Description

The 83PR226I-01 is a programmable LVPECL synthesizer that is “forward” footprint compatible with standard 5mm x 7mm oscillators. Forward footprint compatibility means, a board is designed to accommodate the crystal oscillator interface, and the optional control pins are also fully compatible with a canned oscillator footprint (the canned oscillator will drop onto the 10-VFQFN footprint for second sourcing purposes). This capability provides designers with programability and lead time advantages of silicon/crystal based solutions, while maintaining compatibility with industry standard 5mm x 7mm oscillator footprints for ease of supply chain management. Oscillator-level performance is maintained with IDT’s 3rd generation FemtoClock® PLL technology, which delivers sub 1ps RMS phase jitter.

The 83PR226I-01 defaults to 125MHz using a 25MHz crystal with all 4 of the programming pins floating (pulled HIGH with internal pullup resistors), but can be also be set to 15 different frequency multiplier settings to support a wide variety of applications. The table below shows some of the more common application settings.

Features

- Footprint compatible with 5mm x 7mm differential oscillators
- One differential LVPECL output pair
- Crystal oscillator interface which can also be overdriven a single-ended or differential reference clock
- Output frequency range: 83.33MHz – 213.33MHz
- Crystal/Input frequency range: 15.625MHz – 32MHz
- VCO range: 500MHz – 640MHz
- PCI Express (2.5Gb/s) and Gen 2 (5 Gb/s) jitter compliant
- Cycle-to-cycle jitter: 45ps (maximum)
- RMS phase jitter @ 125MHz, 1.875MHz – 20MHz: 0.47ps (typical)
- Full 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) packages

Common Applications and Settings (not exhaustive)

<table>
<thead>
<tr>
<th>M1</th>
<th>M0</th>
<th>N1</th>
<th>N0</th>
<th>XTAL (MHz)</th>
<th>Output Freq (MHz)</th>
<th>Application(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>19.44</td>
<td>155.52</td>
<td>SONET</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>19.2</td>
<td>153.6</td>
<td>W-CDMA</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>19.2</td>
<td>122.8</td>
<td>W-CDMA</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>26.5625</td>
<td>106.25</td>
<td>1G, 2G Fibre Channel</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>26.5625</td>
<td>212.5</td>
<td>2G, 4G Fibre Channel</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>166.66</td>
<td>Processor, PCI-X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>100</td>
<td>Processor, PCI Express 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>24</td>
<td>200</td>
<td>Processor, PCI Express 2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>22.5</td>
<td>187.5</td>
<td>12G Ethernet</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>156.25</td>
<td>10 Gb Ethernet</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>25</td>
<td>125</td>
<td>1 Gb Ethernet (default)</td>
</tr>
</tbody>
</table>

Pin Assignments

83PR226I-01
10-VFQFN
5mm x 7mm x 1mm package body
K Package
Top View
Block Diagram

Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Pullup</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>M1, M0</td>
<td>Input</td>
<td>Pullup</td>
<td>Feedback divider control inputs. Sets the feedback divider value to one of four values: +32, +25, +24, or +20 (see Table 3A). LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>3</td>
<td>V<sub>EE</sub></td>
<td>Power</td>
<td></td>
<td>Negative supply pin.</td>
</tr>
<tr>
<td>4, 5</td>
<td>XTAL<sub>IN</sub>, XTAL<sub>OUT</sub></td>
<td>Input</td>
<td></td>
<td>Crystal oscillator interface XTAL<sub>IN</sub> is the input, XTAL<sub>OUT</sub> is the output. This oscillator interface can also be driven by a single-ended or differential reference clock.</td>
</tr>
<tr>
<td>6, 7</td>
<td>Q, nQ</td>
<td>Output</td>
<td></td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>8</td>
<td>V<sub>CC</sub></td>
<td>Power</td>
<td></td>
<td>Power supply pin.</td>
</tr>
<tr>
<td>9, 10</td>
<td>N1, N0</td>
<td>Input</td>
<td>Pullup</td>
<td>Output divider control inputs. Sets the output divider value to one of four values: +3, +4, +5, or +6 (see Table 3B). LVCMOS/LVTTL interface levels.</td>
</tr>
</tbody>
</table>

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>IN</sub></td>
<td>Input Capacitance</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R<sub>PULLUP</sub></td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>
Function Tables

