General Description

The 840002I-01 is a two output LVCMOS/LVTTL Synthesizer optimized to generate Ethernet reference clock frequencies. Using a 25MHz 18pF parallel resonant crystal, the following frequencies can be generated based on the two frequency select pins (F_SEL[1:0]): 156.25MHz, 125MHz, and 62.5MHz. The 840002I-01 uses IDT’s 3rd generation low phase noise VCO technology and can achieve 1ps or lower typical random rms phase jitter, easily meeting Ethernet jitter requirements. The 840002I-01 is packaged in a small 16-pin TSSOP package.

Features

- Two LVCMOS/LVTTL outputs@ 3.3V, 17Ω typical output impedance
- Selectable crystal oscillator interface or LVCMOS/LVTTL single-ended TEST_CLK
- Supports the following output frequencies: 156.25MHz, 125MHz and 62.5MHz
- Output frequency range: 56MHz to 175MHz
- VCO range: 560MHz to 700MHz
- Output skew: 12ps (maximum)
- RMS phase jitter at 156.25MHz, (1.875MHz to 20MHz): 0.47ps (typical)

Phase Noise:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Noise Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>100Hz</td>
<td>-97.4 dBc/Hz</td>
</tr>
<tr>
<td>1kHz</td>
<td>-120.2 dBc/Hz</td>
</tr>
<tr>
<td>10kHz</td>
<td>-127.6 dBc/Hz</td>
</tr>
<tr>
<td>100kHz</td>
<td>-126.1 dBc/Hz</td>
</tr>
</tbody>
</table>

- Power Supply Modes:
 Core / Output
 3.3V / 3.3V
 3.3V / 2.5V
 2.5V / 2.5V
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Frequency Select Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>M Divider Value</th>
<th>N Divider Value</th>
<th>Output Frequency (25MHz Ref.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_SEL1</td>
<td>F_SEL0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>25</td>
<td>5</td>
</tr>
</tbody>
</table>

Block Diagram

Pin Assignment

16-Lead TSSOP
4.4mm x 5.0mm x 0.925mm package
G Package
Top View
Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F_SEL0</td>
<td>Input</td>
<td>Pullup Frequency select pin. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>2</td>
<td>nXTAL_SEL</td>
<td>Input</td>
<td>Pulldown Selects between crystal or TEST_CLK inputs as the PLL reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>source. When HIGH, selects TEST_CLK. When LOW, selects XTAL inputs. LVCMOS/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LVTTL interface levels.</td>
</tr>
<tr>
<td>3</td>
<td>TEST_CLK</td>
<td>Input</td>
<td>Pulldown Single-ended test clock input. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>4</td>
<td>OE</td>
<td>Input</td>
<td>Pullup Output enable. When logic HIGH, the outputs are active. When LOW, the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>outputs are in high-impedance state. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>5</td>
<td>MR</td>
<td>Input</td>
<td>Pulldown Active High Master Reset. When logic HIGH, the internal dividers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>are reset causing the active outputs to go low. When Logic LOW, the internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dividers and the outputs are enabled. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>6</td>
<td>nPLL_SEL</td>
<td>Input</td>
<td>Pulldown PLL Bypass. When LOW, the output is driven from the VCO output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When HIGH, the PLL is bypassed and the output frequency = reference clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>frequency/N output divider. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>7</td>
<td>V_DDA</td>
<td>Power</td>
<td>Analog supply pin.</td>
</tr>
<tr>
<td>8</td>
<td>V_DD</td>
<td>Power</td>
<td>Core supply pin.</td>
</tr>
<tr>
<td>9, 10</td>
<td>XTAL_OUT,</td>
<td>Input</td>
<td>Power Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the</td>
</tr>
<tr>
<td></td>
<td>XTAL_IN</td>
<td></td>
<td>output.</td>
</tr>
<tr>
<td>11</td>
<td>V_DDO</td>
<td>Power</td>
<td>Output supply pin.</td>
</tr>
<tr>
<td>12, 13</td>
<td>Q1, Q0</td>
<td>Output</td>
<td>Single-ended clock outputs. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>14, 15</td>
<td>GND</td>
<td>Power</td>
<td>Power supply ground.</td>
</tr>
<tr>
<td>16</td>
<td>F_SEL1</td>
<td>Input</td>
<td>Pullup Frequency select pin. LVCMOS/LVTTL interface levels.</td>
</tr>
</tbody>
</table>

