step change of this value of SCAL[5:0] results in 6.25% scaling up/down against the pulse amplitude.

Table-12 Transmit Waveform Value For DS1 -15.0 dB LBO

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>2</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>3</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>4</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>5</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>6</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>7</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>8</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>9</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>10</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>11</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>12</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>13</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>14</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>15</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>16</td>
<td>0000000</td>
<td>0110000</td>
<td>0000111</td>
<td>0000011</td>
</tr>
</tbody>
</table>

SCAL[5:0] = 001000 (default), One step change of this value of SCAL[5:0] results in 12.5% scaling up/down against the pulse amplitude.

Table-13 Transmit Waveform Value For DS1 -22.5 dB LBO

<table>
<thead>
<tr>
<th>Sample</th>
<th>UI 1</th>
<th>UI 2</th>
<th>UI 3</th>
<th>UI 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>2</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>3</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>4</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>5</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>6</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>7</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>8</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>9</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>10</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>11</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>12</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>13</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>14</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>15</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
<tr>
<td>16</td>
<td>0000000</td>
<td>0101010</td>
<td>0000111</td>
<td>0000011</td>
</tr>
</tbody>
</table>

SCAL[5:0] = 000100 (default), One step change of this value of SCAL[5:0] results in 25% scaling up/down against the pulse amplitude.
3.3.4 TRANSMIT PATH LINE INTERFACE

The transmit line interface consists of TTIP pin and TRING pin. The impedance matching can be realized by the internal impedance matching circuit or the external impedance matching circuit. If T_TERM[2] is set to ‘0’, the internal impedance matching circuit will be selected. In this case, the T_TERM[1:0] bits (TERM, 03H) can be set to choose 75 Ω, 100 Ω, 110 Ω or 120 Ω internal impedance of TTIP/TRING. If T_TERM[2] is set to ‘1’, the internal impedance matching circuit will be disabled. In this case, the external impedance matching circuit will be used to realize the impedance matching. For T1/J1 mode, the external impedance matching circuit for the transmitter is not supported. Figure-8 shows the appropriate external components to connect with the cable. Table-14 is the list of the recommended impedance matching for transmitter.

In hardware control mode, TERM pin can be used to select impedance matching for both receiver and transmitter. If TERM pin is low, external impedance network will be used for impedance matching. If TERM pin is high, internal impedance will be used for impedance matching and PULS[3:0] pins will be set to select the specific internal impedance. Refer to 5 Hardware Control Pin Summary for details.

The TTIP/TRING pins can also be turned into high impedance by setting the THZ bit (TCF1, 06H) to ‘1’. In this state, the internal transmit circuits are still active.

In hardware control mode, TTIP/TRING can be turned into high impedance by pulling THZ pin to high. Refer to 5 Hardware Control Pin Summary for details.

Besides, in the following cases, both TTIP/TRING pins will also become high impedance:

- Loss of MCLK;
- Loss of TCLK (exceptions: Remote Loopback; Transmit internal pattern by MCLK);
- Transmit path power down;
- After software reset; pin reset and power on.

Table-14 Impedance Matching for Transmitter

<table>
<thead>
<tr>
<th>Cable Configuration</th>
<th>Internal Termination</th>
<th>External Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1/75 Ω</td>
<td>000</td>
<td>0000</td>
</tr>
<tr>
<td>E1/120 Ω</td>
<td>001</td>
<td>0001</td>
</tr>
<tr>
<td>T1/0~133 ft</td>
<td>010</td>
<td>0010</td>
</tr>
<tr>
<td>T1/133~266 ft</td>
<td></td>
<td>0011</td>
</tr>
<tr>
<td>T1/266~399 ft</td>
<td></td>
<td>0100</td>
</tr>
<tr>
<td>T1/399~533 ft</td>
<td></td>
<td>0101</td>
</tr>
<tr>
<td>T1/533~655 ft</td>
<td></td>
<td>0110</td>
</tr>
<tr>
<td>J1/0~655 ft</td>
<td>011</td>
<td>0111</td>
</tr>
<tr>
<td>0 dB LBO</td>
<td>010</td>
<td>1000</td>
</tr>
<tr>
<td>-7.5 dB LBO</td>
<td></td>
<td>1001</td>
</tr>
<tr>
<td>-15.0 dB LBO</td>
<td></td>
<td>1010</td>
</tr>
<tr>
<td>-22.5 dB LBO</td>
<td></td>
<td>1011</td>
</tr>
</tbody>
</table>

Note: The precision of the resistors should be better than ± 1%

3.3.5 TRANSMIT PATH POWER DOWN

The transmit path can be powered down by setting the T_OFF bit (TCF0, 05H) to ‘1’. In this case, the TTIP/TRING pins are turned into high impedance.

In hardware control mode, the transmit path can be powered down by pulling both PATT1 and PATT0 pins to high. Refer to 5 Hardware Control Pin Summary for details.
3.4 RECEIVE PATH

The receive path consists of Receive Internal Termination, Monitor Gain, Amplitude/Wave Shape Detector, Digital Tuning Controller, Adaptive Equalizer, Data Slicer, CDR (Clock & Data Recovery), Optional Jitter Attenuator, Decoder and LOS/AIS Detector. Refer to Figure-7.

3.4.1 RECEIVE INTERNAL TERMINATION

The impedance matching can be realized by the internal impedance matching circuit or the external impedance matching circuit. If R_TERM[2] is set to ‘0’, the internal impedance matching circuit will be selected. In this case, the R_TERM[1:0] bits (TERM, 03H) can be set to choose 75 Ω, 100 Ω, 110 Ω or 120 Ω internal impedance of RTIP/RRING. If R_TERM[2] is set to “1”, the internal impedance matching circuit will be disabled. In this case, the external impedance matching circuit will be used to realize the impedance matching. Figure-8 shows the appropriate external components to connect with the cable. Table-15 is the list of the recommended impedance matching for receiver.

![Receive Monitor Gain Adaptive Equalizer](image)

Figure-7 Receive Monitor Gain Adaptive Equalizer

Table-15 Impedance Matching for Receiver

<table>
<thead>
<tr>
<th>Cable Configuration</th>
<th>Internal Termination</th>
<th>R_TERM[2:0]</th>
<th>R_R</th>
<th>External Termination</th>
<th>R_TERM[2:0]</th>
<th>R_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1/75 Ω</td>
<td>000</td>
<td>120 Ω</td>
<td>1XX</td>
<td>75 Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1/120 Ω</td>
<td>001</td>
<td>120 Ω</td>
<td>1XX</td>
<td>120 Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>010</td>
<td></td>
<td></td>
<td>100 Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>011</td>
<td></td>
<td></td>
<td>110 Ω</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In hardware control mode, TERM and PULS[3:0] pins can be used to select impedance matching for both receiver and transmitter. If TERM pin is low, external impedance network will be used for impedance matching. If TERM pin is high, internal impedance will be used for impedance matching and PULS[3:0] pins can be set to select the specific internal impedance. Refer to 5 Hardware Control Pin Summary for details.

3.4.2 LINE MONITOR

In both T1/J1 and E1 short haul applications, the non-intrusive monitoring on channels located in other chips can be performed by tapping the monitored channel through a high impedance bridging circuit. Refer to Figure-9 and Figure-11.

After a high resistance bridging circuit, the signal arriving at the RTIP/RRING is dramatically attenuated. To compensate this attenuation, the Monitor Gain can be used to boost the signal by 22 dB, 26 dB and 32 dB, selected by MG[1:0] bits (RCF2, 0CH). For normal operation, the Monitor Gain should be set to 0 dB.

In hardware control mode, MONT pin can be used to set the Monitor Gain. When MONT pin is low, the Monitor Gain is 0 dB. When MONT pin is high, the Monitor Gain is 26 dB. Refer to 5 Hardware Control Pin Summary for details.

Note that LOS indication is not supported if the device is operated in Line Monitor Mode.
3.4.3 ADAPTIVE EQUALIZER

The Adaptive Equalizer can remove most of the signal distortion due to intersymbol interference caused by cable attenuation. It can be enabled or disabled by setting EQ_ON bit to ‘1’ or ‘0’ (RCF1, 0BH).

When the adaptive equalizer is out of range, EQ_S bit (STAT0, 17H) will be set to ‘1’ to indicate the status of equalizer. If EQ_IES bit (INTES, 16H) is set to ‘1’, any changes of EQ_S bit will generate an interrupt and EQ_IS bit (INTS0, 19H) will be set to ‘1’ if it is not masked. If EQ_IES is set to ‘0’, only the ‘0’ to ‘1’ transition of the EQ_S bit will generate an interrupt and EQ_IS bit will be set to ‘1’ if it is not masked. The EQ_IS bit will be reset after being read.

The Amplitude/wave shape detector keeps on measuring the amplitude/wave shape of the incoming signals during an observation period. This observation period can be 32, 64, 128 or 256 symbol periods, as selected by UPDW[1:0] bits (RCF2, 0CH). A shorter observation period allows quicker responses to pulse amplitude variation while a longer observation period can minimize the possible overshoots. The default observation period is 128 symbol periods.

Based on the observed peak value for a period, the equalizer will be adjusted to achieve a normalized signal. LATT[4:0] bits (STAT1, 18H) indicate the signal attenuation introduced by the cable in approximately 2 dB per step.

3.4.4 RECEIVE SENSITIVITY

For short haul application, the Receive Sensitivity for both E1 and T1/J1 is -10 dB. For long haul application, the receive sensitivity is -43 dB for E1 and -36 dB for T1/J1.

When the chip is configured by hardware, the short haul or long haul operating mode can be selected by setting EQ pin. For short haul mode, the receive sensitivity is -10 dB for E1 and -36 dB for T1/J1. Refer to 5 Hardware Control Pin Summary for details.

3.4.5 DATA SLICER

The Data Slicer is used to generate a standard amplitude mark or a space according to the amplitude of the input signals. The threshold can be 40%, 50%, 60% or 70%, as selected by the SLICE[1:0] bits (RCF2, 0CH). The output of the Data Slicer is forwarded to the CDR (Clock & Data Recovery) unit or to the RDP/RDN pins directly if the CDR is disabled.

3.4.6 CDR (CLOCK & DATA RECOVERY)

The CDR is used to recover the clock and data from the received signal. The recovered clock tracks the jitter in the data output from the Data Slicer and keeps the phase relationship between data and clock during the absence of the incoming pulse. The CDR can also be by-passed in the Dual Rail mode. When CDR is by-passed, the data from the Data Slicer is output to the RDP/RDN pins directly.

3.4.7 DECODER

In T1/J1 applications, the R_MD[1:0] bits (RCF0, 0AH) is used to select the AMI decoder or BBZS decoder. In E1 applications, the R_MD[1:0] bits (RCF0, 0AH) are used to select the AMI decoder or HDB3 decoder.

When the chip is configured by hardware, the operation mode of receive and transmit path can be selected by setting RXTXM1 and RXTXM0 pins. Refer to 5 Hardware Control Pin Summary for details.
3.4.8 RECEIVE PATH SYSTEM INTERFACE

The receive path system interface consists of RCLK pin, RD/RDP pin and RDN pin. In E1 mode, the RCLK outputs a recovered 2.048 MHz clock. In T1/J1 mode, the RCLK outputs a recovered 1.544 MHz clock. The received data is updated on the RD/RDP and RDN pins on the active edge of RCLK. The active edge of RCLK can be selected by the RCLK_SEL bit (RCF0, 0AH). And the active level of the data on RD/RDP and RDN can be selected by the RD_INV bit (RCF0, 0AH).

In hardware control mode, only the active edge of RCLK can be selected. If RCLKE is set to high, the falling edge will be chosen as the active edge of RCLK. If RCLKE is set to low, the rising edge will be chosen as the active edge of RCLK. The active level of the data on RD/RDP and RDN is the same as that in software control mode.

The received data can be output to the system side in two different ways: Single Rail or Dual Rail, as selected by R_MD bit [1] (RCF0, 0AH). In Single Rail mode, only RD pin is used to output data and the RDN/CV pin is used to report the received errors. In Dual Rail Mode, both RDP pin and RDN pin are used for outputting data.

In the receive Dual Rail mode, the CDR unit can be by-passed by setting R_MD[1:0] to ‘11’ (binary). In this situation, the output data from the Data Slicer will be output to the RDP/RDN pins directly, and the RCLK outputs the exclusive OR (XOR) of the RDP and RDN. This is called receiver slicer mode. In this case, the transmit path is still operating in Dual Rail mode.

3.4.9 RECEIVE PATH POWER DOWN

The receive path can be powered down by setting R_OFF bit (RCF0, 0AH) to ‘1’. In this case, the RCLK, RD/RDP, RDN and LOS will be logic low.

In hardware control mode, receiver power down can be selected by pulling RPD pin to high. Refer to 5 Hardware Control Pin Summary for more details.

3.5 JITTER ATTENUATOR

There is one Jitter Attenuator in the IDT82V2081. The Jitter Attenuator can be deployed in the transmit path or the receive path, and can also be disabled. This is selected by the JACF[1:0] bits (JACF, 04H).

In hardware control mode, Jitter Attenuator position, bandwidth and the depth of FIFO can be selected by JA[1:0] pins. Refer to 5 Hardware Control Pin Summary for details.

3.5.1 JITTER ATTENUATION FUNCTION DESCRIPTION

The Jitter Attenuator is composed of a FIFO and a DPLL, as shown in Figure-11. The FIFO is used as a pool to buffer the jittered input data, then the data is clocked out of the FIFO by a de-jittered clock. The depth of the FIFO can be 32 bits, 64 bits or 128 bits, as selected by the JADP[1:0] bits (JACF, 04H). In hardware control mode, the depth of FIFO can be selected by JA[1:0] pins. Refer to 5 Hardware Control Pin Summary for details. Consequently, the constant delay of the Jitter Attenuator will be 16 bits, 32 bits or 64 bits. Deeper FIFO can tolerate larger jitter, but at the cost of increasing data latency time.

![Figure-11 Jitter Attenuator](image-url)

In E1 applications, the Corner Frequency of the DPLL can be 0.9 Hz or 6.8 Hz, as selected by the JABW bit (JACF, 04H). In T1/J1 applications, the Corner Frequency of the DPLL can be 1.25 Hz or 5.00 Hz, as selected by the JABW bit (JACF, 04H). The lower the Corner Frequency is, the longer time is needed to achieve synchronization.