Table 3A. Feedback Divider M Function Table

<table>
<thead>
<tr>
<th>M1</th>
<th>M0</th>
<th>M Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>+32</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>+24</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+20</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+25</td>
</tr>
</tbody>
</table>

Table 3B. Output Divider N Function Table

<table>
<thead>
<tr>
<th>N1</th>
<th>N0</th>
<th>M Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>+6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>+3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+5</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under **Absolute Maximum Ratings** may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the **DC Characteristics or AC Characteristics** is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, (V_{CC})</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, (V_I)</td>
<td>-0.5V to (V_{CC} + 0.5V)</td>
</tr>
<tr>
<td>Outputs, (I_O)</td>
<td></td>
</tr>
<tr>
<td>Continuous Current</td>
<td></td>
</tr>
<tr>
<td>Surge Current</td>
<td>50mA</td>
</tr>
<tr>
<td>Package Thermal Impedance, (\theta_{JA})</td>
<td>38.05°C/W (0 mps)</td>
</tr>
<tr>
<td>Storage Temperature, (T_{STG})</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, \(V_{CC} = 3.3V \pm 5\% \), \(V_{EE} = 0V \), \(T_A = -40°C \) to 85°C, \(T_B = 105°C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Power Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>(I_{EE})</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>172</td>
<td>mA</td>
</tr>
</tbody>
</table>
Table 4B. Power Supply DC Characteristics, \(V_{CC} = 2.5V \pm 5\% \), \(V_{EE} = 0V \), \(T_A = -40^\circ C \) to 85°C, \(T_b = 105^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Power Supply Voltage</td>
<td>(V_{CC}) = 2.5V</td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>(I_{EE})</td>
<td>Power Supply Current</td>
<td>(V_{CC}) = 2.5V</td>
<td>150</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4C. LVCMOS/LVTTL DC Characteristics, \(V_{CC} = 3.3V \pm 5\% \) or 2.5V \(\pm 5\% \), \(V_{EE} = 0V \), \(T_A = -40^\circ C \) to 85°C, \(T_b = 105^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input High Voltage</td>
<td>(V_{CC}) = 3.465V</td>
<td>2</td>
<td>(V_{CC} + 0.3)</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}) = 2.625V</td>
<td>1.7</td>
<td>(V_{CC} + 0.3)</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input Low Voltage</td>
<td>(V_{CC}) = 3.465V</td>
<td>-0.3</td>
<td>0.8</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC}) = 2.625V</td>
<td>-0.3</td>
<td>0.7</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>Input High Current</td>
<td>M[1:0], N[1:0]</td>
<td>(V_{CC} = V_{IN} = 3.465V)</td>
<td>5</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input Low Current</td>
<td>M[1:0], N[1:0]</td>
<td>(V_{CC} = 3.465V, V_{IN} = 0V)</td>
<td>-150</td>
<td>(\mu A)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4D. LVPECL DC Characteristics, \(V_{CC} = 3.3V \pm 5\% \), \(V_{EE} = 0V \), \(T_A = -40^\circ C \) to 85°C, \(T_b = 105^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>Output High Voltage; NOTE 1</td>
<td>(V_{CC})</td>
<td>-1.4</td>
<td>(V_{CC}) - 0.9</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output Low Voltage; NOTE 1</td>
<td>(V_{CC})</td>
<td>-2.0</td>
<td>(V_{CC}) - 1.7</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{SWING})</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td>(V_{CC})</td>
<td>0.6</td>
<td>1.0</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Outputs termination with 50\(\Omega \) to \(V_{CC} \) \(-\) 2V.

Table 4E. LVPECL DC Characteristics, \(V_{CC} = 2.5V \pm 5\% \), \(V_{EE} = 0V \), \(T_A = -40^\circ C \) to 85°C, \(T_b = 105^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>Output High Voltage; NOTE 1</td>
<td>(V_{CC})</td>
<td>-1.4</td>
<td>(V_{CC}) - 0.9</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output Low Voltage; NOTE 1</td>
<td>(V_{CC})</td>
<td>-2.0</td>
<td>(V_{CC}) - 1.5</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
<tr>
<td>(V_{SWING})</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td>(V_{CC})</td>
<td>0.4</td>
<td>1.0</td>
<td>(V_{CC})</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Outputs termination with 50\(\Omega \) to \(V_{CC} \) \(-\) 2V.