NOTE: *Pullup and Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_IN</td>
<td>Input Capacitance</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C_PD</td>
<td>Power Dissipation Capacitance</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_PULLUP</td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_PULLDOWN</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_OUT</td>
<td>Output Impedance</td>
<td></td>
<td>V_DDO = 3.3V ± 5%</td>
<td>14</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V_DDO = 2.5V ± 5%</td>
<td>16</td>
<td>21</td>
<td>25</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_DD</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, V_I</td>
<td>0V to V_DD</td>
</tr>
<tr>
<td>XTAL_IN</td>
<td>-0.5V to V_DD + 0.5V</td>
</tr>
<tr>
<td>Other Inputs</td>
<td>-0.5V to V_DDO + 0.5V</td>
</tr>
<tr>
<td>Outputs, V_O</td>
<td>-0.5V to V_DDO + 0.5V</td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_JA</td>
<td>89°C/W (0 lfpm)</td>
</tr>
<tr>
<td>Storage Temperature, T_STG</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, V_DD = V_DDA = 3.3V±5%, V_DDO = 3.3V±5% or 2.5V±5%, T_A = -40°C to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD</td>
<td>Core Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>V_DDA</td>
<td>Analog Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>V_DDO</td>
<td>Output Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>I_DD</td>
<td>Power Supply Current</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>I_DDA</td>
<td>Analog Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_DDO</td>
<td>Output Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 3B. Power Supply DC Characteristics, V_DD = V_DDA = V_DDO = 2.5V±5%, T_A = -40°C to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD</td>
<td>Core Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>V_DDA</td>
<td>Analog Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>V_DDO</td>
<td>Output Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>I_DD</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td>mA</td>
</tr>
<tr>
<td>I_DDA</td>
<td>Analog Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>mA</td>
</tr>
<tr>
<td>I_DDO</td>
<td>Output Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>mA</td>
</tr>
</tbody>
</table>
Table 3C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDA} = V_{DDO} = 3.3V\pm5\%$ or $2.5V\pm5\%$; or $V_{DD} = V_{DDA} = 3.3V\pm5\%, V_{DDO} = 2.5V\pm5\%, T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>$V_{DD} = 3.3V$</td>
<td>2</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.5V$</td>
<td>1.7</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td>$V_{DD} = 3.3V$</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.5V$</td>
<td>-0.3</td>
<td>0.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>OE, F_{SEL0}, F_{SEL1}</td>
<td>$V_{DD} = V_{IN} = 3.465V$ or $2.625V$</td>
<td>5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$MR, TEST_CLK, nXTAL_SEL, nPLL_SEL$</td>
<td>$V_{DD} = V_{IN} = 3.465V$ or $2.625V$</td>
<td>150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>OE, F_{SEL0}, F_{SEL1}</td>
<td>$V_{DD} = 3.465V$ or $2.625V$, $V_{IN} = 0V$</td>
<td>-150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$MR, TEST_CLK, nXTAL_SEL, nPLL_SEL$</td>
<td>$V_{DD} = 3.465V$ or $2.625V$, $V_{IN} = 0V$</td>
<td>-5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>$V_{DDO} = 3.3V\pm5%$</td>
<td>2.6</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DDO} = 2.5V\pm5%$</td>
<td>1.8</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$V_{DDO} = 3.3V\pm5%$ or $2.5V\pm5%$</td>
<td>0.5</td>
<td></td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Outputs terminated with 50Ω to $V_{DDO}/2$. See Parameter Measurement Information section, Output Load Test Circuit diagrams.