When the incoming data moves faster than the outgoing data, the FIFO will overflow. This overflow is captured by the JAOV_IS bit (INTS1, 1AH). If the incoming data moves slower than the outgoing data, the FIFO will underflow. This underflow is captured by the JAUD_IS bit (INTS1, 1AH). For some applications that are sensitive to data corruption, the JA limit mode can be enabled by setting JA_LIMIT bit (JACF, 04H) to ‘1’. In the JA limit mode, the speed of the outgoing data will be adjusted automatically when the FIFO is close to its full or emptiness. The criteria of starting speed adjustment are shown in Table-16. The JA limit mode can reduce the possibility of FIFO overflow and underflow, but the quality of jitter attenuation is deteriorated.
3.5.2 JITTER ATTENUATOR PERFORMANCE

The performance of the Jitter Attenuator in the IDT82V2081 meets the ITU-T I.431, G.703, G.736-739, G.823, G.824, ETSI 300011, ETSI TBR12/13, AT&T TR62411 specifications. Details of the Jitter Attenuator performance is shown in Table-63 Jitter Tolerance and Table-64 Jitter Attenuator Characteristics.

3.6 LOS AND AIS DETECTION

3.6.1 LOS DETECTION

The Loss of Signal Detector monitors the amplitude of the incoming signal level and pulse density of the received signal on RTIP and RRING.

- **LOS declare (LOS=1)**

 A LOS is detected when the incoming signal has “no transitions”, i.e., when the signal level is less than Q dB below nominal for N consecutive pulse intervals. Here N is defined by LAC bit (MAINT0, 0DH). LOS will be declared by pulling LOS pin to high (LOS=1) and LOS interrupt will be generated if it is not masked.

 Note that LOS indication is not supported if the device is operated in Line Monitor Mode. Refer to 3.4.2 Line Monitor.

- **LOS clear (LOS=0)**

 The LOS is cleared when the incoming signal has “transitions”, i.e., when the signal level is greater than P dB below nominal and has an average pulse density of at least 12.5% for M consecutive pulse intervals, starting with the receipt of a pulse. Here M is defined by LAC bit (MAINT0, 0DH). LOS status is cleared by pulling LOS pin to low.

3.6.2 LOS detect level threshold

- In short haul mode, the amplitude threshold Q is fixed on 800 mVpp, while P=Q+200 mVpp (200 mVpp is the LOS level detect hysteresis).

- In long haul mode, the value of Q can be selected by LOS[4:0] bit (RCF1, 0BH), while P=Q+4 dB (4 dB is the LOS level detect hysteresis). The Table-30 LOS[4:0] default value is 10101 (-46 dB).

- When the chip is configured by hardware, the LOS detect level is fixed if the IDT82V2081 operates in long haul mode. It is -46 dB (E1) and -38 dB (T1/J1).

Criteria for declare and clear of a LOS detect

- The detection supports ANSI T1.231 and I.431 for T1/J1 mode and G.775 and ETSI 300233/I.431 for E1 mode. The criteria can be selected by LAC bit (MAINT0, 0DH) and T1E1 bit (GCF, 02H).

- Table-17 and Table-18 summarize LOS declare and clear criteria for both short haul and long haul application.

All Ones output during LOS

- On the system side, the RDP/RDN will reflect the input pulse “transition” at the RTIP/RRING side and output recovered clock (but the quality of the output clock can not be guaranteed when the input level is lower than the maximum receive sensitivity) when AISE bit (MAINT0, 0DH) is 0; or output All Ones as AIS when AISE bit (MAINT0, 0DH) is 1. In this case, RCLK output is replaced by MCLK.

- On the line side, the TTIP/TRING will output All Ones as AIS when ATAO bit (MAINT0, 0DH) is 1. The All Ones pattern uses MCLK as the reference clock.

- LOS indicator is always active for all kinds of loopback modes.
Table-17 LOS Declare and Clear Criteria for Short Haul Mode

<table>
<thead>
<tr>
<th>Control bit</th>
<th>LOS declare threshold</th>
<th>LOS clear threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>0=T1.231</td>
<td>Level < 800 mVpp</td>
<td>Level > 1 Vpp</td>
</tr>
<tr>
<td></td>
<td>N=175 bits</td>
<td>M=128 bits</td>
</tr>
<tr>
<td></td>
<td>12.5% mark density</td>
<td><100 consecutive zeroes</td>
</tr>
<tr>
<td>1=T1/J1</td>
<td>Level < 800 mVpp</td>
<td>Level > 1 Vpp</td>
</tr>
<tr>
<td></td>
<td>N=1544 bits</td>
<td>M=128 bits</td>
</tr>
<tr>
<td></td>
<td>12.5% mark density</td>
<td><100 consecutive zeroes</td>
</tr>
<tr>
<td>0=G.775</td>
<td>Level < 800 mVpp</td>
<td>Level > 1 Vpp</td>
</tr>
<tr>
<td></td>
<td>N=32 bits</td>
<td>M=32 bits</td>
</tr>
<tr>
<td></td>
<td>12.5% mark density</td>
<td><16 consecutive zeroes</td>
</tr>
<tr>
<td>1=I.431/ETSI</td>
<td>Level < 800 mVpp</td>
<td>Level > 1 Vpp</td>
</tr>
<tr>
<td></td>
<td>N=2048 bits</td>
<td>M=32 bits</td>
</tr>
<tr>
<td></td>
<td>12.5% mark density</td>
<td><16 consecutive zeroes</td>
</tr>
</tbody>
</table>
3.6.2 AIS DETECTION

The Alarm Indication Signal can be detected by the IDT82V2081 when the Clock & Data Recovery unit is enabled. The status of AIS detection is reflected in the AIS_S bit (STAT0, 17H). In T1/J1 applications, the criteria for declaring/clearing AIS detection are in compliance with the ANSI T1.231. In E1 applications, the criteria for declaring/clearing AIS detection comply with the ITU G.775 or the ETSI 300233, as selected by the LAC bit (MAINT0, 0DH). Table-19 summarizes different criteria for AIS detection Declaring/Clearing.

Table-18 LOS Declare and Clear Criteria for Long Haul Mode

<table>
<thead>
<tr>
<th>T1E1</th>
<th>LAC</th>
<th>LOS[4:0]</th>
<th>Q (dB)</th>
<th>LOS declare threshold</th>
<th>LOS clear threshold</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T1.231</td>
<td>00000</td>
<td>-4</td>
<td>Level < Q</td>
<td>Level > Q + 4dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00001</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10001</td>
<td>-38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10101</td>
<td>-46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10110-11111</td>
<td>-46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1=T1/J1</td>
<td>-</td>
<td>00000</td>
<td>-4</td>
<td>Level < Q</td>
<td>Level > Q + 4dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00110</td>
<td>-16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I.431</td>
<td>00111</td>
<td>-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01101</td>
<td>-30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01110</td>
<td>-32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10001</td>
<td>-38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10101</td>
<td>-46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10110-11111</td>
<td>-46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0=E1</td>
<td>G.775</td>
<td>00000</td>
<td>-4</td>
<td>Level < Q</td>
<td>Level > Q + 4dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00100</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00011</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10001</td>
<td>-38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10101(0)</td>
<td>-46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10101-11111</td>
<td>-48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>I.431/ETSI</td>
<td>00000</td>
<td>-4</td>
<td>Level < Q</td>
<td>Level > Q + 4dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00001</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01000</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01001</td>
<td>-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10101(0)</td>
<td>-46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10110-11111</td>
<td>-48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I.431 Level detect range is -18 to -30 dB
G.775 Level detect range is -9 to -35 dB
I.431 Level detect range is -6 to -20 dB
Table 19: AIS Condition

<table>
<thead>
<tr>
<th></th>
<th>ITU G.775 for E1 (LAC bit is set to ‘0’ by default)</th>
<th>ETSI 300233 for E1 (LAC bit is set to ‘1’)</th>
<th>ANSI T1.231 for T1/J1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS detected</td>
<td>Less than 3 zeros contained in each of two consecutive 512-bit streams are received</td>
<td>Less than 3 zeros contained in a 512-bit stream are received</td>
<td>Less than 9 zeros contained in an 8192-bit stream (a ones density of 99.9% over a period of 5.3 ms)</td>
</tr>
<tr>
<td>AIS cleared</td>
<td>3 or more zeros contained in each of two consecutive 512-bit streams are received</td>
<td>3 or more zeros contained in a 512-bit stream are received</td>
<td>9 or more zeros contained in an 8192-bit stream are received</td>
</tr>
</tbody>
</table>
3.7 TRANSMIT AND DETECT INTERNAL PATTERNS

The internal patterns (All Ones, All Zeros, PRBS/QRSS pattern and Activate/Deactivate Loopback Code) will be generated and detected by IDT82V2081. TCLK is used as the reference clock by default. MCLK can also be used as the reference clock by setting the PATT_CLK bit (MAINT0, 0DH) to ‘1’.

If the PATT_CLK bit (MAINT0, 0DH) is set to ‘0’ and the PATT[1:0] bits (MAINT0, 0DH) are set to ‘00’, the transmit path will operate in normal mode.

When the chip is configured by hardware, the transmit path will operate in normal mode by setting PATT[1:0] pins to ‘00’. Refer to 5 Hardware Control Pin Summary for details.

3.7.1 TRANSMIT ALL ONES

In transmit direction, the All Ones data can be inserted into the data stream when the PATT[1:0] bits (MAINT0, 0DH) are set to ‘01’. The transmit data stream is output from TTIP/TRING. In this case, either TCLK or MCLK can be used as the transmit clock, as selected by the PATT_CLK bit (MAINT0, 0DH).

In hardware control mode, the All Ones data can be inserted into the data stream in transmit direction by setting PATT[1:0] pins to ‘01’. Refer to 5 Hardware Control Pin Summary for details.

3.7.2 TRANSMIT ALL ZEROS

If the PATT_CLK bit (MAINT0, 0DH) is set to ‘1’, the All Zeros will be inserted into the transmit data stream when the PATT[1:0] bits (MAINT0, 0DH) are set to ‘00’.

3.7.3 PRBS/QRSS GENERATION AND DETECTION

A PRBS/QRSS pattern will be generated in the transmit direction and detected in the receive direction by IDT82V2081. The QRSS is 2^{20}-1 for T1/J1 applications and the PRBS is 2^{15}-1 for E1 applications, with maximum zero restrictions according to AT&T TR624111 and ITU-T O.151.

When the PATT[1:0] bits (MAINT0, 0DH) are set to ‘10’, the PRBS/QRSS pattern will be transmitted into the transmit data stream with the MSB first. The PRBS/QRSS pattern will be transmitted directly or invertedly.

In hardware control mode, the PRBS data will be generated and inserted into the transmit data stream by setting PATT[1:0] pins to ‘10’. Refer to 5 Hardware Control Pin Summary for details.

The PRBS/QRSS in the received data stream will be monitored. If the PRBS/QRSS has reached synchronization status, the PRBS_S bit (STAT0, 17H) will be set to ‘1’, even in the presence of a logic error rate less than or equal to 10^{-1}. The criteria for setting/clearing the PRBS_S bit are shown in Table-20.

<table>
<thead>
<tr>
<th>PRBS/QRSS Detection</th>
<th>6 or less than 6 bit errors detected in a 64 bits hopping window.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRBS/QRSS Missing</td>
<td>More than 6 bit errors detected in a 64 bits hopping window.</td>
</tr>
</tbody>
</table>

PRBS data can be inverted through setting the PRBS_INV bit (MAINT0, 0DH).

Any change of PRBS_S bit will be captured by PRBS_IS bit (INTS0, 19H). The PRBS_IES bit (INTES, 16H) can be used to determine whether the ‘0’ to ‘1’ change of PRBS_S bit will be captured by the PRBS_IS bit or any changes of PRBS_S bit will be captured by the PRBS_IS bit. When the PRBS_IS bit is ‘1’, an interrupt will be generated if the PRBS_IM bit (INTM0, 14H) is set to ‘1’.

The received PRBS/QRSS logic errors can be counted in a 16-bit counter if the ERR_SEL[1:0] bits (MAINT6, 13H) are set to ‘00’. Refer to 3.9 Error Detection/Counting And Insertion for the operation of the error counter.

3.8 LOOPBACK

To facilitate testing and diagnosis, the IDT82V2081 provides four different loopback configurations: Analog Loopback, Digital Loopback, Remote Loopback and Inband Loopback.

3.8.1 ANALOG LOOPBACK

When the ALP bit (MAINT1, 0EH) is set to ‘1’, the chip is configured in Analog Loopback mode. In this mode, the transmit signals are looped back to the Receiver Internal Termination in the receive path then output from RCLK, RD, RDP/RDN. At the same time, the transmit signals are still output to TTIP/TRING in transmit direction. The all-ones pattern can be generated during analog loopback. Figure-13 shows the process.

3.8.2 DIGITAL LOOPBACK

When the DLP bit (MAINT1, 0EH) is set to ‘1’, the chip is configured in Digital Loopback mode. In this mode, the transmit signals are looped back to the jitter attenuator (if enabled) and decoder in receive path, then output from RCLK, RD, RDP/RDN. At the same time, the transmit signals are still output to TTIP/TRING in transmit direction. Figure-14 shows the process.

Both Analog Loopback mode and Digital Loopback mode allow the sending of the internal patterns (All Ones, All Zeros, PRBS, etc.) which will overwrite the transmit signals. In this case, either TCLK or MCLK can be used as the reference clock for internal patterns transmission.

In hardware control mode, Digital Loopback can be selected by setting LP[1:0] pins to ‘10’.

3.8.3 REMOTE LOOPBACK

When the RLP bit (MAINT1, 0EH) is set to ‘1’, the chip is configured in Remote Loopback mode. In this mode, the recovered clock and data output from Clock and Data Recovery on the receive path is looped back to the jitter attenuator (if enabled) and Waveform Shaper in transmit path. Figure-15 shows the process.

In hardware control mode, Remote Loopback can be selected by setting LP[1:0] pins to ‘11’.
Figure-13 Analog Loopback

Figure-14 Digital Loopback
3.8.4 INBAND LOOPBACK

When PATT[1:0] bits (MAINT0, 0DH) are set to ‘11’, the IDT82V2081 is configured in Inband Loopback mode. In this mode, an unframed activate/Deactivate Loopback Code is generated repeatedly in transmit direction per ANSI T1. 403 which overwrite the transmit signals. In receive direction, the framed or unframed code is detected per ANSI T1. 403, even in the presence of 10^{-2} bit error rate.

If the Automatic Remote Loopback is enabled by setting ARLP bit (MAINT1, 0EH) to ‘1’, the chip will establish/demolish the Remote Loopback based on the reception of the Activate Loopback Code/Deactivate Loopback Code for 5.1 s. If the ARLP bit (MAINT1, 0EH) is set to ‘0’, the Remote Loopback can also be demolished forcibly.

3.8.4.1 TRANSMIT ACTIVATE/DEACTIVATE LOOPBACK CODE

The pattern of the transmit Activate/Deactivate Loopback Code is defined by the TIBLB[7:0] bits (MAINT3, 10H). Whether the code represents an Activate Loopback Code or a Deactivate Loopback Code is judged by the far end receiver. The length of this pattern ranges from 5 bits to 8 bits, as selected by the TIBLB_L[1:0] bits (MAINT2, 0FH). The pattern can be programmed to 6-bit-long or 8-bit-long respectively by repeating itself if it is 3-bit-long or 4-bit-long.