Table 5. Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td>Fundamental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>15.625</td>
<td>32</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td></td>
<td>50</td>
<td>(\Omega)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt Capacitance</td>
<td></td>
<td>7</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AC Electrical Characteristics

Table 6A. AC Characteristics, $V_{CC} = 3.3\,\text{V} \pm 5\%$, $V_{EE} = 0\,\text{V}$, $T_A = -40^\circ\text{C}$ to 85°C, $T_b = 105^\circ\text{C}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MAX}</td>
<td>Output Frequency</td>
<td></td>
<td>83.33</td>
<td>213.33</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>$f_{jit(cc)}$</td>
<td>Cycle-to-Cycle Jitter; NOTE 1</td>
<td></td>
<td></td>
<td>45</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>$f_{jit(\Omega)}$</td>
<td>RMS Phase Jitter (Random); NOTE 2</td>
<td>156.25MHz, Integration Range: 1.875MHz – 20MHz</td>
<td>0.44</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125MHz, Integration Range: 1.875MHz – 20MHz</td>
<td>0.47</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100MHz, Integration Range: 1.875MHz – 20MHz</td>
<td>0.48</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{jitter(\text{PCIe Gen 1})}$</td>
<td>Phase Jitter Peak-to-Peak; NOTE 3</td>
<td>100MHz, (1.2MHz – 21.9MHz), 10^8 samples, 25MHz crystal input</td>
<td>17.20</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125MHz, (1.2MHz – 21.9MHz), 10^8 samples, 25MHz crystal input</td>
<td>16.52</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{REFCLK_HF_RMS \ (\text{PCIe Gen 2})}$</td>
<td>Phase Jitter RMS; NOTE 4</td>
<td>100MHz, 25MHz crystal input</td>
<td>1.70</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125MHz, 25MHz crystal input</td>
<td>1.61</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{R} / t_{F}</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>200</td>
<td>700</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td></td>
<td>47</td>
<td>53</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>f_{LOCK}</td>
<td>PLL Lock Time; NOTE 5</td>
<td></td>
<td></td>
<td>100</td>
<td>ms</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 2: Please refer to the Phase Noise plots.

NOTE 3: Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86ps peak-to-peak for a sample size of 10^8 clock periods.

NOTE 4: RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps RMS for $t_{REFCLK_HF_RMS}$ (High Band) and 3.0ps RMS for $t_{REFCLK_LF_RMS}$ (Low Band).

NOTE 5: This parameter is guaranteed using a 25MHz crystal.
Table 6B. AC Characteristics, $V_{CC} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$, $T_b = 105^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MAX}</td>
<td>Output Frequency</td>
<td></td>
<td>83.33</td>
<td>213.33</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>$f_{jit(cc)}$</td>
<td>Cycle-to-Cycle Jitter; NOTE 1</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$f_{jit(\theta)}$</td>
<td>RMS Phase Jitter (Random); NOTE 2</td>
<td>156.25MHz, Integration Range: 1.875MHz – 20MHz</td>
<td>0.44</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$f_{jit(\theta)}$</td>
<td>RMS Phase Jitter (Random); NOTE 2</td>
<td>125MHz, Integration Range: 1.875MHz – 20MHz</td>
<td>0.48</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$f_{jit(\theta)}$</td>
<td>RMS Phase Jitter (Random); NOTE 2</td>
<td>100MHz, Integration Range: 1.875MHz – 20MHz</td>
<td>0.49</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_j (\text{PCIe Gen 1})$</td>
<td>Phase Jitter Peak-to-Peak; NOTE 3</td>
<td>100MHz, (1.2MHz – 21.9MHz), 10^8 samples, 25MHz crystal input</td>
<td>12.18</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_j (\text{PCIe Gen 1})$</td>
<td>Phase Jitter Peak-to-Peak; NOTE 3</td>
<td>125MHz, (1.2MHz – 21.9MHz), 10^8 samples, 25MHz crystal input</td>
<td>16.41</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{REFCLK_HF_RMS}$ (PCIe Gen 2)</td>
<td>Phase Jitter RMS; NOTE 4</td>
<td>100MHz, 25MHz crystal input</td>
<td>1.47</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{REFCLK_HF_RMS}$ (PCIe Gen 2)</td>
<td>Phase Jitter RMS; NOTE 4</td>
<td>125MHz, 25MHz crystal input</td>
<td>1.74</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t_R / t_F</td>
<td>Output Rise/Fall Time; NOTE 5</td>
<td>20% to 80%</td>
<td>200</td>
<td>700</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle; NOTE 5</td>
<td></td>
<td>47</td>
<td>53</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>t_{LOCK}</td>
<td>PLL Lock Time; NOTE 5</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 2: Please refer to the Phase Noise plots.

