General Description

The 840S05I is a five output LVCMOS/LVTTL Frequency Synthesizer accepting crystal or single-ended reference clock inputs. The 840S05I uses a 25MHz parallel resonant crystal to generate 33.33MHz – 166.67MHz clock signals, replacing solutions requiring multiple oscillator and fan-out buffer solution. The device supports output slew rate control with two slew select pins (SLEW[1:0]). The VCO operates at a frequency of 2GHz. The device has 2 output banks, Bank A with two 33.33MHz – 166.67MHz LVCMOS/LVTTL outputs and Bank B with two 33.33MHz – 166.67MHz LVCMOS/LVTTL outputs.

The two banks have their own dedicated frequency select pins and can be independently set for frequencies in the ranges mentioned above. Designed for networking and industrial applications, the 840S05I can also drive the high-speed clock inputs of communication processors, DSPs, switches and bridges.

Features

- Four single-ended LVCMOS/LVTTL clock outputs
- One REF_OUT LVCMOS/LVTTL clock output
- Selectable crystal oscillator interface, 25MHz, 18pF parallel resonant crystal or LVCMOS/LVTTL single-ended reference input
- Supports the following output frequencies on either bank: 33.33MHz, 50MHz, 66.67MHz, 83.33MHz, 100MHz, 125MHz, 133.33MHz, and 166.67MHz
- VCO: 2GHz
- Slew rate control
- Output supply modes: Core/Output 3.3V/3.3V 3.3V/2.5V
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

Block Diagram

Pin Assignment

840S05I
32-Lead TQFP, E-Pad
7mm x 7mm x 1mm package body
Y Package
Top View
Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{DDA}</td>
<td>Power</td>
<td>Analog supply pin.</td>
</tr>
<tr>
<td>2, 25</td>
<td>V_{DD}</td>
<td>Power</td>
<td>Core supply pin.</td>
</tr>
<tr>
<td>3, 4</td>
<td>XTAL_OUT, XTAL_IN</td>
<td>Input</td>
<td>Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.</td>
</tr>
<tr>
<td>5, 13,</td>
<td>GND</td>
<td>Power</td>
<td>Power supply ground.</td>
</tr>
<tr>
<td>20, 24,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>REF_SEL</td>
<td>Input</td>
<td>Pulldown Reference select pin. See Table 3C. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>7</td>
<td>REF_IN</td>
<td>Input</td>
<td>Pulldown Single-ended 25MHz reference clock input. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>8, 14,</td>
<td>F_SELB2, F_SELB1, F_SELB0</td>
<td>Input</td>
<td>Frequency select pins for Bank B outputs. See Table 3A. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>nREF_OE</td>
<td>Input</td>
<td>Pullup Active low REF_OUT enable/disable pin. See Table 3D. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>10</td>
<td>V_{DDO_REF}</td>
<td>Power</td>
<td>Output supply pin for REF_OUT clock output.</td>
</tr>
<tr>
<td>12, 26</td>
<td>nc</td>
<td>Unused</td>
<td>No connect.</td>
</tr>
<tr>
<td>15</td>
<td>MR/nOE</td>
<td>Input</td>
<td>Pulldown Active HIGH Master Reset. Active LOW output enable. See Table 3E. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>17</td>
<td>V_{DDO_B}</td>
<td>Power</td>
<td>Output supply pin for QBx outputs.</td>
</tr>
<tr>
<td>18, 19</td>
<td>QB1, QB0</td>
<td>Output</td>
<td>Single-ended Bank B clock outputs. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>21</td>
<td>V_{DDO_A}</td>
<td>Power</td>
<td>Output supply pin for QAx outputs.</td>
</tr>
<tr>
<td>22, 23</td>
<td>QA1, QA0</td>
<td>Output</td>
<td>Single-ended Bank A clock outputs. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>28, 32</td>
<td>F_SELA0, F_SELA2</td>
<td>Input</td>
<td>Pulldown Frequency select pins for Bank A outputs. See Table 3A. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>29</td>
<td>F_SELA1</td>
<td>Input</td>
<td>Pulldown Frequency select pin for Bank A outputs. See Table 3A. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>30, 31</td>
<td>SLEW0, SLEW1</td>
<td>Input</td>
<td>Pulldown Slew rate select pins for LVCMOS/LVTTL clock output. See Table 3B. LVCMOS/LVTTL interface levels.</td>
</tr>
</tbody>
</table>