The local transmit activate/deactivate code setting should be the same as the receive code setting in the remote end. It is the same thing for the other way round.

3.8.4.2 RECEIVE ACTIVATE/DEACTIVATE LOOPBACK CODE

The pattern of the receive Activate Loopback Code is defined by the RIBLBA[7:0] bits (MAINT4, 11H). The length of this pattern ranges from 5 bits to 8 bits, as selected by the RIBLBA_L[1:0] bits (MAINT2, 0FH). The pattern can be programmed to 6-bit-long or 8-bit-long respectively by repeating itself if it is 3-bit-long or 4-bit-long.

After the Activate Loopback Code has been detected in the receive data for more than 30 ms (in E1 mode) / 40 ms (in T1/J1 mode), the IBLBA_S bit (STAT0, 17H) will be set to ‘1’ to declare the reception of the Activate Loopback Code.

After the Deactivate Loopback Code has been detected in the receive data for more than 30 ms (in E1 mode) / 40 ms (in T1/J1 mode), the IBLBD_S bit (STAT0, 17H) will be set to ‘1’ to declare the reception of the Deactivate Loopback Code.

When the IBLBA_IES bit (INTES, 16H) is set to ‘0’, only the ‘0’ to ‘1’ transition of the IBLBA_S bit will generate an interrupt and set the IBLBA_IS bit (INTS0, 19H) to ‘1’. The IBLBA_IS bit will be reset to ‘0’ after being read.

When the IBLBD_IES bit (INTES, 16H) is set to ‘0’, only the ‘0’ to ‘1’ transition of the IBLBD_S bit will generate an interrupt and set the IBLBD_IS bit (INTS0, 19H) to ‘1’. The IBLBD_IS bit will be reset to ‘0’ after being read.

3.8.4.3 AUTOMATIC REMOTE LOOPBACK

When ARLP bit (MAINT1, 0EH) is set to ‘1’, the IDT82V2081 is configure
5.1 s, the Remote Loopback (shown as Figure-15) will be established automatically, and the RLP_S bit (STAT1, 18H) will be set to ‘1’ to indicate the establishment of the Remote Loopback. The IBLBA_S bit (STAT0, 17H) is set to ‘1’ to generate an interrupt. In this case, the Remote Loopback mode will still be kept even if the receiver stop receiving the Activate Loopback Code.

If the Deactivate Loopback Code has been detected in the receive data for more than 5.1 s, the Remote Loopback will be demolished automatically, and the RLP_S bit (STAT1, 18H) will set to ‘0’ to indicate the demolition of the Remote Loopback. The IBLBD_S bit (STAT0, 17H) is set to ‘1’ to generate an interrupt.

The Remote Loopback can also be demolished forcibly by setting ARLP bit (MAINT1, 0EH) to ‘0’.
3.9 ERROR DETECTION/COUNTING AND INSERTION

3.9.1 DEFINITION OF LINE CODING ERROR

The following line encoding errors can be detected and counted by the IDT82V2081:

- **Received Bipolar Violation (BPV) Error:** In AMI coding, when two consecutive pulses of the same polarity are received, a BPV error is declared.

- **HDB3/B8ZS Code Violation (CV) Error:** In HDB3/B8ZS coding, a CV error is declared when two consecutive BPV errors are detected, and the pulses that have the same polarity as the previous pulse are not the HDB3/B8ZS zero substitution pulses.

- **Excess Zero (EXZ) Error:** There are two standards defining the EXZ errors: ANSI and FCC. The EXZ_DEF bit (MAINT6, 13H) chooses which standard will be adopted by the chip to judge the EXZ error. Table-21 shows definition of EXZ. In hardware control mode, only ANSI standard is adopted.

<table>
<thead>
<tr>
<th>EXZ Definition</th>
<th>ANSI</th>
<th>FCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>More than 15 consecutive 0s are detected</td>
<td>More than 80 consecutive 0s are detected</td>
</tr>
<tr>
<td>HDB3</td>
<td>More than 3 consecutive 0s are detected</td>
<td>More than 3 consecutive 0s are detected</td>
</tr>
<tr>
<td>B8ZS</td>
<td>More than 7 consecutive 0s are detected</td>
<td>More than 7 consecutive 0s are detected</td>
</tr>
</tbody>
</table>

3.9.2 ERROR DETECTION AND COUNTING

Which type of the receiving errors (Received CV/BPV errors, excess zero errors and PRBS logic errors) will be counted is determined by ERR_SEL[1:0] bits (MAINT6, 13H). Only one type of receiving error can be counted at a time except that when the ERR_SEL[1:0] bits are set to ‘11’, both CV/BPV and EXZ errors will be detected and counted.

The selected type of receiving errors is counted in an internal 16-bit Error Counter. Once an error is detected, an error interrupt which is indicated by corresponding bit in (INTS1, 1AH) will be generated if it is not masked. This Error Counter can be operated in two modes: Auto Report Mode and Manual Report Mode, as selected by the CNT_MD bit (MAINT6, 13H). In Single Rail mode, once BPV or CV errors are detected, the CV pin will be driven to high for one RCLK period.

- **Auto Report Mode**

In Auto Report Mode, the internal counter starts to count the received errors when the CNT_MD bit (MAINT6, 13H) is set to ‘1’. A one-second timer is used to set the counting period. The received errors are counted within one second. If the one-second timer expires, the value in the internal counter will be transferred to (CNT0, 1BH) and (CNT1, 1CH), then the internal counter will be reset and start to count received errors for the next second. The errors occurred during the transfer will be accumulated to the next round. The expiration of the one-second timer will set TMOV_IS bit (INTS1, 1AH) to ‘1’, and will generate an interrupt if the TIMER_IM bit (INTM1, 15H) is set to ‘0’. The TMOV_IS bit (INTS1, 1AH) will be cleared after the interrupt register is read. The content in the (CNT0, 1BH) and (CNT1, 1CH) should be read within the next second. If the counter overflows, a counter overflow interrupt which is indicated by CNT_OV_IS bit (INTS1, 1AH) will be generated if it is not masked by CNT_IM bit (INTM1, 15H).
- **Manual Report Mode**

 In Manual Report Mode, the internal Error Counter starts to count the received errors when the CNT_MD bit (MAINT6, 13H) is set to ‘0’. When there is a ‘0’ to ‘1’ transition on the CNT_TRF bit (MAINT6, 13H), the data in the counter will be transferred to (CNT0, 1BH) and (CNT1, 1CH), then the counter will be reset. The errors occurred during the transfer will be accumulated to the next round. If the counter overflows, a counter overflow interrupt indicated by CNT_OV_IS bit (INTS1, 1AH) will be generated if it is not masked by CNT_IM bit (INTM1, 15H).

![Figure-17 Manual Report Mode](image)

Note: It is recommended that users should do the followings within next round of error counting: Read the data in CNT0 and CNT1; Reset CNT_TRF bit for the next ‘0’ to ‘1’ transition on this bit.

3.9.3 Bipolar Violation and PRBS Error Insertion

Only when three consecutive ‘1’s are detected in the transmit data stream, will a ‘0’ to ‘1’ transition on the BPV_INS bit (MAINT6, 13H) generate a bipolar violation pulse, and the polarity of the second ‘1’ in the series will be inverted.

A ‘0’ to ‘1’ transition on the EER_INS bit (MAINT6, 13H) will generate a logic error during the PRBS/QRSS transmission.

3.10 Line Driver Failure Monitoring

The transmit driver failure monitor can be enabled or disabled by setting DFM_OFF bit (TCF1, 06H). If the transmit driver failure monitor is enabled, the transmit driver failure will be captured by DF_S bit (STAT0, 17H). The transition of the DF_S bit is reflected by DF_IS bit (INTS0, 19H), and, if enabled by DF_IM bit (INTM0, 14H), will generate an interrupt. When there is a short circuit on the TTIP/TRING port, the output current will be limited to 100 mA (typical), and an interrupt will be generated.

In hardware control mode, the transmit driver failure monitor is always enabled.
3.11 MCLK AND TCLK

3.11.1 MASTER CLOCK (MCLK)

MCLK is an independent, free-running reference clock. MCLK is 1.544 MHz for T1/J1 applications and 2.048 MHz in E1 mode. This reference clock is used to generate several internal reference signals:

- Timing reference for the integrated clock recovery unit.
- Timing reference for the integrated digital jitter attenuator.
- Timing reference for microcontroller interface.
- Generation of RCLK signal during a loss of signal condition if AIS is enabled.
- Reference clock during Transmit All Ones, PRBS/QRSS pattern and Inband Loopback code if it is selected as the reference clock. For ATAO and AIS, MCLK is always used as the reference clock.
- Reference clock during Transmit All Ones (TAO) condition or sending PRBS/QRSS in hardware control mode.

Figure-18 shows the chip operation status in different conditions of MCLK and TCLK. The missing of MCLK will set the TTIP/TRING to high impedance state.

3.11.2 TRANSMIT CLOCK (TCLK)

TCLK is used to sample the transmit data on TD/TDP and TDN. The active edge of TCLK can be selected by the TCLK_SEL bit (TCF0, 05H). During Transmit All Ones, PRBS/QRSS patterns or Inband Loopback Code, either TCLK or MCLK can be used as the reference clock. This is selected by the PATT_CLK bit (MAINT0, 0DH).

But for Automatic Transmit All Ones and AIS, only MCLK is used as the reference clock and the PATT_CLK bit is ignored. In Automatic Transmit All Ones condition, the ATAO bit (MAINT0, 0DH) is set to ‘1’. In AIS condition, the AISE bit (MAINT0, 0DH) is set to ‘1’.

If TCLK has been missing for more than 70 MCLK cycles, TCLK_LOS bit (STAT0, 17H) will be set, and the TTIP/TRING will become high impedance if the chip is not used for remote loopback or is not using MCLK to transmit internal patterns (TAOS, All Zeros, PRBS and in-band loopback code). When TCLK is detected again, TCLK_LOS bit (STAT0, 17H) will be cleared. The reference frequency to detect a TCLK loss is derived from MCLK.

Figure-18 TCLK Operation Flowchart
3.12 MICROCONTROLLER INTERFACES

The microcontroller interface provides access to read and write the registers in the device. The chip supports serial microcontroller interface and two kinds of parallel microcontroller interface: Motorola multiplexed mode and Intel multiplexed mode. Different microcontroller interfaces can be selected by setting MODE[1:0] pins to different values. Refer to MODE1 and MODE0 in pin description and Microcontroller Interface Timing Characteristics for details.

3.12.1 PARALLEL MICROCONTROLLER INTERFACE

The interface is compatible with Motorola or Intel microcontroller. When MODE[1:0] pins are set to ‘10’, Parallel-Multiplexed-Motorola interface is selected. When MODE[1:0] pins are set to ‘11’, Parallel-Multiplexed-Intel Interface is selected.

3.12.2 SERIAL MICROCONTROLLER INTERFACE

When MODE[1:0] pins are set to ‘01’, Serial Interface is selected. In this mode, the registers are programmed through a 16-bit word which contains an 8-bit address/command byte (5 address bits A0~A4 and bit R/W) and an 8-bit data byte (D0~D7). When bit R/W is ‘1’, data is read out from pin SDO. When bit R/W is ‘0’, data is written into SDI pin. Refer to Figure-19.

3.13 INTERRUPT HANDLING

All kinds of interrupt of the IDT82V2081 are indicated by the INT pin. When the INT_PIN[0] bit (GCF, 02H) is ‘0’, the INT pin is open drain active low, with a 10 KΩ external pull-up resistor. When the INT_PIN[1:0] bits (GCF, 02H) are ‘01’, the INT pin is push-pull active low; when the INT_PIN[1:0] bits are ‘10’, the INT pin is push-pull active high.

An active level on the INT pin represents an interrupt of the IDT82V2081.

The interrupt event is captured by the corresponding bit in the Interrupt Status Register (INTS0, 19H) or (INTS1, 1AH). Every kind of interrupt can be enabled/disabled individually by the corresponding bit in the register (INTM0, 14H) or (INTM1, 15H). Some event is reflected by the corresponding bit in the Status Register (STAT0, 17H) or (STAT1, 18H), and the Interrupt Trigger Edge Selection Register can be used to determine how the Status Register sets the Interrupt Status Register.

After the Interrupt Status Register (INTS0, 19H) or (INTS1, 1AH) is read, the INT pin become inactive.

There are totally fourteen kinds of events that could be the interrupt source:

1. LOS Detected
2. AIS Detected
3. Driver Failure Detected
4. TCLK Loss
5. Synchronization Status of PRBS
6. PRBS Error Detected
7. Code Violation Received
8. Excessive Zeros Received
9. JA FIFO Overflow/Underflow
10. Inband Loopback Code Status
11. Equalizer Out of Range
12. One-Second Timer Expired
13. Error Counter Overflow
14. Arbitrary Waveform Generator Overflow

Table-22 is a summary of all kinds of interrupt and the associated Status bit, Interrupt Status bit, Interrupt Trigger Edge Selection bit and Interrupt Mask bit.
Table-22 Interrupt Event

<table>
<thead>
<tr>
<th>Interrupt Event</th>
<th>Status bit (STAT0, STAT1)</th>
<th>Interrupt Status bit (INTS0, INTS1)</th>
<th>Interrupt Edge Selection bit (INTES)</th>
<th>Interrupt Mask bit (INTM0, INTM1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS Detected</td>
<td>LOS_S</td>
<td>LOS_IS</td>
<td>LOS_IES</td>
<td>LOS_IM</td>
</tr>
<tr>
<td>AIS Detected</td>
<td>AIS_S</td>
<td>AIS_IS</td>
<td>AIS_IES</td>
<td>AIS IM</td>
</tr>
<tr>
<td>Driver Failure Detected</td>
<td>DF_S</td>
<td>DF_IS</td>
<td>DF_IES</td>
<td>DF IM</td>
</tr>
<tr>
<td>TCLK Loss</td>
<td>TCLK_LOS</td>
<td>TCLK_LOS_IS</td>
<td>TCLK_IES</td>
<td>TCLK IM</td>
</tr>
<tr>
<td>Synchronization Status of PRBS/QRSS</td>
<td>PRBS_S</td>
<td>PRBS_IS</td>
<td>PRBS_IES</td>
<td>PRBS IM</td>
</tr>
<tr>
<td>PRBS/QRSS Error</td>
<td>ERR_IS</td>
<td></td>
<td>ERR_IM</td>
<td></td>
</tr>
<tr>
<td>Code Violation Received</td>
<td>CV_IS</td>
<td></td>
<td>CV IM</td>
<td></td>
</tr>
<tr>
<td>Excessive Zeros Received</td>
<td>EXZ_IS</td>
<td></td>
<td>EXZ IM</td>
<td></td>
</tr>
<tr>
<td>JA FIFO Overflow</td>
<td>JAOV_IS</td>
<td></td>
<td>JAOV IM</td>
<td></td>
</tr>
<tr>
<td>JA FIFO Underflow</td>
<td>JAUD_IS</td>
<td></td>
<td>JAUD IM</td>
<td></td>
</tr>
<tr>
<td>Equalizer Out of Range</td>
<td>EQ_S</td>
<td>EQ_IS</td>
<td>EQ_IES</td>
<td>EQ IM</td>
</tr>
<tr>
<td>Inband Loopback Activate Code Status</td>
<td>IBLBA_S</td>
<td>IBLBA_IS</td>
<td>IBLBA_IES</td>
<td>IBLBA IM</td>
</tr>
<tr>
<td>Inband Loopback Deactivate Code Status</td>
<td>IBLBD_S</td>
<td>IBLBD_IS</td>
<td>IBLBD_IES</td>
<td>IBLBD IM</td>
</tr>
<tr>
<td>One-Second Timer Expired</td>
<td>TMOV_IS</td>
<td></td>
<td>TIMER IM</td>
<td></td>
</tr>
<tr>
<td>Error Counter Overflow</td>
<td>CNT_OV_IS</td>
<td></td>
<td>CNT IM</td>
<td></td>
</tr>
<tr>
<td>Arbitrary Waveform Generator Overflow</td>
<td>DAC_OV_IS</td>
<td></td>
<td>DAC_OV IM</td>
<td></td>
</tr>
</tbody>
</table>

3.14 5V TOLERANT I/O PINS

All digital input pins will tolerate 5.0 ± 10% volts and are compatible with TTL logic.