NOTE 3: Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86ps peak-to-peak for a sample size of 10^8 clock periods.

NOTE 4: RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps RMS for $t_{REFCLK_HF_RMS}$ (High Band) and 3.0ps RMS for $t_{REFCLK_LF_RMS}$ (Low Band).

NOTE 5: This parameter is guaranteed using a 25MHz crystal.
Typical Phase Noise at 156.25MHz (3.3V)

RMS Phase Jitter (Random) 1.875MHz to 20MHz = 0.44ps (typical)

Typical Phase Noise at 100MHz (3.3V)

RMS Phase Jitter (Random) 1.875MHz to 20MHz = 0.48ps (typical)
Typical Phase Noise at 125MHz (3.3V)

RMS Phase Jitter (Random)
1.875MHz to 20MHz = 0.47ps (typical)

10Gb Ethernet Filter
Raw Phase Noise Data
Phase Noise Result by adding a 10Gb Ethernet filter to raw data
Parameter Measurement Information

3.3V LVPECL Output Load AC Test Circuit

2.5V LVPECL Output Load AC Test Circuit

Cycle-to-Cycle Jitter

Output Duty Cycle/Pulse Width/Period

Output Rise/Fall Time

RMS Phase Jitter
Parameter Measurement Information, continued

Applications Information

Recommendations for Unused Input Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.
Crystal Input Interface

The 83PR226I-01 has been characterized with 18pF parallel resonant crystals. The capacitor values shown in Figure 1 below were determined using an 18pF parallel resonant crystal and were chosen to minimize the ppm error.

![Figure 1. Crystal Input Interface](image)

Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in Figure 2A. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and making R2 50Ω. By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

![Figure 2A. General Diagram for LVCMOS Driver to XTAL Input Interface](image)

![Figure 2B. General Diagram for LVPECL Driver to XTAL Input Interface](image)
VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 3. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad(slug) area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes". The number of vias (i.e. “heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad(slug) and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern.

Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 3. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)
Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible signals. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 4A and 4B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

![Figure 4A. 3.3V LVPECL Output Termination](image)

![Figure 4B. 3.3V LVPECL Output Termination](image)
Termination for 2.5V LVPECL Outputs

Figure 5A and *Figure 5B* show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CC} - 2V$. For $V_{CC} = 2.5V$, the $V_{CC} - 2V$ is very close to ground level. The R3 in *Figure 5B* can be eliminated and the termination is shown in *Figure 5C*.

Figure 5A. 2.5V LVPECL Driver Termination Example

Figure 5B. 2.5V LVPECL Driver Termination Example

Figure 5C. 2.5V LVPECL Driver Termination Example
Schematic Example

Figure 6 shows an example of 83PR226I-01 application schematic. In this example, the device is operated at $V_{CC} = 3.3V$. The 18pF parallel resonant 25MHz crystal is used. The $C_1 = 27pF$ and $C_2 = 27pF$ are recommended for frequency accuracy. For different board layout, the C_1 and C_2 may be slightly adjusted for optimizing frequency accuracy. Two examples of LVPECL termination are shown in this schematic. Additional termination approaches are shown in the LVPECL Termination Application Note.

Figure 6. 83PR226I-01 Schematic Example
PCI Express Application Note

PCI Express jitter analysis methodology models the system response to reference clock jitter. The block diagram below shows the most frequently used Common Clock Architecture in which a copy of the reference clock is provided to both ends of the PCI Express Link.

In the jitter analysis, the transmit (Tx) and receive (Rx) SerDes PLLs are modeled as well as the phase interpolator in the receiver. These transfer functions are called H1, H2, and H3 respectively. The overall system transfer function at the receiver is:

\[H_t(s) = H_3(s) \times [H_1(s) - H_2(s)] \]

The jitter spectrum seen by the receiver is the result of applying this system transfer function to the clock spectrum \(X(s) \) and is:

\[Y(s) = X(s) \times H_3(s) \times [H_1(s) - H_2(s)] \]

In order to generate time domain jitter numbers, an inverse Fourier Transform is performed on \(X(s) \times H_3(s) \times [H_1(s) - H_2(s)] \).