Table 4. Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td>Fundamental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Shunt Capacitance (C_O)</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTE: Characterized using an $18pF$ parallel resonant crystal.
AC Electrical Characteristics

Table 5A. AC Characteristics, \(V_{DD} = V_{DDA} = V_{DDO} = 3.3\text{V} \pm 5\% \), \(T_A = -40^\circ C \text{ to } 85^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(_{OUT})</td>
<td>Output Frequency</td>
<td>F(_{SEL}[1:0] = 00)</td>
<td>140</td>
<td>175</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(_{SEL}[1:0] = 01 \text{ or } 11)</td>
<td>112</td>
<td>140</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(_{SEL}[1:0] = 10)</td>
<td>56</td>
<td>70</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>t(_{sk(o)})</td>
<td>Output Skew; NOTE 1, 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jit(Ø)</td>
<td>RMS Phase Jitter, Random; NOTE 3</td>
<td>156.25MHz, (1.875MHz - 20MHz)</td>
<td>0.47</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125MHz, (1.875MHz - 20MHz)</td>
<td>0.57</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62.5MHz, (1.875MHz - 20MHz)</td>
<td>0.51</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>t(_R / t_F)</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>200</td>
<td>700</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td>46</td>
<td>54</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at \(V_{DDO}/2 \).

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Refer to Phase Noise Plots.

Table 5B. AC Characteristics, \(V_{DD} = V_{DDA} = 3.3\text{V} \pm 5\% \), \(V_{DDO} = 2.5\text{V} \pm 5\% \), \(T_A = -40^\circ C \text{ to } 85^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(_{OUT})</td>
<td>Output Frequency</td>
<td>F(_{SEL}[1:0] = 00)</td>
<td>140</td>
<td>175</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(_{SEL}[1:0] = 01 \text{ or } 11)</td>
<td>112</td>
<td>140</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(_{SEL}[1:0] = 10)</td>
<td>56</td>
<td>70</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>t(_{sk(o)})</td>
<td>Output Skew; NOTE 1, 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jit(Ø)</td>
<td>RMS Phase Jitter, Random; NOTE 3</td>
<td>156.25MHz, (1.875MHz - 20MHz)</td>
<td>0.47</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125MHz, (1.875MHz - 20MHz)</td>
<td>0.55</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62.5MHz, (1.875MHz - 20MHz)</td>
<td>0.49</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>t(_R / t_F)</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>200</td>
<td>700</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td>46</td>
<td>54</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For NOTES, see Table 5A above.

Table 5C. AC Characteristics, \(V_{DD} = V_{DDA} = V_{DDO} = 2.5\text{V} \pm 5\% \), \(T_A = -40^\circ C \text{ to } 85^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(_{OUT})</td>
<td>Output Frequency</td>
<td>F(_{SEL}[1:0] = 00)</td>
<td>140</td>
<td>175</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(_{SEL}[1:0] = 01 \text{ or } 11)</td>
<td>112</td>
<td>140</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(_{SEL}[1:0] = 10)</td>
<td>56</td>
<td>70</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>t(_{sk(o)})</td>
<td>Output Skew; NOTE 1, 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jit(Ø)</td>
<td>RMS Phase Jitter, Random; NOTE 3</td>
<td>156.25MHz, (1.875MHz - 20MHz)</td>
<td>0.49</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125MHz, (1.875MHz - 20MHz)</td>
<td>0.56</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62.5MHz, (1.875MHz - 20MHz)</td>
<td>0.52</td>
<td></td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>t(_R / t_F)</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>200</td>
<td>700</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td>46</td>
<td>54</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For NOTES, see Table 5A above.
Typical Phase Noise at 62.5MHz (3.3V)

1Gb Ethernet Filter

Raw Phase Noise Data

Phase Noise Result by adding a 1Gb Ethernet filter to raw data

RMS Phase Jitter (Random) 1.875MHz to 20MHz = 0.51ps (typical)
Typical Phase Noise at 156.25MHz (3.3V)

10Gb Ethernet Filter

156.25MHz
RMS Phase Jitter (Random)
1.875MHz to 20MHz = 0.47ps (typical)

Raw Phase Noise Data

Phase Noise Result by adding a 10Gb Ethernet filter to raw data
Parameter Measurement Information

3.3V Core/3.3V Output Load AC Test Circuit

2.5V Core/2.5V Output Load AC Test Circuit

RMS Phase Jitter

Output Skew

Output Duty Cycle/Pulse Width/Period

Output Rise/Fall Time
Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

Crystal Inputs
For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from XTAL_IN to ground.

TEST_CLK Input
For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from the TEST_CLK to ground.