3.15 RESET OPERATION

The chip can be reset in two ways:
- Software Reset: Writing to the **RST** register (01H) will reset the chip in 1 us.
- Hardware Reset: Asserting the **RST** pin low for a minimum of 100 ns will reset the chip.

During Hardware Reset, the device requires an active clock on MCLK. For T1/J1 operation, bit T1E1(GCF0) is set after reset.

Before accessing any other registers a delay of 50 us is required to allow the internal clocking to be settled.

After reset, all drivers output are in high impedance state, all the internal flip-flops are reset, and all the registers are initialized to default values.

When performing a software reset, the T1E1 bit (GCF0) will not be reset and stay with the set value.

3.16 POWER SUPPLY

This chip uses a single 3.3 V power supply.
Programming Information

4 Register List and Map

The registers banks include control registers, status registers and counter registers.

Table-23 Register List and Map

<table>
<thead>
<tr>
<th>Address (hex)</th>
<th>Register</th>
<th>R/W</th>
<th>Map</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>b7</td>
</tr>
<tr>
<td>Control Registers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>ID</td>
<td>R</td>
<td>ID7</td>
</tr>
<tr>
<td>01</td>
<td>RST</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>GCF</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>03</td>
<td>TERM</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>04</td>
<td>JACF</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>Transmit Path Control Registers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>TCF0</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>06</td>
<td>TCF1</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>07</td>
<td>TCF2</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>08</td>
<td>TCF3</td>
<td>R/W</td>
<td>DONE</td>
</tr>
<tr>
<td>09</td>
<td>TCF4</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>Receive Path Control Registers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0A</td>
<td>RCF0</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>0B</td>
<td>RCF1</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>0C</td>
<td>RCF2</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>Network Diagnostics Control Registers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D</td>
<td>MAINT0</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>0E</td>
<td>MAINT1</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>0F</td>
<td>MAINT2</td>
<td>R/W</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>MAINT3</td>
<td>R/W</td>
<td>RIBLEA7</td>
</tr>
<tr>
<td>11</td>
<td>MAINT4</td>
<td>R/W</td>
<td>RIBLEB7</td>
</tr>
<tr>
<td>12</td>
<td>MAINT5</td>
<td>R/W</td>
<td>RIBLEB7</td>
</tr>
<tr>
<td>13</td>
<td>MAINT6</td>
<td>R/W</td>
<td>BPV_INS</td>
</tr>
<tr>
<td>Interrupt Control Registers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>INTM0</td>
<td>R/W</td>
<td>EQ_IM</td>
</tr>
<tr>
<td>15</td>
<td>INTM1</td>
<td>R/W</td>
<td>DAC_OV_IM</td>
</tr>
<tr>
<td>16</td>
<td>INTES</td>
<td>R/W</td>
<td>EQ_IES</td>
</tr>
<tr>
<td>Line Status Register</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>STAT0</td>
<td>R</td>
<td>EQ_S</td>
</tr>
<tr>
<td>18</td>
<td>STAT1</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>Interrupt Status Register</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>INTS0</td>
<td>R</td>
<td>EQ_IS</td>
</tr>
<tr>
<td>1A</td>
<td>INTS1</td>
<td>R</td>
<td>DAC_OV_IS</td>
</tr>
<tr>
<td>Counter Registers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>CNT0</td>
<td>R</td>
<td>Bit15</td>
</tr>
<tr>
<td>1C</td>
<td>CNT1</td>
<td>R</td>
<td>Bit7</td>
</tr>
</tbody>
</table>
4.3 REGISTER DESCRIPTION

4.3.1 CONTROL REGISTERS

Table-24 ID: Device Revision Register
(R, Address = 00H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID[7:0]</td>
<td>7-0</td>
<td>00H</td>
<td>Current silicon chip ID.</td>
</tr>
</tbody>
</table>

Table-25 RST: Reset Register
(W, Address = 01H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST[7:0]</td>
<td>7-0</td>
<td>00H</td>
<td>Software reset. A write operation on this register will reset all internal registers to their default values, and the status of all ports are set to the default status. The content in this register cannot be changed. After reset, all drivers output are in high impedance state. Note: Bit T1E1 (GCF0) will keep set value and will not be reset.</td>
</tr>
</tbody>
</table>

Table-26 GCF: Global Configuration Register
(R/W, Address = 02H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-3</td>
<td>000000</td>
<td>Reserved.</td>
</tr>
<tr>
<td>T1E1</td>
<td>2</td>
<td>0</td>
<td>This bit selects the E1 or T1/J1 operation mode globally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: E1 mode is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: T1/J1 mode is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: After bit T1E1 is changed: Before accessing any other registers a delay of 50us is required to allow the internal clocking to be settled.</td>
</tr>
<tr>
<td>INT_PIN[1:0]</td>
<td>1-0</td>
<td>00</td>
<td>Interrupt pin control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= x0: Open drain, active low (with an external pull-up resistor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 01: Push-pull, active low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 11: Push-pull, active high</td>
</tr>
</tbody>
</table>

Table-27 TERM: Transmit and Receive Termination Configuration Register
(R/W, Address = 03H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-6</td>
<td>00</td>
<td>Reserved.</td>
</tr>
<tr>
<td>T_TERM[2:0]</td>
<td>5-3</td>
<td>000</td>
<td>These bits select the internal termination for transmit line impedance matching.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 000: Internal 75 Ω impedance matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 001: Internal 120 Ω impedance matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 010: Internal 100 Ω impedance matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 011: Internal 110 Ω impedance matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1xx: Selects external impedance matching resistors for E1 mode only. T1/J1 does not require external impedance resistors (see Table-14).</td>
</tr>
<tr>
<td>R_TERM[2:0]</td>
<td>2-0</td>
<td>000</td>
<td>These bits select the internal termination for receive line impedance matching.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 000: Internal 75 Ω impedance matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 001: Internal 120 Ω impedance matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 010: Internal 100 Ω impedance matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 011: Internal 110 Ω impedance matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1xx: Selects external impedance matching resistors (see Table-15).</td>
</tr>
</tbody>
</table>
Table-28 JACF: Jitter Attenuation Configuration Register
(R/W, Address = 04H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-6</td>
<td>00</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>
| JA_LIMIT | 5 | 1 | = 0: Normal mode
| | | | = 1: JA limit mode |
| JACF[1:0] | 4-3 | 00 | Jitter attenuation configuration
| | | | = 00/10: JA not used
| | | | = 01: JA in transmit path
| | | | = 11: JA in receive path |
| JADP[1:0] | 2-1 | 00 | Jitter attenuation depth select
| | | | = 00: 128 bits
| | | | = 01: 64 bits
| | | | = 1x: 32 bits |
| JABW | 0 | 0 | Jitter transfer function bandwidth select
| | | | = 0: 6.8 Hz (E1)
| | | | 5 Hz (T1/J1)
| | | | = 1: 0.9 Hz (E1)
| | | | 1.25 Hz (T1/J1) |
4.3.2 TRANSMIT PATH CONTROL REGISTERS

Table-29 TCF0: Transmitter Configuration Register 0
(R/W, Address = 05H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-5</td>
<td>000</td>
<td>Reserved.</td>
</tr>
<tr>
<td>T_OFF</td>
<td>4</td>
<td>0</td>
<td>Transmitter power down enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: Transmitter power up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Transmitter power down (line driver high impedance)</td>
</tr>
<tr>
<td>TD_INV</td>
<td>3</td>
<td>0</td>
<td>Transmit data invert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: Data on TD or TDP/TDN is active high</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Data on TD or TDP/TDN is active low</td>
</tr>
<tr>
<td>TCLK_SEL</td>
<td>2</td>
<td>0</td>
<td>Transmit clock edge select</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: Data on TDP/TDN is sampled on the falling edge of TCLK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Data on TDP/TDN is sampled on the rising edge of TCLK</td>
</tr>
<tr>
<td>T_MD[1:0]</td>
<td>0-1</td>
<td>00</td>
<td>Transmitter operation mode control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T_MD[1:0] select different stages of the transmit data path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 00: Enable HDB3/B8ZS encoder and waveform shaper blocks. Input on pin TD is single rail NRZ data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 01: Enable AMI encoder and waveform shaper blocks. Input on pin TD is single rail NRZ data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1x: Encoder is bypassed, dual rail NRZ transmit data input on pin TDP/TDN</td>
</tr>
</tbody>
</table>

Table-30 TCF1: Transmitter Configuration Register 1
(R/W, Address = 06H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-6</td>
<td>00</td>
<td>Reserved. This bit should be '0' for normal operation.</td>
</tr>
<tr>
<td>DFM_OFF</td>
<td>5</td>
<td>0</td>
<td>Transmit driver failure monitor disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: DFM is enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: DFM is disabled</td>
</tr>
<tr>
<td>THZ</td>
<td>4</td>
<td>1</td>
<td>Transmit line driver high impedance enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: Normal state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Transmit line driver high impedance enable (other transmit path still work normally)</td>
</tr>
<tr>
<td>PULS[3:0]</td>
<td>3-0</td>
<td>0000</td>
<td>These bits select the transmit template/LBO for short-haul/long-haul applications.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T1/E1/J1</th>
<th>TCLK</th>
<th>Cable impedance</th>
<th>LBO</th>
<th>Allowable Cable loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000(^1)</td>
<td>E1</td>
<td>2.048 MHz</td>
<td>75 Ω</td>
<td>-</td>
<td>0-43 dB</td>
</tr>
<tr>
<td>0001</td>
<td>E1</td>
<td>2.048 MHz</td>
<td>120 Ω</td>
<td>-</td>
<td>0-43 dB</td>
</tr>
<tr>
<td>0010</td>
<td>DSX1</td>
<td>1.544 MHz</td>
<td>100 Ω</td>
<td>0-133 ft</td>
<td>0-0.6 dB</td>
</tr>
<tr>
<td>0011</td>
<td>DSX1</td>
<td>1.544 MHz</td>
<td>100 Ω</td>
<td>133-266 ft</td>
<td>0.6-1.2 dB</td>
</tr>
<tr>
<td>0100</td>
<td>DSX1</td>
<td>1.544 MHz</td>
<td>100 Ω</td>
<td>266-399 ft</td>
<td>1.2-1.8 dB</td>
</tr>
<tr>
<td>0101</td>
<td>DSX1</td>
<td>1.544 MHz</td>
<td>100 Ω</td>
<td>399-533 ft</td>
<td>2.4-3.0 dB</td>
</tr>
<tr>
<td>0110</td>
<td>DSX1</td>
<td>1.544 MHz</td>
<td>100 Ω</td>
<td>533-655 ft</td>
<td>2.4-3.0 dB</td>
</tr>
<tr>
<td>0111</td>
<td>J1</td>
<td>1.544 MHz</td>
<td>110 Ω</td>
<td>655 ft</td>
<td>0-3.0 dB</td>
</tr>
<tr>
<td>1000</td>
<td>DS1</td>
<td>1.544 MHz</td>
<td>100 Ω</td>
<td>0 dB LBO</td>
<td>0-36 dB</td>
</tr>
<tr>
<td>1001</td>
<td>DS1</td>
<td>1.544 MHz</td>
<td>100 Ω</td>
<td>-7.5 dB LBO</td>
<td>0-28.5 dB</td>
</tr>
<tr>
<td>1010</td>
<td>DS1</td>
<td>1.544 MHz</td>
<td>100 Ω</td>
<td>-15.0 dB LBO</td>
<td>0-21 dB</td>
</tr>
<tr>
<td>1011</td>
<td>DS1</td>
<td>1.544 MHz</td>
<td>100 Ω</td>
<td>-22.5 dB LBO</td>
<td>0-13.5 dB</td>
</tr>
<tr>
<td>11XX</td>
<td></td>
<td></td>
<td>User programmable waveform setting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) In internal impedance matching mode, for E1/75 Ω cable impedance, the PULS[3:0] bits (TCF1, 06H) should be set to ‘0000’. In external impedance matching mode, for E1/75 Ω cable impedance, the PULS[3:0] bits should be set to ‘0001’.
Table-31 TCF2: Transmitter Configuration Register 2
(R/W, Address = 07H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-6</td>
<td>00</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>
| SCAL[5:0] | 5-0 | 100001 | SCAL specifies a scaling factor to be applied to the amplitude of the user-programmable arbitrary pulses which is to be transmitted if needed. The default value of SCAL[5:0] is ‘100001’. Refer to 3.3.3.3 User-Programmable Arbitrary Waveform.
= 110110: Default value for T1 0~133 ft, T1 133~266 ft, T1 266~399 ft, T1 399~533 ft, T1 533~655 ft, J1 0~655 ft, DS1 0dB LBO. One step change of this value results in 2% scaling up/down against the pulse amplitude.
= 010001: Default value for DS1 -7.5 dB LBO. One step change of this value results in 6.25% scaling up/down against the pulse amplitude.
= 001000: Default value for DS1 -15.0 dB LBO. One step change of this value results in 12.5% scaling up/down against the pulse amplitude.
= 000100: Default value for DS1 -22.5 dB LBO. One step change of this value results in 25% scaling up/down against the pulse amplitude.
| 100001: Default value for 75Ω and 120Ω. One step change of this value results in 3% scaling up/down against the pulse amplitude. |