PCI Express Common Clock Architecture

For PCI Express Gen 1, one transfer function is defined and the evaluation is performed over the entire spectrum: DC to Nyquist (e.g. for a 100MHz reference clock: 0Hz – 50MHz) and the jitter result is reported in peak-peak.

PCI Express Gen 2A Magnitude of Transfer Function

For PCI Express Gen 2, two transfer functions are defined with 2 evaluation ranges and the final jitter number is reported in RMS. The two evaluation ranges for PCI Express Gen 2 are: 10kHz – 1.5MHz (Low Band), and 1.5MHz – Nyquist (High Band). The plots show the individual transfer functions as well as the overall transfer function \(H_t \).

PCI Express Gen 2B Magnitude of Transfer Function

For a more thorough overview of PCI Express jitter analysis methodology, please refer to IDT Application Note PCI Express Reference Clock Requirements.
Power Considerations

This section provides information on power dissipation and junction temperature for the 83PR226I-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 83PR226I-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = $V_{CC _MAX} \times I_{EE _MAX} = 3.465V \times 172mA = 595.98mW$
- Power (outputs)_{MAX} = 30mW/Loaded Output pair

Total Power_{MAX} (3.465V, with all outputs switching) = 595.98mW + 30mW = 625.98mW

2. Junction Temperature.

Junction temperature, T_j, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} \times P_{d_total} + T_a$

- T_j = Junction Temperature
- θ_{JA} = Junction-to-Ambient Thermal Resistance
- P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)
- T_a = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 38.05°C/W per Table 7 below.

Therefore, T_j for an ambient temperature of 85°C with all outputs switching is:

$85°C + 0.626W \times 38.05°C/W = 108.8°C$. This is below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board.

Table 7. Thermal Resistance θ_{JA} for 10-VFQFN, Forced Convection

<table>
<thead>
<tr>
<th>θ_{JA} vs. Air Flow</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meters per Second</td>
<td>0</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>38.05°C/W</td>
</tr>
</tbody>
</table>
3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 7.

![LVPECL Driver Circuit and Termination](image)

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CC} - 2V$.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 0.9V$

 \[(V_{CC_MAX} - V_{OH_MAX}) = 0.9V\]

- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CO_MAX} - 1.7V$

 \[(V_{CC_MAX} - V_{OL_MAX}) = 1.7V\]

P_{d_H} is power dissipation when the output drives high. P_{d_L} is the power dissipation when the output drives low.

\[
P_{d_H} = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] \times (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))]/R_L \times (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] \times 0.9V = 19.8mW
\]

\[
P_{d_L} = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L] \times (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))]/R_L \times (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] \times 1.7V = 10.2mW
\]

Total Power Dissipation per output pair = $P_{d_H} + P_{d_L} = 30mW$
Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 10-VFQFN

<table>
<thead>
<tr>
<th>θ_{JA} vs. Air Flow</th>
<th>Meters per Second</th>
<th>Multi-Layer PCB, JEDEC Standard Test Boards</th>
<th>38.05°C/W</th>
</tr>
</thead>
</table>

Table 9. θ_{JB} for a 10-VFQFN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{JB}</td>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>14.26°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for 83PSR226l-01 is: 6613
NOTES:
1. ALL DIMENSION ARE IN mm. ANGLES IN DEGREES.
2. TOP DOWN VIEW, AS VIEWED ON PCB.
3. COMPONENT OUTLINE SHOW FOR REFERENCE IN GREEN.
4. LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED.
5. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.
Ordering Information

Table 10. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>83PR226BKI-01LF</td>
<td>ICS3R226BI1L</td>
<td>10-VFQFN, lead-free</td>
<td>Tray</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>83PR226BKI-01LFT</td>
<td>ICS3R226BI1L</td>
<td>10-VFQFN, lead-free</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

Revision History Sheet

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 6, 2017</td>
<td>Added the $T_d = 105^\circ$C test condition to all DC and AC electrical characteristics tables.</td>
</tr>
<tr>
<td>August 10, 2010</td>
<td>AC Characteristics Tables - added NOTE 5 to PLL Lock Time.</td>
</tr>
<tr>
<td>July 31, 2008</td>
<td>Package Dimensions - added 0.1mm dimension to small pad.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below:

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.