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.
Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
</table>
| C_{IN} | Input Capacitance | QA[1:0], QB[1:0] SLEW[1:0] = 00
 V_{DD}, V_{DDA}, V_{DDO_REF},
 V_{DDO_A}, V_{DDO_B} = 3.465V | 2 | 6.5 | pF |
| | | QA[1:0], QB[1:0] SLEW[1:0] = 01
 V_{DD}, V_{DDA}, V_{DDO_REF},
 V_{DDO_A}, V_{DDO_B} = 3.465V | | 10.5 | pF |
| | | QA[1:0], QB[1:0] SLEW[1:0] = 10
 V_{DD}, V_{DDA}, V_{DDO_REF},
 V_{DDO_A}, V_{DDO_B} = 3.465V | | 13 | pF |
| | | QA[1:0], QB[1:0] SLEW[1:0] = 11
 V_{DD}, V_{DDA}, V_{DDO_REF},
 V_{DDO_A}, V_{DDO_B} = 3.465V | | 16 | pF |
| | | QA[1:0], QB[1:0] V_{DD}, V_{DDA} = 3.465V
 V_{DDO_REF}, V_{DDO_A}, V_{DDO_B} = 2.625V | | 5 | pF |
| | | REF_OUT V_{DD}, V_{DDA} = 3.465V
 V_{DDO_REF}, V_{DDO_A}, V_{DDO_B} = 2.625V | | 4 | pF |
| C_{PD} | Power Dissipation | QA[1:0], QB[1:0] V_{DD}, V_{DDA}, V_{DDO_REF},
 V_{DDO_A}, V_{DDO_B} = 3.3V | 51 | | | kΩ |
| | Capacitance | QA[1:0], QB[1:0] V_{DD}, V_{DDA}, V_{DDO_REF},
 V_{DDO_A}, V_{DDO_B} = 2.5V | 51 | | | kΩ |
| | | REF_OUT V_{DD}, V_{DDA} = 3.3V
 V_{DDO_REF}, V_{DDO_A}, V_{DDO_B} = 2.5V | | | | Ω |
| | | REF_OUT V_{DD}, V_{DDA} = 2.5V
 V_{DDO_REF}, V_{DDO_A}, V_{DDO_B} = 2.5V | | | | Ω |

NOTE 1: Characterized with SLEW[1:0] = 00.

Function Tables

Table 3A. Frequency Select Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_SEL2, F_SEL1, F_SEL0</td>
<td>QA[1:0] (MHz)</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

NOTE: Using 25MHz reference.
Table 3B. Slew Rate Function Table

<table>
<thead>
<tr>
<th>Setting</th>
<th>Slew Rate (v/ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLEW1</td>
<td>SLEW0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: Typical values for V_{DDO_A}, V_{DDO_B} = 3.3V. Refer to the AC Characteristics Table for more details.

Table 3C. REF_SEL Function Table

<table>
<thead>
<tr>
<th>REF_SEL</th>
<th>Input Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Default)</td>
<td>XTAL_IN</td>
</tr>
<tr>
<td>1</td>
<td>REF_IN</td>
</tr>
</tbody>
</table>

Table 3D. nREF_OE Function Table

<table>
<thead>
<tr>
<th>nREF_OE</th>
<th>REF_OUT State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>REF_OUT enabled</td>
</tr>
<tr>
<td>1 (Default)</td>
<td>REF_OUT disabled (Logic LOW)</td>
</tr>
</tbody>
</table>