LVCMOS Control Pins
All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

Outputs:

LVCMOS Outputs
All unused LVCMOS outputs can be left floating. We recommend that there is no trace attached.
Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in Figure 1A. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and making R2 50Ω. By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

Figure 1A. General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface
Layout Guideline

Figure 2 shows a schematic example of the 840002I-01 application schematic. In this example, the device is operated at \(V_{DD} = V_{DDA} = V_{DDO} = 3.3\,V \). The 18pF parallel resonant 25MHz crystal is used. The load capacitance \(C_1 = 22pF \) and \(C_2 = 22pF \) are recommended for frequency accuracy. Depending on the parasitic of the printed circuit board layout, these values might require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will required adjusting \(C_1 \) and \(C_2 \).

As with any high speed analog circuitry, the power supply pins are vulnerable to noise. To achieve optimum jitter performance, power supply isolation is required. The 840002I-01 provides separate power supplies to isolate from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1μF capacitor in each power pin filter should be placed on the device side of the PCB and the other components can be placed on the opposite side.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supply frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitances in the local area of all devices.

The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure the logic control inputs are properly set.

Figure 2. 840002I-01 Application Schematic Example
Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for a 16 Lead TSSOP

<table>
<thead>
<tr>
<th>Linear Feet per Minute</th>
<th>0</th>
<th>200</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Layer PCB, JEDEC Standard Test Boards</td>
<td>137.1°C/W</td>
<td>118.2°C/W</td>
<td>106.8°C/W</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>89.0°C/W</td>
<td>81.8°C/W</td>
<td>78.1°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for 840002I-01 is: 3356

Package Outline and Package Dimensions

Table 7. Package Dimensions for 16 Lead TSSOP

<table>
<thead>
<tr>
<th>All Dimensions in Millimeters</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>16</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.5</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.80</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>0.19</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.09</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4.90</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6.40</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4.30</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0.65</td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0°</td>
<td>8°</td>
<td></td>
</tr>
<tr>
<td>aaa</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MO-153
Ordering Information

Table 8. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>840002AGI-01LF</td>
<td>002AI01L</td>
<td>"Lead-Free", 16 Lead LQFP</td>
<td>Tube</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>840002AGI-01LFT</td>
<td>002AI01L</td>
<td>"Lead-Free", 16 Lead LQFP</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
Revision History Sheet

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>T8</td>
<td>12</td>
<td>Ordering Information Table - corrected standard marking and added Lead-Free part number, marking and note.</td>
<td>10/18/07</td>
</tr>
<tr>
<td>A</td>
<td>T8</td>
<td>12</td>
<td>Updated datasheet's header/footer with IDT from ICS.</td>
<td>11/18/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>Removed ICS prefix from Part/Order Number column.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Added Contact Page.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>T5A - T5C</td>
<td>4 - 5</td>
<td>AC Characteristics Tables - added thermal note.</td>
<td>12/6/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Power Supply Filtering Techniques - corrected figure 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Added Overdriving the Crystal Interface section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Added Recommendations for Unused Input & Output Pins section.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>T5B</td>
<td>5</td>
<td>3.3V/2.5V AC Characteristics Table - corrected FOUT from 56MHz min - 68MHz max to 56MHz min - 70MHz max.</td>
<td>2/3/11</td>
</tr>
<tr>
<td>B</td>
<td>T5C</td>
<td>5</td>
<td>2.5V AC Characteristics Table - added 2nd odc spec and added thermal note.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Corrected FOUT from 56MHz min - 68MHz max to 56MHz min - 70MHz max.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Deleted Power Supply Filtering Techniques section, added to schematic layout.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Deleted Crystal Input Interface section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Added Overdriving the XTAL Interface section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated Layout Guideline and diagram.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Converted datasheet format.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5A, 5B, 5C</td>
<td>5</td>
<td>AC Table; (f_{OUT} = F_{SEL[1:0]} = 01) or 11, (F_{SEL[1:0]} = 10)</td>
<td>9/28/12</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>13</td>
<td>Deleted Quantity from Tape and Reel</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>T8</td>
<td>13</td>
<td>Ordering Information - removed leaded devices. Updated data sheet format.</td>
<td>8/5/15</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain usage conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Corporate Headquarters
TOYOSU FORESIA, 3-24 Toystu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

(Rv.4.0-1 November 2017)

© 2020 Renesas Electronics Corporation. All rights reserved.