Table-32 TCF3: Transmitter Configuration Register 3
(R/W, Address = 08H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DONE</td>
<td>7</td>
<td>0</td>
<td>After ‘1’ is written to this bit, a read or write operation is implemented.</td>
</tr>
</tbody>
</table>
| RW | 6 | 0 | This bit selects read or write operation
= 0: Write to RAM
= 1: Read from RAM |
| UI[1:0]| 5-4 | 00 | These bits specify the unit interval address. There are totally 4 unit intervals.
= 00: UI address is 0 (The most left UI)
= 01: UI address is 1
= 10: UI address is 2
= 11: UI address is 3

| SAMP[3:0]| 3-0 | 0000 | These bits specify the sample address. Each UI has totally 16 samples.
= 0000: Sample address is 0 (The most left sample)
= 0001: Sample address is 1
= 0010: Sample address is 2
......
= 1110: Sample address is 14
= 1111: Sample address is 15 |

Table-33 TCF4: Transmitter Configuration Register 4
(R/W, Address = 09H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7</td>
<td>0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
| WDAT[6:0]| 6-0 | 00000000 | In Indirect Write operation, the WDAT[6:0] will be loaded to the pulse template RAM, specifying the amplitude of the Sample.
After an Indirect Read operation, the amplitude data of the Sample in the pulse template RAM will be output to the WDAT[6:0]. |
4.3.3 RECEIVE PATH CONTROL REGISTERS

Table-34 RCF0: Receiver Configuration Register 0
(R/W, Address = 0AH)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-5</td>
<td>000</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
| R_OFF | 4 | 0 | Receiver power down enable
\= 0: Receiver power up
\= 1: Receiver power down |
| RD_INV | 3 | 0 | Receive data invert
\= 0: Data on RD or RDP/RDN is active high
\= 1: Data on RD or RDP/RDN is active low |
| RCLK_SEL| 2 | 0 | Receive clock edge select (this bit is ignored in slicer mode)
\= 0: Data on RD or RDP/RDN is updated on the rising edge of RCLK
\= 1: Data on RD or RDP/RDN is updated on the falling edge of RCLK |
| R_MD[1:0] | 1-0 | 00 | Receive path decoding selection
\= 00: Receive data is HDB3 (E1)/B8ZS (T1/J1) decoded and output on RD pin with single rail NRZ format
\= 01: Receive data is AMI decoded and output on RD pin with single rail NRZ format
\= 10: Decoder is bypassed, re-timed dual rail data with NRZ format output on RDP/RDN (dual rail mode with clock recovery)
\= 11: CDR and decoder are bypassed, slicer data with RZ format output on RDP/RDN (slicer mode) |
Table-35 RCF1: Receiver Configuration Register 1
(R/W, Address= 0BH)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>EQ_ON</td>
<td>6</td>
<td>0</td>
<td>= 0: Receive equalizer off (short haul receiver)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Receive equalizer on (long haul receiver)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>LOS[4:0]</td>
<td>4:0</td>
<td>10101</td>
<td>LOS Clear Level (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LOS Declare Level (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10110 -11111</td>
</tr>
</tbody>
</table>
Table-36 RCF2: Receiver Configuration Register 2
(R/W, Address = 0CH)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-6</td>
<td>00</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>
| SLICE[1:0] | 5-4 | 01 | Receive slicer threshold
 = 00: The receive slicer generates a mark if the voltage on RTIP/RRING exceeds 40% of the peak amplitude.
 = 01: The receive slicer generates a mark if the voltage on RTIP/RRING exceeds 50% of the peak amplitude.
 = 10: The receive slicer generates a mark if the voltage on RTIP/RRING exceeds 60% of the peak amplitude.
 = 11: The receive slicer generates a mark if the voltage on RTIP/RRING exceeds 70% of the peak amplitude. |
| UPDW[1:0] | 3-2 | 10 | Equalizer observation window
 = 00: 32 bits
 = 01: 64 bits
 = 10: 128 bits
 = 11: 256 bits |
| MG[1:0] | 1-0 | 00 | Monitor gain setting: these bits select the internal linear gain boost
 = 00: 0 dB
 = 01: 22 dB
 = 10: 26 dB
 = 11: 32 dB |
4.3.4 NETWORK DIAGNOSTICS CONTROL REGISTERS

Table-37 MAINT0: Maintenance Function Control Register 0
(R/W, Address = 0DH)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7</td>
<td>00</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>
| PATT[1:0] | 6-5 | 00 | These bits select the internal pattern and insert it into transmit data stream.
 | | | = 00: Normal operation (PATT_CLK = 0) / insert all zeros (PATT_CLK = 1)
 | | | = 01: Insert All Ones
 | | | = 10: Insert PRBS (E1: 2^{15}-1) or QRSS (T1/J1: 2^{20}-1)
 | | | = 11: Insert programmable Inband loopback activate or deactivate code (default value 00001) |
| PATT_CLK | 4 | 0 | Selects reference clock for transmitting internal pattern
 | | | = 0: Uses TCLK as the reference clock
 | | | = 1: Uses MCLK as the reference clock |
| PRBS_INV | 3 | 0 | Inverts PRBS
 | | | = 0: The PRBS data is not inverted
 | | | = 1: The PRBS data is inverted before transmission and detection |
| LAC | 2 | 0 | LOS/AIS criterion is selected as below:
 | | | = 0: G.775 (E1) / T1.231 (T1/J1)
 | | | = 1: ETSI 300233 & I.431 (E1) / I.431 (T1/J1) |
| AISE | 1 | 0 | AIS enable during LOS
 | | | = 0: AIS insertion on RDP/RDN/RCLK is disabled during LOS
 | | | = 1: AIS insertion on RDP/RDN/RCLK is enabled during LOS |
| ATAO | 0 | 0 | Automatically Transmit All Ones (enabled only when PATT[1:0] = 00)
 | | | = 0: Disabled
 | | | = 1: Automatically Transmit All Ones pattern at TTIP/TRING during LOS |

Table-38 MAINT1: Maintenance Function Control Register 1
(R/W, Address = 0EH)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-4</td>
<td>0000</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
| ARLP | 3 | 0 | Automatic remote loopback enable
 | | | = 0: Disables automatic remote loopback (normal transmit and receive operation)
 | | | = 1: Enables automatic remote loopback |
| RLP | 2 | 0 | Remote loopback enable
 | | | = 0: Disables remote loopback (normal transmit and receive operation)
 | | | = 1: Enables remote loopback |
| ALP | 1 | 0 | Analog loopback enable
 | | | = 0: Disables analog loopback (normal transmit and receive operation)
 | | | = 1: Enables analog loopback |
| DLP | 0 | 0 | Digital loopback enable
 | | | = 0: Disables digital loopback (normal transmit and receive operation)
 | | | = 1: Enables digital loopback |
Table-39 MAINT2: Maintenance Function Control Register 2
(R/W, Address = 0FH)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7-6</td>
<td>00</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
| TIBLB_L[1:0] | 5-4 | 00 | Defines the length of the user-programmable transmit loopback activate/deactivate code contained in TIBLB register. The default selection is 5 bits length.
| | | | = 00: 5-bit long activate code in TIBLB [4:0] |
| | | | = 01: 6-bit long activate code in TIBLB [5:0] |
| | | | = 10: 7-bit long activate code in TIBLB [6:0] |
| | | | = 11: 8-bit long activate code in TIBLB [7:0] |
| RIBLBA_L[1:0] | 3-2 | 00 | Defines the length of the user-programmable receive activate loopback code contained in RIBLBA register. The default selection is 5 bits length.
| | | | = 00: 5-bit long activate code in RIBLBA [4:0] |
| | | | = 01: 6-bit long activate code in RIBLBA [5:0] |
| | | | = 10: 7-bit long activate code in RIBLBA [6:0] |
| | | | = 11: 8-bit long activate code in RIBLBA [7:0] |
| RIBLBD_L[1:0] | 1-0 | 01 | Defines the length of the user-programmable receive deactivate loopback code contained in RIBLBD register. The default selection is 6 bits length.
| | | | = 00: 5-bit long deactivate code in RIBLBD [4:0] |
| | | | = 01: 6-bit long deactivate code in RIBLBD [5:0] |
| | | | = 10: 7-bit long deactivate code in RIBLBD [6:0] |
| | | | = 11: 8-bit long deactivate code in RIBLBD [7:0] |

Table-40 MAINT3: Maintenance Function Control Register 3
(R/W, Address = 10H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
</table>
| TIBLB[7:0] | 7-0 | (000)0001 | Defines the user-programmable transmit Inband loopback activate or deactivate code. The default selection is 00001.
| | | | TIBLB [7:0] form the 8-bit repeating code |
| | | | TIBLB [6:0] form the 7-bit repeating code |
| | | | TIBLB [5:0] form the 6-bit repeating code |
| | | | TIBLB [4:0] form the 5-bit repeating code |

Table-41 MAINT4: Maintenance Function Control Register 4
(R/W, Address = 11H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
</table>
| RIBLBA[7:0] | 7-0 | (000)0001 | Defines the user-programmable receive Inband loopback activate code. The default selection is 00001.
| | | | RIBLBA [7:0] form the 8-bit repeating code |
| | | | RIBLBA [6:0] form the 7-bit repeating code |
| | | | RIBLBA [5:0] form the 6-bit repeating code |
| | | | RIBLBA [4:0] form the 5-bit repeating code |

Table-42 MAINT5: Maintenance Function Control Register 5
(R/W, Address = 12H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
</table>
| RIBLBD[7:0] | 7-0 | (00)01001 | Defines the user-programmable receive Inband loopback deactivate code. The default selection is 001001.
| | | | RIBLBD [7:0] form the 8-bit repeating code |
| | | | RIBLBD [6:0] form the 7-bit repeating code |
| | | | RIBLBD [5:0] form the 6-bit repeating code |
| | | | RIBLBD [4:0] form the 5-bit repeating code |
Table-43 MAINT6: Maintenance Function Control Register 6
(R/W, Address = 13H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>7</td>
<td>0</td>
<td>Reserved.</td>
</tr>
<tr>
<td>BPV_INS</td>
<td>6</td>
<td>0</td>
<td>BPV error insertion
A ‘0’ to ‘1’ transition on this bit will cause a single bipolar violation error to be inserted into the transmit data stream. This bit must be cleared and set again for a subsequent error to be inserted.</td>
</tr>
<tr>
<td>ERR_INS</td>
<td>5</td>
<td>0</td>
<td>PRBS logic error insertion
A ‘0’ to ‘1’ transition on this bit will cause a single PRBS logic error to be inserted into the transmit PRBS data stream. This bit must be cleared and set again for a subsequent error to be inserted.</td>
</tr>
<tr>
<td>EXZ_DEF</td>
<td>4</td>
<td>0</td>
<td>EXZ definition select
= 0: ANSI
= 1: FCC</td>
</tr>
<tr>
<td>ERR_SEL</td>
<td>3-2</td>
<td>00</td>
<td>These bits choose which type of error will be counted
= 00: The PRBS logic error is counted by a 16-bit error counter.
= 01: The EXZ error is counted by a 16-bit error counter.
= 10: The Received CV (BPV) error is counted by a 16-bit error counter.
= 11: Both CV (BPV) and EXZ errors are counted by a 16-bit error counter.</td>
</tr>
<tr>
<td>CNT_MD</td>
<td>1</td>
<td>0</td>
<td>Counter operation mode select
= 0: Manual Report mode
= 1: Auto Report mode</td>
</tr>
<tr>
<td>CNT_TRF</td>
<td>0</td>
<td>0</td>
<td>= 0: Clear this bit for the next ‘0’ to ‘1’ transition on this bit.
= 1: Error counting result is transferred to CNT0 and CNT1 and the error counter is reset.</td>
</tr>
</tbody>
</table>
4.3.5 INTERRUPT CONTROL REGISTERS

*Table-44 INTM0: Interrupt Mask Register 0
(R/W, Address = 14H)*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ_IM</td>
<td>7</td>
<td>1</td>
<td>Equalizer out of range interrupt mask</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: Equalizer out of range interrupt enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Equalizer out of range interrupt masked</td>
</tr>
<tr>
<td>IBLBA_IM</td>
<td>6</td>
<td>1</td>
<td>In-band Loopback activate code detect interrupt mask</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: In-band Loopback activate code detect interrupt enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: In-band Loopback activate code detect interrupt masked</td>
</tr>
<tr>
<td>IBLBD_IM</td>
<td>5</td>
<td>1</td>
<td>In-band Loopback deactivate code detect interrupt mask</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: In-band Loopback deactivate code detect interrupt enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: In-band Loopback deactivate code detect interrupt masked</td>
</tr>
<tr>
<td>PRBS_IM</td>
<td>4</td>
<td>1</td>
<td>PRBS synchronic signal detect interrupt mask</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: PRBS synchronic signal detect interrupt enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: PRBS synchronic signal detect interrupt masked</td>
</tr>
<tr>
<td>TCLK_IM</td>
<td>3</td>
<td>1</td>
<td>TCLK loss detect interrupt mask</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: TCLK loss detect interrupt enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: TCLK loss detect interrupt masked</td>
</tr>
<tr>
<td>DF_IM</td>
<td>2</td>
<td>1</td>
<td>Driver Failure interrupt mask</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: Driver Failure interrupt enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Driver Failure interrupt masked</td>
</tr>
<tr>
<td>AIS_IM</td>
<td>1</td>
<td>1</td>
<td>Alarm Indication Signal interrupt mask</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: Alarm Indication Signal interrupt enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Alarm Indication Signal interrupt masked</td>
</tr>
<tr>
<td>LOS_IM</td>
<td>0</td>
<td>1</td>
<td>Loss Of Signal interrupt mask</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: Loss Of Signal interrupt enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Loss Of Signal interrupt masked</td>
</tr>
</tbody>
</table>
Table 45 \(\text{INTM1}: \) Interrupt Masked Register 1

