

General Description

The 8413S12I-100 is a PLL-based clock generator specifically designed for Cavium Networks Octeon II processors. This high performance device is optimized to generate the processor core reference clock, the PCI-Express reference clocks and the clocks for both the Gigabit Ethernet MAC and PHY. The clock generator offers ultra low-jitter, low-skew clock outputs, and edge rates that easily meet the input requirements for the CN63XX and CN68XX series of processors. The output frequencies are generated from a 25MHz external input source or an external 25MHz parallel resonant crystal. The industrial temperature range of the 8413S12I-100 supports telecommunication, networking, and storage requirements.

Applications

- Systems using Cavium Processors
- CPE Gateway Design
- Home Media Servers
- 802.11n AP or Gateway
- Soho Secure Gateway
- Soho SME Gateway
- Wireless Soho and SME VPN Solutions
- Wired and Wireless Network Security
- Web Servers and Exchange Servers

Features

- Ten 100MHz clocks for PCI Express, HCSL interface levels
- One single-ended QG LVCMOS/LVTTL clock output at 125MHz
- One single-ended QF LVCMOS/LVTTL clock output at 50MHz, 15Ω output impedance
- Two single-ended QREFx LVCMOS/LVTTL outputs at 25MHz, 15Ω output impedance
- Selectable external crystal or differential (single-ended) input source
- Crystal oscillator interface designed for 25MHz, parallel resonant crystal
- Differential CLK, nCLK input pair that can accept: LVPECL, LVDS, LVHSTL, HCSL input levels
- Internal resistor bias on nCLK pin allows the user to drive CLK input with external single-ended (LVCMOS/LVTTL) input levels
- Supply Modes, (125MHz QG output and 25MHz QREFx outputs):

Core / Output 3.3V / 3.3V 3.3V / 2.5V

• Supply Modes, (HCSL outputs, and 50MHz QF output):

Core / Output 3.3V / 3.3V

- -40°C to 85°C ambient operating temperature
- Available in Lead-free (RoHS 6) package

Pin Assignment

72-pin, 10mm x 10mm LQFP Package

Block Diagram

OTE: OE_A, OE_B, OE_C, OE_D, OE_E, OE_G, OE_REF have internal pull-up resistors.

Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Т	уре	Description
1, 18, 38	GND	Power		Power supply ground.
11	V _{DDA}	Power		Analog supply pin.
2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 19, 36, 37, 54, 55, 72	nc	Unused		No connect.
14, 15	XTAL_IN, XTAL_OUT	Input		Parallel resonant crystal interface. XTAL_OUT is the output, XTAL_IN is the input.
17	REF_SEL	Input	Pullup	Input source control pin. See Table 3B. LVCMOS/LVTTL interface levels.
20, 39, 53	V _{DD}	Power		Core supply pins.
21	PLL_SEL	Input	Pullup	PLL bypass control pin. See Table 3A. LVCMOS/LVTTL interface levels.
22	CLK	Input	Pulldown	Non-inverting differential clock input.
23	nCLK	Input	Pullup/ Pulldown	Inverting differential clock input. Internal resistor bias to $V_{DD}/2$.
24	OE_A	Input	Pullup	Active HIGH output enable for Bank A outputs. See Table 3C. LVCMOS/LVTTL interface levels.
25	V _{DDO_A}	Power		Bank A (HCSL) output supply pin. 3.3 V supply.
26, 27	QA0, nQA0	Output		Differential output pairs. HCSL interface levels.
28, 29	QA1, nQA1	Output		Differential output pairs. HCSL interface levels.
30	OE_B	Input	Pullup	Active HIGH output enable for Bank B outputs. See Table 3C. LVCMOS/LVTTL interface levels.
31, 32	QB0, nQB0	Output		Differential output pair. HCSL interface levels.
33, 34	QB1, nQB1	Output		Differential output pair. HCSL interface levels.
35	V _{DDO_B}	Power		Bank B (HCSL) output supply pin. 3.3V supply.
40	OE_C	Input	Pullup	Active HIGH output enable for Bank C outputs. See Table 3C. LVCMOS/LVTTL interface levels.
41, 42	QC0, nQC0	Output		Differential output pair. HCSL interface levels.
43, 44	QC1, nQC1	Output		Differential output pair. HCSL interface levels.
45	V _{DDO_C}	Power		Bank C (HCSL) output supply pin. 3.3V supply.
46	V _{DDO_D}	Power		Bank D (HCSL) output and HCSL reference circuit supply pin. Must be connected to 3.3V to use any of the HCSL outputs.
47, 48	QD0, nQD0	Output		Differential output pair. HCSL interface levels.
49, 50	QD1, nQD1	Output		Differential output pair. HCSL interface levels.
51	OE_D	Input	Pullup	Active HIGH output enable for Bank D outputs. See Table 3C. LVCMOS/LVTTL interface levels.
52	I _{REF}	Input		External fixed precision resistor (475) from this pin to ground provides a reference current used for differential current-mode Q[Ax:Ex], nQ[Ax:EX] outputs.
56	V _{DDO_E}	Power		Bank E (HCSL) output supply pin. 3.3V supply.
57, 58	QE0, nQE0	Output		Differential output pair. HCSL interface levels.
59, 60	QE1, nQE1	Output		Differential output pair. HCSL interface levels.
61	OE_E	Input	Pullup	Active HIGH output enable for Bank E outputs. See Table 3C. LVCMOS/LVTTL interface levels.