Table 3E. MR/nOE Function Table

<table>
<thead>
<tr>
<th>MR/nOE</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Default)</td>
<td>QA and QB outputs enabled.</td>
</tr>
<tr>
<td>1</td>
<td>Device reset, QA and QB outputs disabled (Logic LOW).</td>
</tr>
</tbody>
</table>

NOTE: A MR/OE pulse is required after device power-up to guarantee functionality.
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{DD}</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, V_I</td>
<td>0V to V_{DD}</td>
</tr>
<tr>
<td>XTAL_IN</td>
<td>-0.5V to $V_{DD} + 0.5V$</td>
</tr>
<tr>
<td>Other Inputs</td>
<td>-0.5V to $V_{DD} + 0.5V$</td>
</tr>
<tr>
<td>Outputs, V_O</td>
<td>-0.5V to $V_{DD} + 0.5V$</td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_{JA}</td>
<td>36.2°C/W (0 mps)</td>
</tr>
<tr>
<td>Storage Temperature, T_{STG}</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO_REF} = V_{DDO_A} = V_{DDO_B} = 3.3V \pm 5\%, T_A = -40°C to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Core Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog Supply Voltage</td>
<td></td>
<td>$V_{DD} - 0.20$</td>
<td>3.3</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDO_A}, V_{DDO_B}, V_{DDO_REF}</td>
<td>Output Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td>160</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDA}</td>
<td>Analog Supply Current</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDO_A}, I_{DDO_B}</td>
<td>Output Supply Current</td>
<td>SLEW[1:0] = 11, QA[1:0], QB[1:0] = 166.67MHz; REF_OUT = 25MHz, Outputs Not Loaded</td>
<td></td>
<td>30</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDO_REF}</td>
<td>Output Supply Current</td>
<td>Outputs Not Loaded</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: All parameters specified for inputs and outputs under static conditions, unless otherwise noted.

Table 4B. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%, V_{DDO_REF} = V_{DDO_A} = V_{DDO_B} = 2.5V \pm 5\%, T_A = -40°C to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Core Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog Supply Voltage</td>
<td></td>
<td>$V_{DD} - 0.20$</td>
<td>3.3</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDO_A}, V_{DDO_B}, V_{DDO_REF}</td>
<td>Output Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td>160</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDA}</td>
<td>Analog Supply Current</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDO_A}, I_{DDO_B}</td>
<td>Output Supply Current</td>
<td>SLEW[1:0] = 11, QA[1:0], QB[1:0] = 166.67MHz; REF_OUT = 25MHz, Outputs Not Loaded</td>
<td></td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDO_REF}</td>
<td>Output Supply Current</td>
<td>Outputs Not Loaded</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: All parameters specified for inputs and outputs under static conditions, unless otherwise noted.
Table 4C. LVCMOS DC Characteristics, $V_{DD} = 3.3\, \text{V} \pm 5\%$, $V_{DDO_{\text{REF}}} = V_{DDO_{A}} = V_{DDO_{B}} = 3.3\, \text{V} \pm 5\%$ or $2.5\, \text{V} \pm 5\%$, $T_A = -40\,^\circ\text{C}$ to $85\,^\circ\text{C}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>$V_{DD} = 3.465, \text{V}$</td>
<td>2.2</td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td>$V_{DD} = 3.465, \text{V}$</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>$n_{\text{REF OE, F_Sela0, F_SelA2, F_SelaB[2:0], Slew0, Slew1, F_Sela1, MR/_OE, REF_IN, REF_SEL}}$</td>
<td>$V_{DD} = V_{IN} = 3.465, \text{V}$</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>$n_{\text{REF OE, F_Sela0, F_SelA2, F_SelaB[2:0], Slew0, Slew1, F_Sela1, MR/_OE, REF_IN, REF_SEL}}$</td>
<td>$V_{DD} = V_{IN} = 3.465, \text{V}$</td>
<td>150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1, 2</td>
<td>$V_{DDO_{X}} = 3.3, \text{V} \pm 5%$</td>
<td>2.45</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1, 2</td>
<td>$V_{DDO_{X}} = 2.5, \text{V} \pm 5%$</td>
<td>1.75</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: $V_{DDO_{X}}$ denotes $V_{DDO_{A}}, V_{DDO_{B}}, V_{DDO_{REF}}$.