(R/W, Address = 15H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC_OV_IM</td>
<td>7</td>
<td>1</td>
<td>DAC arithmetic overflow interrupt mask
(^{\dagger}): DAC arithmetic overflow interrupt enabled
(^{\ddagger}): DAC arithmetic overflow interrupt masked</td>
</tr>
<tr>
<td>JAOV_IM</td>
<td>6</td>
<td>1</td>
<td>JA overflow interrupt mask
(^{\dagger}): JA overflow interrupt enabled
(^{\ddagger}): JA overflow interrupt masked</td>
</tr>
<tr>
<td>JAUD_IM</td>
<td>5</td>
<td>1</td>
<td>JA underflow interrupt mask
(^{\dagger}): JA underflow interrupt enabled
(^{\ddagger}): JA underflow interrupt masked</td>
</tr>
<tr>
<td>ERR_IM</td>
<td>4</td>
<td>1</td>
<td>PRBS/QRSS logic error detect interrupt mask
(^{\dagger}): PRBS/QRSS logic error detect interrupt enabled
(^{\ddagger}): PRBS/QRSS logic error detect interrupt masked</td>
</tr>
<tr>
<td>EXZ_IM</td>
<td>3</td>
<td>1</td>
<td>Receive excess zeros interrupt mask
(^{\dagger}): Receive excess zeros interrupt enabled
(^{\ddagger}): Receive excess zeros interrupt masked</td>
</tr>
<tr>
<td>CV_IM</td>
<td>2</td>
<td>1</td>
<td>Receive error interrupt mask
(^{\dagger}): Receive error interrupt enabled
(^{\ddagger}): Receive error interrupt masked</td>
</tr>
<tr>
<td>TIMER_IM</td>
<td>1</td>
<td>1</td>
<td>One-Second Timer expiration interrupt mask
(^{\dagger}): One-Second Timer expiration interrupt enabled
(^{\ddagger}): One-Second Timer expiration interrupt masked</td>
</tr>
<tr>
<td>CNT_IM</td>
<td>0</td>
<td>1</td>
<td>Counter overflow interrupt mask
(^{\dagger}): Counter overflow interrupt enabled
(^{\ddagger}): Counter overflow interrupt masked</td>
</tr>
</tbody>
</table>
Table-46 INTES: Interrupt Trigger Edge Select Register

(R/W, Address = 16H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
</table>
| EQ_IES | 7 | 0 | This bit determines the Equalizer out of range interrupt event.
| | | | = 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the EQ_S bit in the STAT0 status register
| | | | = 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the EQ_S bit in the STAT0 status register. |
| IBLBA_IES | 6 | 0 | This bit determines the Inband Loopback Activate Code interrupt event.
| | | | = 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the IBLBA_S bit in STAT0 status register
| | | | = 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the IBLBA_S bit in STAT0 status register. |
| IBLBD_IES | 5 | 0 | This bit determines the Inband Loopback Deactivate Code interrupt event.
| | | | = 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the IBLBD_S bit in STAT0 status register
| | | | = 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the IBLBD_S bit in STAT0 status register. |
| PRBS_IES | 4 | 0 | This bit determines the PRBS/QRSS synchronization status interrupt event.
| | | | = 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the PRBS_S bit in STAT0 status register
| | | | = 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the PRBS_S bit in STAT0 status register. |
| TCLK_IES | 3 | 0 | This bit determines the TCLK Loss interrupt event.
| | | | = 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the TCLK_LOS bit in STAT0 status register
| | | | = 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the TCLK_LOS bit in STAT0 status register. |
| DF_IES | 2 | 0 | This bit determines the Driver Failure interrupt event.
| | | | = 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the DF_S bit in STAT0 status register
| | | | = 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the DF_S bit in STAT0 status register. |
| AIS_IES | 1 | 0 | This bit determines the AIS interrupt event.
| | | | = 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the AIS_S bit in STAT0 status register
| | | | = 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the AIS_S bit in STAT0 status register. |
| LOS_IES | 0 | 0 | This bit determines the LOS interrupt event.
| | | | = 0: Interrupt is generated as a ‘0’ to ‘1’ transition of the LOS_S bit in STAT0 status register
| | | | = 1: Interrupt is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the LOS_S bit in STAT0 status register. |
4.3.6 LINE STATUS REGISTERS

Table-47 STAT0: Line Status Register 0 (real time status monitor)

(R, Address = 17H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ_S</td>
<td>7</td>
<td>0</td>
<td>Equalizer status indication</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: In range</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Out of range</td>
</tr>
<tr>
<td>IBLBA_S</td>
<td>6</td>
<td>0</td>
<td>In-band Loopback activate code receive status indication</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No Inband Loopback activate code is detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Activate signal is detected and then received over a period of more than t ms, with a bit error rate less than (10^{-2}). The bit remains set as long as the bit error rate does not exceed (10^{-2}).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If automatic remote loopback switching is disabled (ARLP = 0), t = 40 ms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If automatic remote loopback switching is enabled (ARLP = 1), t = 5.1 s. The rising edge of this bit activates the remote loopback operation in local end.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If IBLBA_IM=0:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A ‘0’ to ‘1’ transition on this bit causes an activate code detected interrupt if IBLBA _IES bit is ‘0’;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Any changes of this bit causes an activate code detected interrupt if IBLBA _IES bit is set to ‘1’.</td>
</tr>
<tr>
<td>IBLBD_S</td>
<td>5</td>
<td>0</td>
<td>In-band Loopback deactivate code receive status indication</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No Inband Loopback deactivate signal is detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: The Inband Loopback deactivate signal is detected and then received over a period of more than t, with a bit error rate less than (10^{-2}). The bit remains set as long as the bit error rate does not exceed (10^{-2}).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If automatic remote loopback switching is disabled (ARLP = 0), t = 40 ms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If automatic remote loopback switching is enabled (ARLP = 1), t = 5.1 s. The rising edge of this bit disables the remote loopback operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If IBLBD_IM=0:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A ‘0’ to ‘1’ transition on this bit causes a deactivate code detected interrupt if IBLBD _IES bit is ‘0’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Any changes of this bit causes a deactivate code detected interrupt if IBLBD _IES bit is set to ‘1’.</td>
</tr>
<tr>
<td>PRBS_S</td>
<td>4</td>
<td>0</td>
<td>Synchronous status indication of PRBS/QRSS (real time)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: (2^{15}-1) (E1) PRBS or (2^{20}-1) (T1/J1) QRSS is not detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: (2^{15}-1) (E1) PRBS or (2^{20}-1) (T1/J1) QRSS is detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If PRBS_IM=0:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A ‘0’ to ‘1’ transition on this bit causes a synchronous status detected interrupt if PRBS _IES bit is ‘0’.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Any changes of this bit causes an interrupt if PRBS_IES bit is set to ‘1’.</td>
</tr>
<tr>
<td>TCLK_LOS</td>
<td>3</td>
<td>0</td>
<td>TCLK loss indication</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: TCLK pin has not toggled for more than 70 MCLK cycles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If TCLK_IM=0:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A ‘0’ to ‘1’ transition on this bit causes an interrupt if TCLK _IES bit is ‘0’.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Any changes of this bit causes an interrupt if TCLK_IES bit is set to ‘1’.</td>
</tr>
</tbody>
</table>
Table-47 STAT0: Line Status Register 0 (real time status monitor) (Continued)
(R, Address = 17H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
</table>
| DF_S | 2 | 0 | Line driver status indication
 = 0: Normal operation
 = 1: Line driver short circuit is detected.
 Note:
 If DF_IM=0
 A ‘0’ to ‘1’ transition on this bit causes an interrupt if DF_IES bit is ‘0’.
 Any changes of this bit causes an interrupt if DF_IES bit is set to ‘1’. |
| AIS_S | 1 | 0 | Alarm Indication Signal status detection
 = 0: No AIS signal is detected in the receive path
 = 1: AIS signal is detected in the receive path
 Note:
 If AIS_IM=0
 A ‘0’ to ‘1’ transition on this bit causes an interrupt if AIS_IES bit is ‘0’.
 Any changes of this bit causes an interrupt if AIS_IES bit is set to ‘1’. |
| LOS_S | 0 | 0 | Loss Of Signal status detection
 = 0: Loss of signal on RTIP/RRING is not detected.
 = 1: Loss of signal on RTIP/RRING is detected.
 Note:
 If LOS_IM=0
 A ‘0’ to ‘1’ transition on this bit causes an interrupt if LOS_IES bit is ‘0’.
 Any changes of this bit causes an interrupt if LOS_IES bit is set to ‘1’. |
Table-48 STAT1: Line Status Register 1 (real time status monitor)
(R, Address = 18H)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7-6</td>
<td>00</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>
| RLP_S | 5 | 0 | Indicating the status of Remote Loopback
 = 0: The remote loopback is inactive.
 = 1: The remote loopback is active (closed). |
| LATT[4:0] | 4-0 | 00000 | Line Attenuation Indication
 00000 0 to 2 dB
 00001 2 to 4 dB
 00010 4 to 6 dB
 00011 6 to 8 dB
 00100 8 to 10 dB
 00101 10 to 12 dB
 00110 12 to 14 dB
 00111 14 to 16 dB
 01000 16 to 18 dB
 01001 18 to 20 dB
 01010 20 to 22 dB
 01011 22 to 24 dB
 01100 24 to 26 dB
 01101 26 to 28 dB
 01110 28 to 30 dB
 01111 30 to 32 dB
 10000 32 to 34 dB
 10001 34 to 36 dB
 10010 36 to 38 dB
 10011 38 to 40 dB
 10100 40 to 42 dB
 10101 42 to 44 dB
 10110-11111 >44 dB |
4.3.7 INTERRUPT STATUS REGISTERS

Table-49 INTS0: Interrupt Status Register 0
(R, Address = 19H) (this register is reset and relevant interrupt request is cleared after a read)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ_IS</td>
<td>7</td>
<td>0</td>
<td>This bit indicates the occurrence of Equalizer out of range interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No interrupt event from the Equalizer out of range occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Interrupt event from the Equalizer out of range occurred</td>
</tr>
<tr>
<td>IBLBA_IS</td>
<td>6</td>
<td>0</td>
<td>This bit indicates the occurrence of the Inband Loopback Activate Code interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No Inband Loopback Activate Code interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Inband Loopback Activate Code interrupt event occurred</td>
</tr>
<tr>
<td>IBLBD_IS</td>
<td>5</td>
<td>0</td>
<td>This bit indicates the occurrence of the Inband Loopback Deactivate Code interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No Inband Loopback Deactivate Code interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Interrupt event of the received Inband Loopback Deactivate Code occurred.</td>
</tr>
<tr>
<td>PRBS_IS</td>
<td>4</td>
<td>0</td>
<td>This bit indicates the occurrence of the interrupt event generated by the PRBS/QRSS synchronization status.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No PRBS/QRSS synchronization status interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: PRBS/QRSS synchronization status interrupt event occurred</td>
</tr>
<tr>
<td>TCLK_LOS_IS</td>
<td>3</td>
<td>0</td>
<td>This bit indicates the occurrence of the interrupt event generated by the TCLK loss detection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No TCLK loss interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: TCLK loss interrupt event occurred.</td>
</tr>
<tr>
<td>DF_IS</td>
<td>2</td>
<td>0</td>
<td>This bit indicates the occurrence of the interrupt event generated by the Driver Failure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No Driver Failure interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Driver Failure interrupt event occurred</td>
</tr>
<tr>
<td>AIS_IS</td>
<td>1</td>
<td>0</td>
<td>This bit indicates the occurrence of the AIS (Alarm Indication Signal) interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No AIS interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: AIS interrupt event occurred</td>
</tr>
<tr>
<td>LOS_IS</td>
<td>0</td>
<td>0</td>
<td>This bit indicates the occurrence of the LOS (Loss of signal) interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No LOS interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: LOS interrupt event occurred</td>
</tr>
</tbody>
</table>
Table-50 INTS1: Interrupt Status Register 1
(R, Address = 1AH) (this register is reset and the relevant interrupt request is cleared after a read)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC_OV_IS</td>
<td>7</td>
<td>0</td>
<td>This bit indicates the occurrence of the pulse amplitude overflow of Arbitrary Waveform Generator interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No pulse amplitude overflow of Arbitrary Waveform Generator interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: The pulse amplitude overflow of Arbitrary Waveform Generator interrupt event occurred</td>
</tr>
<tr>
<td>JAOV_IS</td>
<td>6</td>
<td>0</td>
<td>This bit indicates the occurrence of the Jitter Attenuator Overflow interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No JA Overflow interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: JA Overflow interrupt event occurred</td>
</tr>
<tr>
<td>JAUD_IS</td>
<td>5</td>
<td>0</td>
<td>This bit indicates the occurrence of the Jitter Attenuator Underflow interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No JA Underflow interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: JA Underflow interrupt event occurred</td>
</tr>
<tr>
<td>ERR_IS</td>
<td>4</td>
<td>0</td>
<td>This bit indicates the occurrence of the interrupt event generated by the detected PRBS/QRSS logic error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No PRBS/QRSS logic error interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: PRBS/QRSS logic error interrupt event occurred</td>
</tr>
<tr>
<td>EXZ_IS</td>
<td>3</td>
<td>0</td>
<td>This bit indicates the occurrence of the Excessive Zeros interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No Excessive Zeros interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: EXZ interrupt event occurred</td>
</tr>
<tr>
<td>CV_IS</td>
<td>2</td>
<td>0</td>
<td>This bit indicates the occurrence of the Code Violation interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No Code Violation interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Code Violation interrupt event occurred</td>
</tr>
<tr>
<td>TMOV_IS</td>
<td>1</td>
<td>0</td>
<td>This bit indicates the occurrence of the One-Second Timer Expiration interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No One-Second Timer Expiration interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: One-Second Timer Expiration interrupt event occurred</td>
</tr>
<tr>
<td>CNT_OV_IS</td>
<td>0</td>
<td>0</td>
<td>This bit indicates the occurrence of the Counter Overflow interrupt event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 0: No Counter Overflow interrupt event occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>= 1: Counter Overflow interrupt event occurred</td>
</tr>
</tbody>
</table>
4.3.8 COUNTER REGISTERS

Table-51 CNT0: Error Counter L-byte Register 0
(R, Address = 1BH)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT_L[7:0]</td>
<td>7-0</td>
<td>00H</td>
<td>This register contains the lower eight bits of the 16-bit error counter. CNT_L[0] is the LSB.</td>
</tr>
</tbody>
</table>

Table-52 CNT1: Error Counter H-byte Register 1
(R, Address = 1CH)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bit</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT_H[7:0]</td>
<td>7-0</td>
<td>00H</td>
<td>This register contains the upper eight bits of the 16-bit error counter. CNT_H[7] is the MSB.</td>
</tr>
</tbody>
</table>
5 HARDWARE CONTROL PIN SUMMARY