Number	Name	Т	уре	Description
Continued on	next page.			
62	nMR	Input	Pullup	Active LOW Master Reset. When logic LOW, all outputs are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When logic HIGH, all outputs are enabled. LVCMOS/LVTTL interface levels.
63	V _{DDO_F}	Power		QF output supply pin (LVCMOS/LVTTL). 3.3V supply.
64	QF	Output		Single-ended output. 3.3V LVCMOS/LVTTL interface levels.
65	V _{DDO_G}	Power		QG output supply pins (LVCMOS/LVTTL). 3.3V or 2.5V supply.
66	QG	Output		Single-ended output. 3.3V or 2.5V LVCMOS/LVTTL interface levels.
67	OE_G	Input	Pullup	Active HIGH output enable for Bank G output. See Table 3D. LVCMOS/LVTTL interface levels.
68	OE_REF	Input	Pullup	Active HIGH output enable for QREF[0:1] outputs. See Table 3E. LVCMOS/LVTTL interface levels.
69, 70	QREF0, QREF1	Output		Single-ended REF outputs. 3.3V or 2.5V LVCMOS/LVTTL interface levels.
71	V _{DDO_QREF}	Power		QREF[0:1] output supply pin (LVCMOS/LVTTL). 3.3V or 2.5V supply.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance				2		pF
R _{PULLUP}	Input Pullup Resistor				51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor				51		kΩ
R _{OUT}	Output	QF, QG, QREF[0:1]	$V_{DDO_F} = V_{DDO_G} = V_{DDO_QREF} = 3.465V$		15		Ω
	QG, QREF[0:1]		$V_{DDO_QREF}, V_{DDO_G} = 2.625V$		15		Ω

Function Tables

Table 3A. PLL_SEL Control Input Function Table

Input	
PLL_SEL	Operation
0	PLL Bypass
1 (default)	PLL Mode

Table 3B. REF_SEL Control Input Function Table

Input	
REF_SEL	Clock Source
0	CLK, nCLK
1 (default)	XTAL_IN, XTAL_OUT

Table 3C. OE_[A:E] Control Input Function Table

Input	Outputs
OE_[A:E]	Q[Ax:Ex], nQ[Ax:Ex]
0	High-Impedance
1 (default)	Enabled

Table 3D. OE_G Control Input Function Table

Input	Outputs
OE_G	QG
0	High-Impedance
1 (default)	Enabled

Table 3E. OE_REF Control Input Function Table

Input	Output		
OE_REF	QREF[1:0]		
0	High-Impedance		
1 (default)	Enabled		

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	
XTAL_IN	OV to V _{DD}
Other Inputs	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DD} + 0.5V
Package Thermal Impedance, θ_{JA}	25.4°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_[A:E]} = V_{DDO_[F:G]} = V_{DDO_QREF} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter Test Conditions Mi		Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.16	3.3	V _{DD}	V
V_{DDO_X}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current			86	103	mA
I _{DDA}	Analog Supply Current			13	16	mA
I _{DDO_X}	Output Supply Current	No Load, CLK selected		76	91	mA

NOTE: V_{DDO_X} denotes V_{DDO_[A:E]}, V_{DDO_[F:G]}, V_{DDO_QREF}. NOTE: I_{DDO_X} denotes I_{DDO_[A:E]}, I_{DDO_[F:G]}, I_{DDO_QREF}.

Table 4B. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_G} = V_{DDO_QREF} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} – 0.16	3.3	V _{DD}	V
V _{DDO_X}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current			79	95	mA
I _{DDA}	Analog Supply Current			13	16	mA
I _{DDO_X}	Output Supply Current	No Load, CLK selected		50	60	mA

NOTE: V_{DDO_X} denotes V_{DDO_G}, V_{DDO_QREF}. NOTE: I_{DDO_X} denotes I_{DDO_G}, I_{DDO_QREF}.

Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDO_F} = 3.3V \pm 5\%$; or $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_G} = V_{DDO_QREF} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Paramete	er	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High	n Voltage		2.2		V _{DD} + 0.3	V
V _{IL}	Input Low	Voltage		-0.3		0.8	V
IIH	Input High Current	REF_SEL, PLL_SEL, nMR, OE_REF, OE_A, OE_B, OE_C, OE_D, OE_E, OE_G	V _{DD} = V _{IN} = 3.465V			10	uA
IIL	Input Low Current	REF_SEL, PLL_SEL, nMR, OE_REF, OE_A, OE_B, OE_C, OE_D, OE_E, OE_G	V _{DD} = 3.465V, V _{IN} = 0V	-150			uA
M	Output Llich Voltage		$V_{DDO_F} = V_{DDO_G}, V_{DDO_QREF} = 3.465V, I_{OH} = -12mA$	2.6			V
V _{OH} Output high voltage		gn voltage	$V_{DDO_G}, V_{DDO_QREF} = 2.625V,$ $I_{OH} = -12mA$	1.8			V
V _{OL}	Output Low Voltage		$V_{DDO_F} = V_{DDO_G}, V_{DDO_QREF} = 3.465V \text{ or}$ $V_{DDO_G}, V_{DDO_QREF} = 2.625V,$ $I_{OH} = 12mA$			0.6	V

Table 4D. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I _{IH}	Input High Current	CLK, nCLK	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
	Input Low Current	CLK	$V_{DD} = 3.465 V, V_{IN} = 0 V$	-10			μA
'IL		nCLK	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA
V _{PP}	Peak-to-Peak Input Voltage;	NOTE 1		0.15		1.3	V
V _{CMR}	Common Mode Input Voltage	e; NOTE 1, 2		0.5		V _{DD} – 0.85	V

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2. Common mode voltage is defined as VIH.

Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation					
Frequency			25		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

NOTE: Characterized using an 18pF parallel resonant crystal.

Table 6. Input Frequency Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_[A:E]} = V_{DDO_F} = V_{DDO_G} = V_{DDO_QREF} = 3.3V \pm 5\%$; or $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_G} = V_{DDO_QREF} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
F _{IN}	Input	CLK, nCLK			25		MHz
	Frequency	XTAL_IN, XTAL_OUT			25		MHz

AC Electrical Characteristics

	•	, DD , I	JDO_[A.L]	,	A		
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	PCIe Industry Specification	Units
t _j (PCle Gen 1)	Phase Jitter Peak-to-Peak; NOTE 1, 4	f = 100MHz, 25MHz Crystal Input Evaluation Band: 0Hz - Nyquist (clock frequency/2)		14.27	24.35	86	ps
t _{REFCLK_HF_RMS} (PCIe Gen 2)	Phase Jitter RMS; NOTE 2, 4	f = 100MHz, 25MHz Crystal Input High Band: 1.5MHz - Nyquist (clock frequency/2)		1.47	3.04	3.1	ps
t _{REFCLK_LF_RMS} (PCIe Gen 2)	Phase Jitter RMS; NOTE 2, 4	f = 100MHz, 25MHz Crystal Input Low Band: 10kHz - 1.5MHz		0.17	0.67	3.0	ps
t _{REFCLK_RMS} (PCIe Gen 3)	Phase Jitter RMS; NOTE 3, 4	f = 100MHz, 25MHz Crystal Input Evaluation Band: 0Hz - Nyquist (clock frequency/2)		0.37	0.79	0.8	ps

Table 7A. PCI Express Jitter Specifications, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO [A:E]} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. For additional information, refer to the *PCI Express Application Note section* in the datasheet.

NOTE 1: Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86ps peak-to-peak for a sample size of 10⁶ clock periods.

NOTE 2: RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps RMS for t_{REFCLK_HF_RMS} (High Band) and 3.0ps RMS for t_{REFCLK_LF_RMS} (Low Band).

NOTE 3: RMS jitter after applying system transfer function for the common clock architecture. This specification is based on the *PCI Express Base Specification Revision 0.7, October 2009* and is subject to change pending the final release version of the specification. **NOTE 4:** This parameter is guaranteed by characterization. Not tested in production.