NOTE 1: Outputs terminated with $50\,\Omega$ to $V_{DDO_{A}}, V_{DDO_{B}}, V_{DDO_{REF}}/2$. See Parameter Measurement Information, Output Load Test Circuit diagram.

NOTE 2: Characterized with QA[1:0], QB[1:0] = 33.33MHz and REF_OUT = 25MHz.

Table 5. Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td>Fundamental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>25</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td></td>
<td>50</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt Capacitance</td>
<td></td>
<td>7</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Characterized using an 18pF parallel resonant crystal.
AC Electrical Characteristics

Table 6A. AC Characteristics, $V_{DD} = V_{DD,REF} = V_{DD,A} = V_{DD,B} = 3.3V \pm 5\%, T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{OUT}</td>
<td>Output Frequency</td>
<td>QA[1:0] or QB[1:0]</td>
<td>33.33</td>
<td>166.67</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>$t_{sk(o)}$</td>
<td>Output Skew; NOTE 1, 2</td>
<td>QA[1:0] or QB[1:0]</td>
<td>$f_{OUT} \leq 125MHz$, 25MHz Crystal Input</td>
<td>180</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>$t_{sk(b)}$</td>
<td>Bank Skew; NOTE 2, 3</td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 00</td>
<td>35</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>$t_{jit(per)}$</td>
<td>Period Jitter, RMS; NOTE 4</td>
<td>QA[1:0] or QB[1:0]</td>
<td>$f_{OUT} = 125MHz$, SLEW[1:0] = 00</td>
<td>3.4</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{OUT} = 125MHz$, SLEW[1:0] = 01</td>
<td>3.4</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{OUT} = 125MHz$, SLEW[1:0] = 10</td>
<td>3.5</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{OUT} = 125MHz$, SLEW[1:0] = 11</td>
<td>4.6</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>t_{SLEW}</td>
<td>Slew Rate; NOTE 5</td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 00, Rise/Fall Time: 20% to 80%</td>
<td>3.5</td>
<td>5.0</td>
<td>V/ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 01, Rise/Fall Time: 20% to 80%</td>
<td>2.6</td>
<td>3.8</td>
<td>V/ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 10, Rise/Fall Time: 20% to 80%</td>
<td>1.8</td>
<td>2.7</td>
<td>V/ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 11, Rise/Fall Time: 20% to 80%</td>
<td>1.0</td>
<td>1.7</td>
<td>V/ns</td>
</tr>
<tr>
<td>t_L</td>
<td>PLL Lock Time</td>
<td>SLEW[1:0] = 00</td>
<td>20</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td>QA[1:0] or QB[1:0]</td>
<td>25MHz Crystal Input, SLEW[1:0] = 00</td>
<td>45</td>
<td>55</td>
<td>%</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device is mounted in a test socket with maintained transverse airflow greater than 500 fpm. Device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DD,A,B,REF}/2$.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions.

NOTE 4: Characterized using a 25MHz Crystal input. REF_OUT is disabled.

