Description

The 841N254B is a 4-output clock synthesizer designed for S-ROIO 1.3 and 2.0 reference clock applications. The device generates four copies of a selectable 250MHz, 156.25MHz, 125MHz or 100MHz clock signal with excellent phase jitter performance. The four outputs are organized in two banks of two LVDS and two HCSL outputs. The device uses IDT’s fourth generation FemtoClock® NG technology for an optimum of high clock frequency and low phase noise performance, combined with a low power consumption and high power supply noise rejection. The synthesized clock frequency and the phase-noise performance are optimized for driving RIO 1.3 and 2.0 SerDes reference clocks.

The device supports 3.3V and 2.5V voltage supplies and is packaged in a small 32-lead VFQFN package. The extended temperature range supports wireless infrastructure, telecommunication and networking end equipment requirements.

Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output Frequency with fXTAL = 25MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_SEL1</td>
<td>F_SEL0</td>
</tr>
<tr>
<td>0 (default)</td>
<td>0 (default)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: F_SEL[1:0] are asynchronous controls.

Features

- Fourth generation FemtoClock® (NG) technology
- Selectable 250MHz, 156.25MHz, 125MHz or 100MHz output clock synthesized from a 25MHz fundamental mode crystal
- Four differential clock outputs (two LVDS and two HCSL outputs)
- Crystal interface designed for 25MHz, parallel resonant crystal
- RMS phase jitter at 156.25MHz, using a 25MHz crystal (1MHz - 20MHz): 0.27ps (typical)
- RMS phase jitter at 156.25MHz, using a 25MHz crystal (12kHz - 20MHz): 0.32ps (typical)
- Power supply noise rejection PSNR: -50dB (typical)
- LVCMOS interface levels for the frequency select input
- Full 3.3V or 2.5V supply voltage
- Lead-free (RoHS 6) packaging
- -40°C to 85°C ambient operating temperature

Block Diagram
Contents

- Description ... 1
 - Function Table .. 1
- Features ... 1
- Pin Description and Pin Characteristic Tables ... 3
- Function Tables ... 4
- Absolute Maximum Ratings ... 5
- DC Electrical Characteristics .. 6
- DC Electrical Characteristics .. 7
- Typical Phase Noise at 156.25MHz (3.3V) .. 9
- Typical Phase Noise at 156.25MHz (3.3V) .. 9
- Parameter Measurement Information ... 10
- Applications Information .. 15
 - Recommendations for Unused Input Pins ... 15
 - Inputs ... 15
 - Outputs .. 15
 - Interface to IDT S-RIO Switches .. 15
 - Overdriving the XTAL Interface .. 16
 - HCSL Recommended Termination ... 17
 - LVDS Driver Termination ... 18
 - VFQFN EPAD Thermal Release Path ... 19
- Schematic Layout ... 19
- Power Considerations ... 21
- Reliability Information ... 22
 - Transistor Count .. 22
- Package Outline Drawings ... 23
- Ordering Information ... 23
- Revision History .. 23
Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type[a]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 8, 13, 32</td>
<td>VDD</td>
<td>Power</td>
<td>Core supply pins.</td>
</tr>
<tr>
<td>2, 4</td>
<td>nc</td>
<td>Unused</td>
<td>No connect.</td>
</tr>
<tr>
<td>3</td>
<td>VDDA</td>
<td>Power</td>
<td>Analog power supply.</td>
</tr>
<tr>
<td>5, 17, 23, 25, 31</td>
<td>GND</td>
<td>Power</td>
<td>Power supply ground.</td>
</tr>
<tr>
<td>6</td>
<td>REF_CLK</td>
<td>Input</td>
<td>Pulldown Alternative single-ended reference clock input. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>7</td>
<td>nOEA</td>
<td>Input</td>
<td>Pulldown Output enable input. See Table 6 for function. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>9</td>
<td>nOEB</td>
<td>Input</td>
<td>Pulldown Output enable input. See Table 7 for function. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>10</td>
<td>REF_SEL</td>
<td>Input</td>
<td>Pulldown Reference select input. See Table 4 for function. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>11, 12</td>
<td>XTAL_IN, XTAL_OUT</td>
<td>Input</td>
<td>Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.</td>
</tr>
<tr>
<td>14</td>
<td>BYPASS</td>
<td>Input</td>
<td>Pulldown Bypass mode select pin. See Table 5 for function. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>15, 16</td>
<td>F_SEL0, F_SEL1</td>
<td>Input</td>
<td>Pulldown Frequency select pin. See Table 3 for function. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>18, 19</td>
<td>QA1, nQA1</td>
<td>Output</td>
<td>Differential clock output. LVDS interface levels.</td>
</tr>
<tr>
<td>20</td>
<td>VDDOA</td>
<td>Power</td>
<td>Output supply pin for QAx outputs.</td>
</tr>
<tr>
<td>21, 22</td>
<td>QA0, nQA0</td>
<td>Output</td>
<td>Differential clock output. LVDS interface levels.</td>
</tr>
<tr>
<td>24</td>
<td>IREF</td>
<td>Input</td>
<td>External fixed precision resistor (475Ω) from this pin to ground provides a reference current used for differential current-mode QBx, nQBx clock outputs.</td>
</tr>
<tr>
<td>26, 27</td>
<td>nQB1, QB1</td>
<td>Output</td>
<td>Differential clock output. HCSL interface levels.</td>
</tr>
<tr>
<td>28</td>
<td>VDDOB</td>
<td>Power</td>
<td>Output supply pin for QBx outputs.</td>
</tr>
<tr>
<td>29, 30</td>
<td>nQB0, QB0</td>
<td>Output</td>
<td>Differential clock output. HCSL interface levels.</td>
</tr>
</tbody>
</table>