Table 7B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_{A:E]}} = V_{DDO_{F}} = V_{DDO_{G}} = V_{DDO_{QREF}} = 3.3V \pm 5\%$; or $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_{G}} = V_{DDO_{QREF}} = 2.5V \pm 5\%$, $T_{A} = -40^{\circ}$ C to 85° C

Symbol	Parameter	Test Conditions	Output	Minimum	Typical	Maximum	Units
fout			Q[A:E], nQ[A:E]		100		MHz
	Output Frequency		QF		50		MHz
			QG		125		MHz
			QREF[0:1]		25		MHz

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

Symbol	Parameter	Output Configurations	Outputs	Minimum	Typical	Maximum	Units
			QA, nQA		3	4	ps
RJ			QB, nQB		3	4	ps
	Random Jitter		QC, nQC		3	4	ps
		$Q(A \cdot F) PQ(A \cdot F) = 100 MHz$	QD, nQD		3	4	ps
		QF = 50MHz,	QE, nQE		3	4	ps
		QG = 125MHz	QA, nQA		10	40	ps
		QREFU = QREFT = 25MHz	QB, nQB		11	35	ps
DJ	Deterministic Jitter		QC, nQC		13	42	ps
			QD, nQD		20	55	ps
			QE, nQE		17	42	ps

Table 7C. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO [A:E]} = V_{DDO F} = 7$	$V_{DDO G} = V_{DDO QREF} = 3.3V \pm 5\%$; or
$V_{DD} = 3.3V \pm 5\%$, $V_{DDO_G} = V_{DDO_QREF} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$	

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: Refer to Applications Section for peak-to-peak jitter calculations.

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units	
V _{RB}	Ring-Back Voltage Margin; NOTE 1, 2			-100		100	mV	
t _{STABLE}	Time before V _{RB} is allowed; NOTE 1, 2			500			ps	
V _{MAX}	Absolute Max Output Voltage; NOTE 3, 4					1150	mV	
V _{MIN}	Absolute Min Output Voltage; NOTE 3, 5	Q[A:E],		-300			mV	
V _{CROSS}	Absolute Crossing Voltage; NOTE 3, 6, 7	nQ[A:E]		250		550	mV	
ΔV_{CROSS}	Total Variation of V _{CROSS} over All Edges; NOTE 3, 6, 8					140	mV	
t _{SLEW+}	Rising Edge Rate; NOTE 1, 9			0.6		5.5	V/ns	
t _{SLEW-}	Falling Edge Rate; NOTE 1, 9	-		0.6		5.5	V/ns	
odc	Output Duty Cycle	-		48		52	%	
tjit(Ø)	RMS Phase Jitter, (Random)	QREF[0:1]	156.25MHz, Integration Range: (10kHz to 5MHz)		0.60	0.96	ps	
		QF	20% to 80%	400		1400	ps	
t _R /t _F	Output Rise/Fall Time	QG	20% to 80%	400		1400	ps	
		QREF[0:1]	20% to 80%	300		1400	ps	
		QF	measured at V _{DDO_F} /2	48		52	%	
odc	Output Duty Cycle	QG	measured at V _{DDO_G} /2	45		55	%	
		QREF[0:1]	measured at V _{DDO_QREF} /2	45		55	%	

Table 7D. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_[A:E]} = V_{DDO_F} = V_{DDO_G} = V_{DDO_QREF} = 3.3V \pm 5\%$; or $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_G} = V_{DDO_QREF} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

All parameters measured at f_{OUT} unless noted otherwise.

NOTE 1: Measurement taken from differential waveform.

NOTE 2: t_{STABLE} is the time the differential clock must maintain a minimum ±150mV differential voltage after rising/falling edges before it is allowed to drop back into the Vrb ±100mV range. See Parameter Measurement Information Section.

NOTE 3: Measurement taken from single-ended waveform.

NOTE 4: Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.

NOTE 5: Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section. NOTE 6: Measured at the crossing point where the instantaneous voltage value of the rising edge of Q[Ax:Ex] equals the falling edge of

nQ[Ax:Ex]. NOTE 7: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all

crossing points for this measurement.

NOTE 8: Defined as the total variation of all crossing voltages of rising Q[Ax:Ex] and falling nQ[Ax:Ex]. This is the maximum allowed variance in Vcross for any particular system.

NOTE 9: Measured from -150mV to +150mV on the differential waveform (derived from Q[Ax:Ex] minus nQ[Ax:Ex]). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.

Typical Phase Noise at 100MHz

Offset Frequency (Hz)

Parameter Measurement Information

3.3V Core/3.3V LVCMOS Output Load AC Test Circuit

3.3V Core/3.3V HCSL Output Load AC Test Circuit

Differential Input Level

3.3V Core/2.5V LVCMOS Output Load AC Test Circuit

This load condition is used for I_{DD} and $tjit(\emptyset)$ measurements.