NOTE 5: A slew rate of 2V/ns or greater should be selected for output frequencies of 100MHz and higher.
Table 6B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO,REF} = V_{DDO_A} = V_{DDO_B} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{OUT}</td>
<td>Output Frequency</td>
<td>QA[1:0]</td>
<td>33.33</td>
<td>166.67</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QB[1:0]</td>
<td>33.33</td>
<td>166.67</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>$t_{sk(o)}$</td>
<td>Output Skew; NOTE 1, 2</td>
<td>QA[1:0] or QB[1:0]</td>
<td>$f_{OUT} \leq 125MHz$, 25MHz Crystal Input</td>
<td>210</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{sk(b)}$</td>
<td>Bank Skew; NOTE 2, 3</td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 00</td>
<td>45</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>$f_{jit(per)}$</td>
<td>Period Jitter, RMS; NOTE 4</td>
<td>QA[1:0] or QB[1:0]</td>
<td>$f_{OUT} = 125MHz$, SLEW[1:0] = 00</td>
<td>3.5</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{OUT} = 125MHz$, SLEW[1:0] = 01</td>
<td>3.6</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{OUT} = 125MHz$, SLEW[1:0] = 10</td>
<td>4.1</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_{OUT} = 125MHz$, SLEW[1:0] = 11</td>
<td>6.3</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>t_{SLEW}</td>
<td>Slew Rate; NOTE 5</td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 00, Rise/Fall Time: 20% to 80%</td>
<td>3.0</td>
<td>4.5</td>
<td>V/ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 01, Rise/Fall Time: 20% to 80%</td>
<td>2.2</td>
<td>3.4</td>
<td>V/ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 10, Rise/Fall Time: 20% to 80%</td>
<td>1.6</td>
<td>2.6</td>
<td>V/ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 11, Rise/Fall Time: 20% to 80%</td>
<td>0.9</td>
<td>1.7</td>
<td>V/ns</td>
</tr>
<tr>
<td>t_{LL}</td>
<td>PLL Lock Time</td>
<td>QA[1:0] or QB[1:0]</td>
<td>SLEW[1:0] = 00</td>
<td>25</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>ϕ_{dc}</td>
<td>Output Duty Cycle</td>
<td>QA[1:0] or QB[1:0]</td>
<td>25MHz Crystal Input, SLEW[1:0] = 00</td>
<td>45</td>
<td>55</td>
<td>%</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. Device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDO_A, B, REF}$/2.
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 3: Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions.
NOTE 4: Characterized using a 25MHz Crystal input. REF_OUT is disabled.
NOTE 5: A slew rate of 2V/ns or greater should be selected for output frequencies of 100MHz and higher.
Parameter Measurement Information

3.3V Core/3.3V LVCMOS Output Load Test Circuit

Output Skew

RMS Period Jitter

3.3V Core/2.5V LVCMOS Output Load Test Circuit

Bank Skew

Output Slew Rate

Where X is either Bank A or Bank B

<table>
<thead>
<tr>
<th>Parameter Measurement Information</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Skew</td>
<td></td>
</tr>
<tr>
<td>RMS Period Jitter</td>
<td></td>
</tr>
<tr>
<td>Bank Skew</td>
<td></td>
</tr>
<tr>
<td>Output Slew Rate</td>
<td></td>
</tr>
</tbody>
</table>
Parameter Measurement Information, continued

\[
\text{odc} = \frac{t_{PW}}{t_{PERIOD}} \times 100\%
\]

Output Duty Cycle/Pulse Width/Period

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins
All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

Crystal Inputs
For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from XTAL_IN to ground.

REF_IN Input
For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from the REF_IN to ground.

Outputs:

LVCMOS Outputs
All unused LVCMOS outputs can be left floating. There should be no trace attached.
Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 1A shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and changing R2 to 50Ω. The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. Figure 1B shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

Figure 1A. General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface
EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 2. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 2. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)
Schematic Layout

Figure 3 shows an example 840S05I application schematic. This schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set.

In this schematic, the device is operated at VDD=VDDA = 3.3V and VDDO_A, VDDO_B and VDDO_REF=2.5V. An 18pF parallel resonant 25MHz crystal is used with the recommended load capacitors C1 = 33pF and C2 = 27pF for frequency accuracy. Depending on the parasitic capacity on the crystal terminals of the printed circuit board layout, these values might require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will require adjusting C1 and C2. For this device, the crystal load capacitors are required for proper operation.

As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 840S05I provides separate power supply pins to isolate any high switching noise from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1μF capacitor in each power pin filter should be placed on the device side. The other components can be on the opposite side of the PCB.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.
Place each 0.1uF bypass cap directly adjacent to the corresponding VDD, VDDA or VDDO_x pin.
Power Considerations

This section provides information on power dissipation and junction temperature for the 840S05I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 840S05I is the sum of the core power plus the analog power plus the power dissipation in the load(s). The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.