Table-53 Hardware Control Pin Summary

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>
| 17 16 19 18 | MODE1 MODE0 | MODE[1:0]: Operation mode of control interface select
00= Hardware interface
01= Serial interface
10= Parallel – multiplexed – Motorola Interface
11= Parallel – multiplexed – Intel Interface |
| 23 25 | TERM | TERM: Termination interface select
This pin selects internal or external impedance matching for both receiver and transmitter
0= ternary interface with external impedance matching network. External impedance matching is not supported in T1/J1 transmit line interface.
1= ternary interface with internal impedance matching network |
| 21 20 23 22 | RXTXM1 RXTXM0 | RXTXM[1:0]: Receive and transmit path operation mode select
00= single rail with HDB3/B8ZS coding
01= single rail with AMI coding
10= dual rail interface with CDR enable
11= slicer mode |
| 33 35 32 34 31 33 30 32 | PULS3 PULS2 PULS1 PULS0 | PULS[3:0]: These pins are used to select the following functions:
• T1/E1/J1 mode
• Transmit pulse template
• Internal termination impedance (75Ω/100Ω/110Ω/120Ω) |
| | | | | | |
| PULS[3:0] | T1/E1/J1 | TCLK | Cable (internal matching impedance) | Cable range or LBO | Cable loss |
| 0000 | E1 | 2.048 MHz | 75Ω | - | 0-43 dB |
| 0001 | E1 | 2.048 MHz | 120Ω | - | 0-43 dB |
| 0010 | DSX1 | 1.544 MHz | 100Ω | 0-133 ft | 0-0.6 dB |
| 0011 | DSX1 | 1.544 MHz | 100Ω | 133-266 ft | 0.6-1.2 dB |
| 0100 | DSX1 | 1.544 MHz | 100Ω | 266-399 ft | 1.2-1.8 dB |
| 0101 | DSX1 | 1.544 MHz | 100Ω | 399-533 ft | 1.8-2.4 dB |
| 0110 | DSX1 | 1.544 MHz | 100Ω | 533-655 ft | 2.4-3.0 dB |
| 0111 | J1 | 1.544 MHz | 110Ω | 0-655 ft | 0-3.0 dB |
| 1000 | DS1 | 1.544 MHz | 100Ω | 0 dB LBO | 0-36 dB |
| 1001 | DS1 | 1.544 MHz | 100Ω | -7.5 dB LBO | 0-28.5 dB |
| 1010 | DS1 | 1.544 MHz | 100Ω | -15.0 dB LBO | 0-21 dB |
| 1011 | DS1 | 1.544 MHz | 100Ω | -22.5 dB LBO | 0-13.5 dB |
| 1100 - 1111 | DS1 | 1.544 MHz | 100Ω | - | 0-13.5 dB |
| 29 31 | EQ | EQ: Receive equalizer on/off
When the chip is configured by hardware, this pin selects Short Haul or Long Haul operation mode
0= short haul (10 dB)
1= long haul (36 dB for T1/J1, 43 dB for E1) |
| 28 30 | RPD | RPD: Receiver power down control
0= Normal operation
1= receiver power down |
Table-53 Hardware Control Pin Summary (Continued)

<table>
<thead>
<tr>
<th>Pin No. TQFP</th>
<th>Pin No. QFN</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
</table>
| 27 26 25 24 | 29 28 27 26 | PATT1 PATTO | PATT[1:0]: Transmit test pattern select
In hardware control mode, these pins select the transmit pattern
00 = normal
01 = All Ones
10 = PRBS
11 = transmitter power down |
| 15 14 13 12 | 17 16 15 14 | JA1 JA0 | JA[1:0]: Jitter attenuation position, bandwidth and the depth of FIFO select
00 = JA is disabled
01 = JA in receiver, broad bandwidth, FIFO=64 bits
10 = JA in receiver, narrow bandwidth, FIFO=128 bits
11 = JA in transmitter, narrow bandwidth, FIFO=128 bits |
| 22 21 20 19 | 24 23 22 21 | MONT | MONT: Receive monitor n gain select
0 = 0 dB
1 = up to 26 dB |
| 25 24 23 22 | 27 26 25 24 | LP1 LP0 | LP[1:0]: Loopback mode select
00 = no loopback
01 = analog loopback
10 = digital loopback
11 = remote loopback |
| 13 12 11 10 | 15 14 13 12 | THZ | THZ: Transmitter Driver High Impedance Enable
This signal enables or disables transmitter driver. A low level on this pin enables the driver while a high level on this pin places the driver in high impedance state. |
| 11 10 9 8 | 11 10 9 8 | RCLKE | RCLKE: the active edge of RCLK select when hardware control mode is used
0 = select the rising edge as active edge of RCLK
1 = select the falling edge as active edge of RCLK |
6 TEST SPECIFICATIONS

Table-54 Absolute Maximum Rating

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDDA, VDDD</td>
<td>Core Power Supply</td>
<td>-0.5</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>VDDIO</td>
<td>I/O Power Supply</td>
<td>-0.5</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>VDDT</td>
<td>Transmit Power Supply</td>
<td>-0.5</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>Vin</td>
<td>Input Voltage, Any Digital Pin</td>
<td>GND</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Input Voltage, Any RTIP and RRING pin†</td>
<td>GND</td>
<td>VDDA+0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>ESD Voltage, any pin</td>
<td>2000</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Iin</td>
<td>Transient latch-up current, any pin</td>
<td>-10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Input current, any digital pin 4</td>
<td>-10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>DC Input current, any analog pin 4</td>
<td>±100</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Pd</td>
<td>Maximum power dissipation in package</td>
<td>1.41</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Tc</td>
<td>Case Temperature</td>
<td>120</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Ts</td>
<td>Storage Temperature</td>
<td>-65</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

CAUTION:
Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table-55 Recommended Operation Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDDA, VDDD</td>
<td>Core Power Supply</td>
<td>3.13</td>
<td>3.3</td>
<td>3.47</td>
<td>V</td>
</tr>
<tr>
<td>VDDIO</td>
<td>I/O Power Supply</td>
<td>3.13</td>
<td>3.3</td>
<td>3.47</td>
<td>V</td>
</tr>
<tr>
<td>VDDT</td>
<td>Transmitter Power Supply</td>
<td>3.13</td>
<td>3.3</td>
<td>3.47</td>
<td>V</td>
</tr>
<tr>
<td>TA</td>
<td>Ambient operating temperature</td>
<td>-40</td>
<td>25</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Total current dissipation\(^1\)\(^2\)\(^3\)

- E1, 75 \(\Omega\) Load
 - 50% ones density data
 - 100% ones density data
 - 52 mA
 - 64 mA

- E1, 120 \(\Omega\) Load
 - 50% ones density data
 - 100% ones density data
 - 58 mA
 - 70 mA

- T1, 100 \(\Omega\) Load
 - 50% ones density data
 - 100% ones density data
 - 59 mA
 - 88 mA

- J1, 110 \(\Omega\) Load
 - 50% ones density data
 - 100% ones density data
 - 47 mA
 - 58 mA

1. Power consumption includes power consumption on device and load. Digital levels are 10% of the supply rails and digital outputs driving a 50 \(\text{pF}\) capacitive load.
2. Maximum power consumption over the full operating temperature and power supply voltage range.
3. In short haul mode, if internal impedance matching is chosen, E1 75 \(\Omega\) power dissipation values are measured with template PULS\([3:0]\) = 0000; E1 120 \(\Omega\) power dissipation values are measured with template PULS\([3:0]\) = 0001; T1 power dissipation values are measured with template PULS\([3:0]\) = 0110; J1 power dissipation values are measured with template PULS\([3:0]\) = 0111.
Table-56 Power Consumption

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max<sup>1,2</sup></th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1, 3.3 V, 75 Ω Load</td>
<td>50% ones density data:</td>
<td>-</td>
<td>172</td>
<td>-</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>100% ones density data:</td>
<td>-</td>
<td>212</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>E1, 3.3 V, 120 Ω Load</td>
<td>50% ones density data:</td>
<td>-</td>
<td>192</td>
<td>-</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>100% ones density data:</td>
<td>-</td>
<td>243</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>T1, 3.3 V, 100 Ω Load<sup>3</sup></td>
<td>50% ones density data:</td>
<td>-</td>
<td>195</td>
<td>-</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>100% ones density data:</td>
<td>-</td>
<td>291</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>J1, 3.3 V, 110 Ω Load</td>
<td>50% ones density data:</td>
<td>-</td>
<td>155</td>
<td>-</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>100% ones density data:</td>
<td>-</td>
<td>192</td>
<td>222</td>
<td></td>
</tr>
</tbody>
</table>

1. Maximum power and current consumption over the full operating temperature and power supply voltage range.
2. Power consumption includes power absorbed by line load and external transmitter components.
3. T1 is measured with maximum cable length.

Table-57 DC Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>IL</sub></td>
<td>Input Low Level Voltage</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>IH</sub></td>
<td>Input High Voltage</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>OL</sub></td>
<td>Output Low level Voltage (I<sub>out</sub>=1.6mA)</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>OH</sub></td>
<td>Output High level Voltage (I<sub>out</sub>=400μA)</td>
<td>2.4</td>
<td>-</td>
<td>VDDIO</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>MA</sub></td>
<td>Analog Input Quiescent Voltage (RTIP, RRING pin while floating)</td>
<td>1.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I<sub>ZL</sub></td>
<td>High Impedance Leakage Current</td>
<td>-10</td>
<td>10</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Ci</td>
<td>Input capacitance</td>
<td>15</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Co</td>
<td>Output load capacitance</td>
<td>50</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Co</td>
<td>Output load capacitance (bus pins)</td>
<td>100</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>
Table-58 E1 Receiver Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Receiver sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short haul with cable loss@1024kHz:</td>
<td></td>
<td></td>
<td>-10</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long haul with cable loss@1024kHz:</td>
<td></td>
<td></td>
<td>-43</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analog LOS level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short haul</td>
<td>-4</td>
<td></td>
<td>800</td>
<td>mVp-p dB</td>
<td>A LOS level is programmable for Long Haul</td>
</tr>
<tr>
<td></td>
<td>Long haul</td>
<td></td>
<td></td>
<td>-48</td>
<td>mVp-p dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allowable consecutive zeros before LOS</td>
<td></td>
<td></td>
<td>32</td>
<td>% ones</td>
<td>G.775, ETSI 300 233</td>
</tr>
<tr>
<td></td>
<td>G.775:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I.431/ETSI300233:</td>
<td></td>
<td></td>
<td>2048</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOS reset</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receive Intrinsic Jitter</td>
<td></td>
<td></td>
<td>0.05</td>
<td>U.I.</td>
<td>JA enabled</td>
</tr>
<tr>
<td></td>
<td>20 Hz - 100 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input Jitter Tolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Hz – 20 Hz</td>
<td>37</td>
<td></td>
<td></td>
<td>U.I.</td>
<td>G.823, with 6 dB cable attenuation</td>
</tr>
<tr>
<td></td>
<td>20 Hz – 2.4 KHz</td>
<td>5</td>
<td></td>
<td></td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 KHz – 100 KHz</td>
<td>2</td>
<td></td>
<td></td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receiver Differential Input Impedance</td>
<td>20</td>
<td></td>
<td></td>
<td>KΩ</td>
<td>Internal mode</td>
</tr>
<tr>
<td></td>
<td>Input termination resistor tolerance</td>
<td></td>
<td></td>
<td>±1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RRX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receive Return Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G.703 Internal termination</td>
</tr>
<tr>
<td></td>
<td>51 KHz – 102 KHz</td>
<td>20</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>102 KHz – 2.048 MHz</td>
<td>20</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.048 MHz – 3.072 MHz</td>
<td>20</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receive path delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single rail</td>
<td>7</td>
<td></td>
<td></td>
<td>U.I.</td>
<td>JA disabled</td>
</tr>
<tr>
<td></td>
<td>Dual rail</td>
<td>2</td>
<td></td>
<td></td>
<td>U.I.</td>
<td></td>
</tr>
</tbody>
</table>

© 2019 Renesas Electronics Corporation
Table-59 T1/J1 Receiver Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Receiver sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short haul with cable loss@772kHz:</td>
<td>-10</td>
<td>-36</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long haul with cable loss@772kHz:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analog LOS level</td>
<td>-4</td>
<td>800</td>
<td>-48</td>
<td>mVp-p dB</td>
<td>A LOS level is programmable for Long Haul</td>
</tr>
<tr>
<td></td>
<td>Short haul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long haul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allowable consecutive zeros before LOS</td>
<td>175</td>
<td>1544</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1.231-1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I.431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOS reset</td>
<td>12.5</td>
<td></td>
<td></td>
<td>% ones</td>
<td>G.775, ETSI 300 233</td>
</tr>
<tr>
<td></td>
<td>Receive Intrinsic Jitter</td>
<td></td>
<td></td>
<td></td>
<td>U.I.</td>
<td>JA enabled</td>
</tr>
<tr>
<td></td>
<td>10 Hz - 8 kHz</td>
<td></td>
<td></td>
<td>0.02</td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Hz - 40 kHz</td>
<td></td>
<td></td>
<td>0.025</td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 kHz - 40 kHz</td>
<td></td>
<td></td>
<td>0.025</td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wide band</td>
<td></td>
<td></td>
<td>0.050</td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input Jitter Tolerance</td>
<td>138.0</td>
<td></td>
<td>28.0</td>
<td>U.I.</td>
<td>AT&T62411</td>
</tr>
<tr>
<td></td>
<td>0.1 Hz – 1 Hz</td>
<td></td>
<td></td>
<td></td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.9 Hz – 300 Hz</td>
<td></td>
<td></td>
<td>0.4</td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 kHz – 100 MHz</td>
<td></td>
<td></td>
<td></td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td>ZDM</td>
<td>Receiver Differential Input Impedance</td>
<td>20</td>
<td></td>
<td></td>
<td>KΩ</td>
<td>Internal mode</td>
</tr>
<tr>
<td></td>
<td>Input termination resistor tolerance</td>
<td>±1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRX</td>
<td>Receive Return Loss</td>
<td>20</td>
<td></td>
<td></td>
<td>dB</td>
<td>G.703 Internal termination</td>
</tr>
<tr>
<td></td>
<td>39 KHz – 77 KHz</td>
<td></td>
<td></td>
<td>20</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77 KHz - 1.544 MHz</td>
<td></td>
<td></td>
<td>20</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.544 MHz – 2.316 MHz</td>
<td></td>
<td></td>
<td>20</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>RPD</td>
<td>Receive path delay</td>
<td></td>
<td></td>
<td></td>
<td>U.I.</td>
<td>JA disabled</td>
</tr>
<tr>
<td></td>
<td>Single rail</td>
<td>7</td>
<td></td>
<td></td>
<td>U.I.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dual rail</td>
<td>2</td>
<td></td>
<td></td>
<td>U.I.</td>
<td></td>
</tr>
</tbody>
</table>
Table-60 E1 Transmitter Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo-p</td>
<td>Output pulse amplitudes</td>
<td>2.14</td>
<td>2.37</td>
<td>2.60</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>E1, 75 Ω load</td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>E1, 120 Ω load</td>
<td>-0.237</td>
<td>0.237</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1, 120 Ω load</td>
<td>-0.3</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zero (space) level</td>
<td>-1</td>
<td>+1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmit amplitude variation with supply</td>
<td>200</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference between pulse sequences for 17 consecutive pulses (T1.102)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tpw</td>
<td>Output Pulse Width at 50% of nominal amplitude</td>
<td>232</td>
<td>244</td>
<td>256</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Ratio of the amplitudes of Positive and Negative Pulses at the center of the pulse interval (G.703)</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ratio of the width of Positive and Negative Pulses at the center of the pulse interval (G.703)</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTX</td>
<td>Transmit Return Loss (G.703)</td>
<td>20</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51 KHz – 102 KHz</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>102 KHz - 2.048 MHz</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.048 MHz – 3.072 MHz</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JTXp-p</td>
<td>Intrinsic Transmit Jitter (TCLK is jitter free)</td>
<td>0.050</td>
<td>U.I.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 Hz – 100 KHz</td>
<td>U.I.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Td</td>
<td>Transmit path delay (JA is disabled)</td>
<td>8.5</td>
<td>U.I.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single rail</td>
<td>4.5</td>
<td>U.I.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isc</td>
<td>Line short circuit current (measured on the TTIP/TRING pins)</td>
<td>100</td>
<td>mA P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table-61 T1/J1 Transmitter Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo-p</td>
<td>Output pulse amplitudes</td>
<td>2.4</td>
<td>3.0</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Vo-s</td>
<td>Zero (space) level</td>
<td>-0.15</td>
<td>0.15</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Transmit amplitude variation with supply</td>
<td>-1</td>
<td>+1</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Difference between pulse sequences for 17 consecutive pulses (T1.102)</td>
<td></td>
<td></td>
<td>200</td>
<td>mV</td>
</tr>
<tr>
<td>TPW</td>
<td>Output Pulse Width at 50% of nominal amplitude</td>
<td>338</td>
<td>350</td>
<td>362</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Pulse width variation at the half amplitude (T1.102)</td>
<td></td>
<td></td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Imbalance between Positive and Negative Pulses amplitude (T1.102)</td>
<td>0.95</td>
<td></td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output power level (T1.102)</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>@772 kHz</td>
<td>12.6</td>
<td></td>
<td>17.9</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>@1544 kHz (referenced to power at 772kHz)</td>
<td>-29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTX</td>
<td>Transmit Return Loss</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>39 KHz – 77 KHz</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77 KHz – 1.544 MHz</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.544 MHz – 2.316 MHz</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JTXP-P</td>
<td>Intrinsic Transmit Jitter (TCLK is jitter free)</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>10 Hz – 8 KHz</td>
<td>0.020</td>
<td></td>
<td></td>
<td>U.I.p-p</td>
</tr>
<tr>
<td></td>
<td>8 KHz – 40 KHz</td>
<td>0.025</td>
<td></td>
<td></td>
<td>U.I.p-p</td>
</tr>
<tr>
<td></td>
<td>10 Hz – 40 KHz</td>
<td>0.025</td>
<td></td>
<td></td>
<td>U.I.p-p</td>
</tr>
<tr>
<td></td>
<td>wide band</td>
<td>0.050</td>
<td></td>
<td></td>
<td>U.I.p-p</td>
</tr>
<tr>
<td>Td</td>
<td>Transmit path delay (JA is disabled)</td>
<td></td>
<td></td>
<td></td>
<td>U.I.</td>
</tr>
<tr>
<td></td>
<td>Single rail</td>
<td>8.5</td>
<td></td>
<td></td>
<td>U.I.</td>
</tr>
<tr>
<td></td>
<td>Dual rail</td>
<td>4.5</td>
<td></td>
<td></td>
<td>U.I.</td>
</tr>
<tr>
<td>ISC</td>
<td>Line short circuit current (measured on the TTIP/TRING pins)</td>
<td>100</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
Table-62 Transmitter and Receiver Timing Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCLK frequency</td>
<td>E1:</td>
<td>2.048</td>
<td>1.544</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>T1/J1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCLK tolerance</td>
<td>-100</td>
<td></td>
<td></td>
<td>100</td>
<td>ppm</td>
</tr>
<tr>
<td>MCLK duty cycle</td>
<td>30</td>
<td></td>
<td></td>
<td>70</td>
<td>%</td>
</tr>
</tbody>
</table>