3.3V Core/3.3V HCSL Output Load AC Test Circuit

Parameter Measurement Information, continued

LVCMOS Output Duty Cycle/Pulse Width

Differential Measurement Points for Rise/Fall Time Edge Rate

Single-ended Measurement Points for Delta Cross Point

LVCMOS Output Rise/Fall Time

Single-ended Measurement Points for Absolute Cross Point/Swing

Differential Measurement Points for Ringback

Parameter Measurement Information, continued

Differential Measurement Points for Duty Cycle/Period

Peak-to-Peak Jitter Calculations

A standard deviation of a statistical population or data set is the square root of its variance. A standard deviation is used to calculate the probability of an anomaly or to predict a failure. Many times, the term "root mean square" (RMS) is used synonymously for standard deviation. This is accurate when referring to the square root of the mean squared deviation of a signal from a given baseline and when the data set contains a Gaussian distribution with no deterministic components. A low standard deviation indicates that the data set is close to the mean with little variation. A large standard deviation from the mean.

A standard deviation is required when calculating peak-to-peak jitter. Since true peak-to-peak jitter is random and unbounded, it is important to always associate a bit error ratio (BER) when specifying a peak-to-peak jitter limit. Without it, the specification does not have a boundary and will continue get larger with sample size. Given that a BER is application specific, many frequency timing devices specify jitter as an RMS. This allows the peak-to-peak jitter to be calculated for the specific application and BER requirement. Because a standard deviation is the variation from the *mean* of the data set, it is important to always calculate the peak-to-peak jitter using the typical RMS value.

The table shows the BER with its appropriate RMS Multiplier. There are two columns for the RMS multiplier, one should be used if your signal is data and the other should be used if the signal is a repetitive clock signal. The difference between the two is the data transition density (DTD). The DTD is the number of rising or falling transitions divided by the total number of bits. For a clock signal, they are equal, hence the DTD is 1. For Data, on average, most common encoding standards have a.5 DTD.

Once the BER is chosen, there are two circumstances to consider. Is the data set purely Gaussian or does it contains any deterministic component? If it is Gaussian, then the peak to peak jitter can be calculated by simply multiplying the RMS multiplier with the typical RMS specification. For example, if a 10⁻¹² BER is required for a clock signal, multiply 14.260 times the typical jitter specification.

Jitter (Peak to Peak) = RMS Multiplier x RMS (typical)

If the data set contains deterministic components, then the Random Jitter (R_J) and Deterministic Jitter (D_J) must be separated and analyzed separately. RJ, also know as Gaussian Jitter, is not bounded and the peak-to-peak will continue to get larger as the sample size increases. Alternatively, peak-to-peak value of D_J is bounded an can easily be observed and predicted. Therefore, the peak-to-peak jitter for the random component must be added to the deterministic component. this is call Total Jitter (T_J).

Total Jitter (Peak to Peak) = [RMS Multiplier x Random Jitter (R_j)] + Deterministic Jitter (D_j)

This calculation is not specific to one type of jitter classification. It can be used to calculate BER on various types of RMS jitter. It is important that the user understands their jitter requirement to ensure they are calculating the correct BER for their jitter requirement.

BER	RMS Multiplier Data, "DTD = 0.5"	RMS Multiplier Clock, "DTD = 1"
10 ⁻³	6.180	6.582
10 ⁻⁴	7.438	7.782
10 ⁻⁵	8.530	8.834
10 ⁻⁶	9.507	9.784
10 ⁻⁷	10.399	10.654
10 ⁻⁸	11.224	11.462
10 ⁻⁹	11.996	12.218
10 ⁻¹⁰	12.723	12.934
10 ⁻¹¹	13.412	13.614
10 ⁻¹²	14.069	14.260
10 ⁻¹³	14.698	14.882
10 ⁻¹⁴	15.301	15.478
10 ⁻¹⁵	15.883	16.028

Table 8. BER Table

NOTE: Use $R_{\rm J}$ and $D_{\rm J}$ values for AC Characteristics Tables 7C to calculate $T_{\rm J}.$

Applications Information

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is 2.5V and V_{DD} = 3.3V, R1 and R2 value should be adjusted to set V_{REF} at 1.25V. The values below are for when both the single ended swing and V_{DD} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line

impedance. For most 50Ω applications, R3 and R4 can be 100Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3V and V_{IH} cannot be more than V_{DD} + 0.3V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, HCSL and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2E* show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples

Figure 2A. CLK/nCLK Input Driven by an IDT Open Emitter LVHSTL Driver

Figure 2C. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 2E. CLK/nCLK Input Driven by a 3.3V LVDS Driver

only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example, in Figure 2A, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

Figure 2D. CLK/nCLK Input Driven by a 3.3V HCSL Driver

Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/nS. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. *Figure 3A* shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and changing R2 to 50Ω . The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. *Figure 3B* shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface

Recommended Termination

Figure 4A is the recommended source termination for applications where the driver and receiver will be on a separate PCBs. This termination is the standard for PCI Express^M and HCSL output

types. All traces should be 50Ω impedance single-ended or 100Ω differential.