The maximum current at 85°C is as follows:

\[I_{DD_{MAX}} = 160mA \]
\[I_{DDA_{MAX}} = 20mA \]

Core Power Dissipation

- Power (core)_{MAX} = V_{DD_{MAX}} * (I_{DD} + I_{DDA}) = 3.465V * (160mA + 20mA) = 623.7mW

LVCMOS Output Power Dissipation

- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to V_{DD}/2
 Output Current I_{OUT} = V_{DD_{MAX}} / [2 * (50Ω + R_{OUT})] = 3.465V / [2 * (50Ω + 22Ω)] = 24.06mA

- Power Dissipation on the R_{OUT} per LVCMOS output
 Power (R_{OUT}) = R_{OUT} * (I_{OUT})^2 = 22Ω * (24.06mA)^2 = 12.74mW per output

- Total Power Dissipation on the R_{OUT}
 Total Power (R_{OUT}) = 12.74mW * 5 = 63.7mW

- Dynamic Power Dissipation at 25MHz (REF_OUT)
 Power (25MHz) = C_{PD} * Frequency * (V_{DDO})^2 = 4pF * 25MHz * (3.465V)^2 = 1.2mW per output
 Total Power (25MHz) = 1.2mW * 1 = 1.2mW

- Dynamic Power Dissipation at 166.67MHz (QA[1:0], QB[1:0])
 Power (166.67MHz) = C_{PD} * Frequency * (V_{DDO})^2 = 16pF * 166.67MHz * (3.465V)^2 = 32.02mW per output
 Total Power (166.67MHz) = 32.02mW * 4 = 128.08mW

Total Power Dissipation

- Total Power
 = Power (core) + Power (output) + Total Power (25MHz) + Total Power (166.67MHz)
 = 623.7mW + 63.7mW + 1.2mW + 128.08mW
 = 816.68mW
2. Junction Temperature.

Junction temperature, T_j, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, T_j, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} \times P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 36.2°C/W per Table 7 below.

Therefore, T_j for an ambient temperature of 85°C with all outputs switching is:

$$85°C + 0.817W \times 36.2°C/W = 114.6°C.$$ This is below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 32 Lead TQFP, E-Pad, Forced Convection

<table>
<thead>
<tr>
<th>θ_{JA} by Velocity</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meters per Second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>36.2°C/W</td>
<td>30.6°C/W</td>
<td>29.2°C/W</td>
</tr>
</tbody>
</table>
Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 32 Lead TQFP, E-Pad

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>36.2°C/W</td>
<td>30.6°C/W</td>
<td>29.2°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for 840S05I is: 2395
Package Outline and Package Dimensions
Package Outline - Y Suffix for 32 Lead TQFP, E-Pad

Table 9. Package Dimensions 32 Lead TQFP, E-Pad

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>1.20</td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>A2</td>
<td>0.95</td>
<td>1.00</td>
<td>1.05</td>
</tr>
<tr>
<td>b</td>
<td>0.30</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>D, E</td>
<td>9.00 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1, E1</td>
<td>7.00 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2, E2</td>
<td>5.60 Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3, E3</td>
<td>3.0 3.5 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0.80 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45 0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>0° 7°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ccc</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MS-026
Ordering Information

Table 10. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>840S05AYILF</td>
<td>840S05AIL</td>
<td>Lead-Free, 32 Lead TQFP, E-Pad</td>
<td>Tray</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>840S05AYILFT</td>
<td>840S05AIL</td>
<td>Lead-Free, 32 Lead TQFP, E-Pad</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 11, 2016</td>
<td>• Removed ICS from part number where needed.</td>
</tr>
<tr>
<td></td>
<td>• Updated data sheet header and footer.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

6. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

8. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

9. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

10. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

11. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

12. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

13. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.