Transmit path

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLK frequency</td>
<td>E1:</td>
<td></td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>T1/J1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLK tolerance</td>
<td>-50</td>
<td></td>
<td></td>
<td>+50</td>
<td>ppm</td>
</tr>
<tr>
<td>TCLK Duty Cycle</td>
<td>10</td>
<td></td>
<td></td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td>t1</td>
<td>Transmit Data Setup Time</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t2</td>
<td>Transmit Data Hold Time</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Delay time of THZ low to driver high impedance</td>
<td>10</td>
<td></td>
<td></td>
<td>us</td>
<td></td>
</tr>
<tr>
<td>Delay time of TCLK low to driver high impedance</td>
<td>75</td>
<td></td>
<td></td>
<td>U.I.</td>
<td></td>
</tr>
</tbody>
</table>

Receive path

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock recovery capture range</td>
<td>E1</td>
<td>± 80</td>
<td></td>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>T1/J1</td>
<td>± 180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCLK duty cycle</td>
<td>E1:</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>T1/J1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCLK pulse width</td>
<td>E1:</td>
<td>457</td>
<td>488</td>
<td>519</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T1/J1:</td>
<td>607</td>
<td>648</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>t5</td>
<td>RCLK pulse width low time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1:</td>
<td>203</td>
<td>244</td>
<td>285</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T1/J1:</td>
<td>259</td>
<td>324</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>t6</td>
<td>RCLK pulse width high time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1:</td>
<td>203</td>
<td>244</td>
<td>285</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T1/J1:</td>
<td>259</td>
<td>324</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>Rise/fall time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t7</td>
<td>Receive Data Setup Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1:</td>
<td>200</td>
<td>244</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T1/J1:</td>
<td>200</td>
<td>324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t8</td>
<td>Receive Data Hold Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1:</td>
<td>200</td>
<td>244</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T1/J1:</td>
<td>200</td>
<td>324</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Relative to nominal frequency, MCLK= ± 100 ppm
2. RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst case jitter conditions (0.2 UI displacement for E1 per ITU G.823).
3. For all digital outputs. C load = 15 pF
Table-63 Jitter Tolerance

<table>
<thead>
<tr>
<th>Jitter Tolerance</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: 1 Hz</td>
<td>37</td>
<td>1.5</td>
<td>0.2</td>
<td>U.I.</td>
<td>G.823</td>
</tr>
<tr>
<td>20 Hz – 2.4 KHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cable attenuation is 6 dB</td>
</tr>
<tr>
<td>18 KHz – 100 KHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1/J1: 1 Hz</td>
<td>138</td>
<td>28.0</td>
<td>0.4</td>
<td>U.I.</td>
<td>AT&T 62411</td>
</tr>
<tr>
<td>4.9 Hz – 300 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 KHz – 100 KHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure-22 E1 Jitter Tolerance Performance
Figure-23 /J1 Jitter Tolerance Performance
Table-64 Jitter Attenuator Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jitter Transfer Function Corner (-3 dB) Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1, 32/64/128 bits FIFO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JABW = 0:</td>
<td>6.8</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>JABW = 1:</td>
<td>0.9</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>T1/J1, 32/64/128 bits FIFO</td>
<td></td>
<td>5</td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>JABW = 0:</td>
<td></td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>JABW = 1:</td>
<td></td>
<td>1.25</td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>Jitter Attenuator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1: (G.736)</td>
<td>-0.5</td>
<td>-0.5</td>
<td>+19.5</td>
<td>dB</td>
</tr>
<tr>
<td>@ 3 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 40 Hz</td>
<td></td>
<td></td>
<td>+19.5</td>
<td></td>
</tr>
<tr>
<td>@ 400 Hz</td>
<td></td>
<td>0</td>
<td>+19.5</td>
<td></td>
</tr>
<tr>
<td>@ 100 kHz</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T1/J1: (Per AT&T pub.62411)</td>
<td></td>
<td></td>
<td>+33.3</td>
<td></td>
</tr>
<tr>
<td>@ 1 Hz</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>@ 20 Hz</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>@ 1 kHz</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>@ 1.4 kHz</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>@ 70 kHz</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Jitter Attenuator Latency Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 bits FIFO:</td>
<td>16</td>
<td></td>
<td></td>
<td>U.I.</td>
</tr>
<tr>
<td>64 bits FIFO:</td>
<td>32</td>
<td></td>
<td></td>
<td>U.I.</td>
</tr>
<tr>
<td>128 bits FIFO:</td>
<td>64</td>
<td></td>
<td></td>
<td>U.I.</td>
</tr>
<tr>
<td>Input jitter tolerance before FIFO overflow or underflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 bits FIFO:</td>
<td>28</td>
<td></td>
<td></td>
<td>U.I.</td>
</tr>
<tr>
<td>64 bits FIFO:</td>
<td>58</td>
<td></td>
<td></td>
<td>U.I.</td>
</tr>
<tr>
<td>128 bits FIFO:</td>
<td>120</td>
<td></td>
<td></td>
<td>U.I.</td>
</tr>
</tbody>
</table>
Figure-24 E1 Jitter Transfer Performance
AT & T 62411 requirement

IDT82V2081 Jitter Transfer
T1/J1 mode 3dB=5Hz

IDT82V2081 Jitter Transfer
T1/J1 mode 3dB=1.25Hz

Jitter Transfer (dB)

Frequency (Hz)
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS

7.1 SERIAL INTERFACE TIMING

Table-65 Serial Interface Timing Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>SCLK High Time</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t2</td>
<td>SCLK Low Time</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t3</td>
<td>Active CS to SCLK Setup Time</td>
<td>5</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t4</td>
<td>Last SCLK Hold Time to Inactive CS Time</td>
<td>41</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t5</td>
<td>CS Idle Time</td>
<td>41</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t6</td>
<td>SDI to SCLK Setup Time</td>
<td>0</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t7</td>
<td>SCLK to SDI Hold Time</td>
<td>82</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t10</td>
<td>SCLK to SDO Valid Delay Time</td>
<td>95</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t11</td>
<td>Inactive CS to SDO High Impedance Hold Time</td>
<td>90</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

![Figure-25 Serial Interface Write Timing](image)

![Figure-26 Serial Interface Read Timing with SCLKE=1](image)

![Figure-27 Serial Interface Read Timing with SCLKE=0](image)
7.2 PARALLEL INTERFACE TIMING

Table-66 Multiplexed Motorola Read Timing Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRC</td>
<td>Read Cycle Time</td>
<td>190</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tDW</td>
<td>Valid DS Width</td>
<td>180</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tRWV</td>
<td>Delay from DS to Valid Read</td>
<td></td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>tRWH</td>
<td>R/W to DS Hold Time</td>
<td>65</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tASW</td>
<td>Valid AS Width</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADD</td>
<td>Delay from AS active to DS active</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADS</td>
<td>Address to AS Setup Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADH</td>
<td>Address to AS Hold Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tPRD</td>
<td>DS to Valid Read Data Propagation Delay</td>
<td>175</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tDAZ</td>
<td>Delay from DS inactive to data bus High Impedance</td>
<td>5</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>tAKD</td>
<td>Acknowledgement Delay</td>
<td>190</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tAKH</td>
<td>Acknowledgement Hold Time</td>
<td>5</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>tAKZ</td>
<td>Acknowledgement Release Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tRecovery</td>
<td>Recovery Time from Read Cycle</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure-28 Multiplexed Motorola Read Timing
Table-67 Multiplexed Motorola Write Timing Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tWC</td>
<td>Write Cycle Time</td>
<td>120</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tDW</td>
<td>Valid DS Width</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tRWV</td>
<td>Delay from DS to Valid Write</td>
<td></td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>tRWH</td>
<td>R/W to DS Hold Time</td>
<td>65</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tASW</td>
<td>Valid AS Width</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADD</td>
<td>Delay from AS active to DS active</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADS</td>
<td>Address to AS Setup Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADH</td>
<td>Address to AS Hold Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tDV</td>
<td>Delay from DS to Valid Write Data</td>
<td></td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>tDHW</td>
<td>Write Data to DS Hold Time</td>
<td>65</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tAKD</td>
<td>Acknowledgement Delay</td>
<td>150</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tAKH</td>
<td>Acknowledgement Hold Time</td>
<td>5</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>tAKZ</td>
<td>Acknowledgement Release Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tRecovery</td>
<td>Recovery Time from Write Cycle</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure-29 Multiplexed Motorola Write Timing

© 2019 Renesas Electronics Corporation
Table-68 Multiplexed Intel Read Timing Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRC</td>
<td>Read Cycle Time</td>
<td>190</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tRDW</td>
<td>Valid RD Width</td>
<td>180</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tARD</td>
<td>Delay from ALE to Valid Read</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tALEW</td>
<td>Valid ALE Width</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADS</td>
<td>Address to ALE Setup Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADH</td>
<td>Address to ALE Hold Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tPRD</td>
<td>RD to Valid Read Data Propagation Delay</td>
<td></td>
<td>175</td>
<td>ns</td>
</tr>
<tr>
<td>tDAZ</td>
<td>Delay from RD inactive to data bus High Impedance</td>
<td>5</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>tAKD</td>
<td>Acknowledgement Delay</td>
<td></td>
<td>190</td>
<td>ns</td>
</tr>
<tr>
<td>tAKH</td>
<td>Acknowledgement Hold Time</td>
<td>5</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>tAKZ</td>
<td>Acknowledgement Release Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tRecovery</td>
<td>Recovery Time from Read Cycle</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure-30 Multiplexed Intel Read Timing](image-url)
Table-69 Multiplexed Intel Write Timing Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tWC</td>
<td>Write Cycle Time</td>
<td>120</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tWRW</td>
<td>Valid WR Width</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tALEW</td>
<td>Valid ALE Width</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tAWS</td>
<td>Delay from ALE to Valid Write</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADS</td>
<td>Address to ALE Setup Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tADH</td>
<td>Address to ALE Hold Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tDV</td>
<td>Delay from WR to Valid Write Data</td>
<td>15</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tDHW</td>
<td>Write Data to WR Hold Time</td>
<td>65</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tAKD</td>
<td>Acknowledgement Delay</td>
<td>150</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tAKH</td>
<td>Acknowledgement Hold Time</td>
<td>5</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>tAKZ</td>
<td>Acknowledgement Release Time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>tRecovery</td>
<td>Recovery Time from Write Cycle</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure-31 Multiplexed Intel Write Timing
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>IDT</th>
<th>Xxxxxxx</th>
<th>XX</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device Type</td>
<td>Package</td>
<td>Process/ Temperature Range</td>
</tr>
<tr>
<td></td>
<td>Blank</td>
<td>Industrial (-40°C to +85°C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NLG</td>
<td>Green Quad Flat Pack No Lead (QFN, NLG48)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPG</td>
<td>Green Thin Quad Flat Pack (TQFP, PPG44)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82V2081</td>
<td>Long Haul/Short Haul LIU</td>
<td></td>
</tr>
</tbody>
</table>

DATASHEET DOCUMENT HISTORY

08/26/2003 pgs. 17, 18, 19, 20, 29, 30, 41, 55, 56
07/19/2004 pgs. 30, 56, 57
12/09/2005 pgs. 1, 14, 22, 30, 39, 40, 47, 65, 66, 79
10/25/2010 pgs. 9, 80 (QFN package added)
11/14/2012 pg. 80
01/07/2019 pg. 50
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its semiconductor products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated or administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.