Figure 4A. Recommended Source Termination (where the driver and receiver will be on separate PCBs)

Figure 4B is the recommended termination for applications where a point-to-point connection can be used. A point-to-point connection contains both the driver and the receiver on the same PCB. With a matched termination at the receiver, transmission-line reflections will be minimized. In addition,

a series resistor (Rs) at the driver offers flexibility and can help dampen unwanted reflections. The optional resistor can range from 0Ω to 33Ω . All traces should be 50Ω impedance single-ended or 100Ω differential.

Figure 4B. Recommended Termination (where a point-to-point connection can be used)

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 5*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power

dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 5. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground.

CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

Outputs:

LVCMOS Outputs

All unused LVCMOS output can be left floating. There should be no trace attached.

Differential Outputs

All unused differential outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Schematic Example

Figure 6 (next page) shows an example of 8413S12I-100 application schematic. In this example, the device is operated at $V_{DD} = V_{DDO_A} = V_{DDO_B} = V_{DDO_C} = V_{DDO_D} = V_{DDO_E} = V_{DDO_F}$ = 3.3V and V_{DDO_OREF} = 3.3V. The 18pF parallel resonant 25MHz crystal is used. The load capacitance C1 = 22pF and C2 = 10pF are recommended for frequency accuracy. Depending on the parasitic of the printed circuit board layout, these values might require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will require adjusting C1 and C2. For this device, the crystal load capacitors are required for proper operation.

As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 8413S12I-100 provides separate power supplies to isolate any high switching noise from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1uF capacitor in each power pin filter should be placed on the device side. The other components can be on the opposite side of the PCB. Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.

The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set.

Figure 6. 8413S12I-100 Schematic Example

PCI Express Application Note

PCI Express jitter analysis methodology models the system response to reference clock jitter. The block diagram below shows the most frequently used *Common Clock Architecture* in which a copy of the reference clock is provided to both ends of the PCI Express Link.

In the jitter analysis, the transmit (Tx) and receive (Rx) serdes PLLs are modeled as well as the phase interpolator in the receiver. These transfer functions are called H1, H2, and H3 respectively. The overall system transfer function at the receiver is:

 $Ht(s) = H3(s) \times [H1(s) - H2(s)]$

The jitter spectrum seen by the receiver is the result of applying this system transfer function to the clock spectrum X(s) and is:

 $Y(s) = X(s) \times H3(s) \times [H1(s) - H2(s)]$

In order to generate time domain jitter numbers, an inverse Fourier Transform is performed on $X(s)^{*}H3(s)^{*}$ [H1(s) - H2(s)].

PCI Express Common Clock Architecture

For **PCI Express Gen 1**, one transfer function is defined and the evaluation is performed over the entire spectrum: DC to Nyquist (e.g for a 100MHz reference clock: OHz – 50MHz) and the jitter result is reported in peak-peak.

PCIe Gen 1 Magnitude of Transfer Function

For **PCI Express Gen 2**, two transfer functions are defined with 2 evaluation ranges and the final jitter number is reported in rms. The two evaluation ranges for PCI Express Gen 2 are 10kHz – 1.5MHz (Low Band) and 1.5MHz – Nyquist (High Band). The plots show the individual transfer functions as well as the overall transfer function Ht.

PCIe Gen 2A Magnitude of Transfer Function

PCIe Gen 2B Magnitude of Transfer Function

For **PCI Express Gen 3**, one transfer function is defined and the evaluation is performed over the entire spectrum. The transfer function parameters are different from Gen 1 and the jitter result is reported in RMS.

PCle Gen 3 Magnitude of Transfer Function

For a more thorough overview of PCI Express jitter analysis methodology, please refer to IDT Application Note *PCI Express Reference Clock Requirements.*

Power Considerations

This section provides information on power dissipation and junction temperature for the 8413S12I-100. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8413S12I-100 is the sum of the core power plus the power dissipated due to the load. The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{DD MAX} * (I_{DD} + I_{DDA})= 3.465V * (103mA + 16mA) = 412.3mW
- Power (HCSL)_{MAX} = (3.465V 17mA * 50Ω) 17mA = **44.5mW** per output
- Total Power (HCSL)_{MAX} = 44.5mW * 10 = **445mW**

LVCMOS Driver Power Dissipation

- Output Impedance R_{OUT} Power Dissipation due to Loading 50 Ω to V_{DD}/2 Output Current I_{OUT} = V_{DD MAX} / [2 * (50 Ω + R_{OUT})] = 3.465V / [2 * (50 Ω + 15 Ω)] = **27mA**
- Power Dissipation on the R_{OUT} per LVCMOS output Power (LVCMOS) = R_{OUT} * $(I_{OUT})^2$ = 15 Ω * (27mA)² = **11mW per output**
- Total Power Dissipation on the R_{OUT}
 Total Power (R_{OUT}) = 11mW * 4 = 44mW

Total Power Dissipation

```
Total Power

= Power (core) + Total Power (HCSL) + Total Power (R<sub>OUT</sub>)

= 412.3mW + 445mW + 44mW

= 901.3mW
```

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 25.4°C/W per Table 9 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.901W * 25.4^{\circ}C/W = 108^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 9. Thermal Resistance θ_{JA} for 72 Lead VFQFN, Forced Convection

θ_{JA} vs. Air Flow											
Meters per Second	0	1	2.5								
Multi-Layer PCB, JEDEC Standard Test Boards	25.4°C/W	20.5°C/W	18.4°C/W								

3. Calculations and Equations.

The purpose of this section is to calculate power dissipation on the IC per HCSL output pair.

HCSL output driver circuit and termination are shown in *Figure 7*.

Figure 7. HCSL Driver Circuit and Termination

HCSL is a current steering output which sources a maximum of 17mA of current per output. To calculate worst case on-chip power dissipation, use the following equations which assume a 50Ω load to ground.

The highest power dissipation occurs when $V_{\text{DD}-\text{MAX}}.$

Power = $(V_{DD_MAX} - V_{OUT}) * I_{OUT}$ since $V_{OUT} = I_{OUT} * R_L$ Power = $(V_{DD_MAX} - I_{OUT} * R_L) * I_{OUT}$ = $(3.465V - 17mA * 50\Omega) * 17mA$

Total Power Dissipation per output pair = **44.5mW**

Reliability Information

Table 10. θ_{JA} vs. Air Flow Table for a 72 Lead VFQFN

θ _{JA} vs. Air Flow											
Meters per Second	0	1	2.5								
Multi-Layer PCB, JEDEC Standard Test Boards	25.4°C/W	20.5°C/W	18.4°C/W								

Transistor Count

The transistor count for 8413S12I-100 is: 10,297

72 Lead VFQFN Package Outline and Package Dimensions

72 Lead VFQFN Package Outline and Package Dimensions, continued

	z	:				ſ	_		E2			D2		E1	D1	п	D	τ	,		SYMBOL			PUI			
	OTES	NE	ND	z	e BSC	MAX	NIN	MAX	MON	NIN	MAX	NON	MIN	BSC	BSC	BSC	BSC	MAX	MOM	MIN	VARIATION			VCH VE			
	,2,9	16	16	64	0.5	0.65	0.45	8.25	7.70	3.75	8.25	7.70	3.75	9.75	9.75	10.00	10.00	0.30	о с. о ул	Λ 1Ω	NL/NLG64	IDIVIDU,		RSION [
	ا,۷,۶	17	17	89	0.5	0.00	0.45	8.25	7.70	3.75	8.25	7.70	3.75	9.75	9.75	10.00	10.00	0.30	0.0 0.70	Ω 1 Ω	NL/NLG68	AL DIME		DIMENSI			
	1,2,9	18	18	72	0.5	0.50	0.30	6.50	6.00	5.50	6.50	6.00	5.50	9.75	9.75	10.00	10.00	0.30	о с. го л	Ω 1 Ω	NL/NLG72	NOISNE		NA SNC	 - - - -		
	1,2,9	22	22	88	0.4	0.50	0.30	6.90	6.75	6.60	6.90	6.75	6.60	9.75	9.75	10.00	10.00	0.25		О 1л	NL/NLG88	S		D TOLE	 		
		6	6	3																	NOTES			RAN			
							z	T		SYME	/	TOLER			NO			A3						С Г С			
						C r C	0 TF S		aaa	Ĩ/	_pitch	ANCE OF			DTES	R ref.b r	ref	REF						Π	Т	П	
							0.05	0.10	0.10	0.40mr	5	FORM				$\frac{1}{n \ln / 2}$		0		9.80				8	2 0	8	DCN RE
K± ROVALS DAT Mi <i>P3C/P</i> 05/08 XED	RANCES ESS SPECIFIED MAL ANGUL					- -	1 3 0.0	0.10	0.15	n 0.50m		& POSITI			1.2	J.20	.45	20 ref -	0.02	0.90 1			PIX DRAWNY COMBINE PA ADD 64, 68 UPDATE COM UPDATE TOL UPDATE NOT	ADD P	, -	S CH	<
TITLE NL/NIG PACK TITLE NL/NIG PACK VEOFP-N SIZE DRAMING No. C PSC DO NOT SCALE DRAMING						Ĺ	<u></u>					2							<u>2.05</u>	.00	MAX 0		3 ON PAGE 11- 3 ON PAGE 1- 3 ON PAGE 1- 3 ON PAGE 1- 3 ON PAGE 1- 5 ON MARNSON TABLE PAGE 6 1 ON PAGE 1- 1	UNCH VERSION 5 PAGES	ADDED D2 & E2	INGED & DIM IN NL72	DESCRIPTION
FAXE (400) 2 MAGE OUTLIN mm BODY :	6024 Silver C San Jose, CA																						05/17/10	09/02/08	10/19/06	05/06/05	DATE
E REV RET 6 0F 7	Yeek Valley Rd 																						MR	MA	PKP	PKP	APPROVED

72 Lead VFQFN Package Outline and Package Dimensions, continued

RENESAS

DESCRIPTION **VENTSIONS**

72 Lead VFQFN Package Outline and Package Dimensions, continued

 When more than one variation (option) exists for the same profile height, body size (D × E), and pitch, then those variations will be denoted by an additional dash number (ie: -1, -2, etc.) designator to identify them. The new variations would be created from all or any of the followwing reasons lead counts, terminal lengths, and or thermal pad sizes. 12. Variation comply to JEDEC MO-220. 13. A3 is measured at side of the package in between two adjacent leads. 14. Tie bar option could be exposed or hidden. 15. The exact shape of this feature varies. 	 Dimensions b apply to metallized terminal and is measured between 0.15 and 0.30mm from terminal tip. ND refer to the maximum number of terminals on D and E side. Depopulation is possible in a symmetrical fashion. N/A For a complete set of dimensions for each variation, see the individual variation and the common dimensions and tolerances on page 6 Coplanarity applies to the exposed heat sink slug as well as the terminals. 	 <u>Note:</u> 1. Dimensioning and tolerancing conform to ASME Y14.5M-1994. 2. All dimensions are in millimeters . All angles are in degrees. 3. N is the total number of terminals. ▲ The terminal #1 identifier and terminal numbering convention shall conform to JESD 95-1 SPP-012.Details of terminal #1 identifier are optional , but must be located within the zone indicated.The terminal #1 identifier may be a molded, marked, or metalized features.
TOLERAT UNLESS DECIMAL XX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XXX4+ XX4+		DCN REV 03 06 06 07 7
VESSECIELD SECCIELD AURILAR AU		DESCRIPTION CHANGED b DIM IN NL72 CHANGED b DIM IN NL72 ADD PUNCH VERSION 5 PAGES PX DANKING N DEPATE PX DANKING N DEPATE PX DANKING N DEPATE COMBRE PAGE AND 7 TOCHER COMBRE PAGE AND 7 TOCHER COMB
4 6024 Stiver Creek Volley F 5m Jose, 24 95138 Feas. Jose, 24 95138 File View, 24 95138 Feas. Jose, 24 95138 FAX: (408) 24-3572 Feas. Jose, 24 95138 TAM BODY Feas. Jose, 24 95138 MM BODY Feas. Jose, 24 95138 SHEET 7		DATE APPRO 05/06/05 PKP 10/19/06 PKP 08/30/07 PKP 09/30/07 MR 05/17/10 MR

RENESAS

Ordering Information

Table 11. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8413S12BKI-100LF	LF ICS413S12BI100L Lead-Free, 72 Lead VFQFN Tray		Tray	-40°C to 85°C
8413S12BKI-100LFT	ICS413S12BI100L	Lead-Free, 72 Lead VFQFN	Tape & Reel	-40°C to 85°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
		1	Re-formatted Pin Assignment. No changes to the pins. Block Diagram update.	
В	T1	4	Pin Description Table - Pin 62, nMR, corrected description. Deleted "ICS" prefix from the part number throughout the datasheet. Updated header/footer throughout the datasheet.	2/03/2015
В	T11	31	Ordering Information - removed LF note below table. Updated header and footer.	10/4/16