[a] *Pulldown* refers to internal input resistors. See Table 2 for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_IN</td>
<td>Input Capacitance</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_PULLDOWN</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>
Function Tables

Table 3. Output Divider and Output Frequency

<table>
<thead>
<tr>
<th>Inputs[a]</th>
<th>Operation</th>
<th>f<sub>OUT</sub> with f<sub>REF</sub> = 25MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_SEL1 0 (default)</td>
<td>f<sub>OUT</sub> = f<sub>REF</sub> * 25 ÷ 4</td>
<td>156.25MHz</td>
</tr>
<tr>
<td>F_SEL0 0 (default)</td>
<td>f<sub>OUT</sub> = f<sub>REF</sub> * 5</td>
<td>125MHz</td>
</tr>
<tr>
<td>0 1</td>
<td>f<sub>OUT</sub> = f<sub>REF</sub> * 4</td>
<td>100MHz</td>
</tr>
<tr>
<td>1 0</td>
<td>f<sub>OUT</sub> = f<sub>REF</sub> * 10</td>
<td>250MHz</td>
</tr>
</tbody>
</table>

[a] F_SEL[1:0] are asynchronous controls.

Table 4. PLL Reference Clock Select Function Table

<table>
<thead>
<tr>
<th>Input</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF_SEL[a] 0 (default)</td>
<td>The crystal interface is selected as reference clock</td>
</tr>
<tr>
<td>0</td>
<td>The REF_CLK input is selected as reference clock</td>
</tr>
</tbody>
</table>

[a] REF_SEL is an asynchronous control.

Table 5. PLL BYPASS Function Table

<table>
<thead>
<tr>
<th>Input</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYPASS[a] 0 (default)</td>
<td>PLL is enabled. The reference frequency f<sub>REF</sub> is multiplied by the PLL feedback divider of 25 and then divided by the selected output divider N.</td>
</tr>
<tr>
<td>1</td>
<td>PLL is bypassed. The reference frequency f<sub>REF</sub> is divided by the selected output divider N. AC specifications do not apply in PLL bypass mode.</td>
</tr>
</tbody>
</table>

[a] BYPASS is an asynchronous control.

Table 6. nOEA Output Enable Function Table

<table>
<thead>
<tr>
<th>Input</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>nOEA[a] 0 (default)</td>
<td>QA0, nQA0 and QA1, nQA1 outputs are enabled</td>
</tr>
<tr>
<td>1</td>
<td>QA0, nQA0 and QA1, nQA1 outputs are disabled (high-impedance)</td>
</tr>
</tbody>
</table>

[a] nOEA is an asynchronous control.
Table 7. nOEB Output Enable Function Table

<table>
<thead>
<tr>
<th>Input</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>nOEB[a]</td>
<td>QB0, nQB0 and QB1, nQB1 outputs are enabled</td>
</tr>
<tr>
<td>0 (default)</td>
<td>QB0, nQB0 and QB1, nQB1 outputs are enabled (high-impedance)</td>
</tr>
</tbody>
</table>

[a] nOEB is an asynchronous control.

Absolute Maximum Ratings

Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 8. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{DD}</td>
<td>3.6V</td>
</tr>
<tr>
<td>Inputs, V_I</td>
<td></td>
</tr>
<tr>
<td>XTAL_IN</td>
<td>0V to 2V</td>
</tr>
<tr>
<td>Other Inputs</td>
<td>-0.5V to $V_{DD} + 0.5V$</td>
</tr>
<tr>
<td>Outputs, V_O (HCSL)</td>
<td>-0.5V to $V_{DD} + 0.5V$</td>
</tr>
<tr>
<td>Outputs, I_O (LVDS)</td>
<td></td>
</tr>
<tr>
<td>Continuous Current</td>
<td>10mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td>15mA</td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_JA</td>
<td>37.7°C/W (0 mps)</td>
</tr>
<tr>
<td>Storage Temperature, T_{STG}</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>
DC Electrical Characteristics

Table 9. Power Supply DC Characteristics, \(V_{DD} = V_{DDA} = V_{DDOB} = 3.3V \pm 5\% \) or \(2.5V \pm 5\% \), \(T_A = -40°C \) to \(85°C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Core Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DDA})</td>
<td>Analog Supply Voltage</td>
<td>(V_{DD} - 0.30)</td>
<td>3.3</td>
<td>(V_{DD})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{DDOA&B})</td>
<td>Output Supply Voltage</td>
<td>(V_{DD} - 0.30)</td>
<td>2.5</td>
<td>(V_{DD})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{DDA})</td>
<td>Analog Supply Current</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>Power Supply Current</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>(I_{DDOA&B})</td>
<td>Output Supply Current</td>
<td></td>
<td>30</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Table 10. LVCMOS/LVTTL Input DC Characteristics, \(V_{DD} = V_{DDA} = V_{DDOB} = 3.3V \pm 5\% \) or \(2.5V \pm 5\% \), \(T_A = -40°C \) to \(85°C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input High Voltage</td>
<td>(V_{DD} = 3.3V)</td>
<td>2</td>
<td>(V_{DD} + 0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 2.5V)</td>
<td>1.7</td>
<td>(V_{DD} + 0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input Low Voltage</td>
<td>(V_{DD} = 3.3V)</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 2.5V)</td>
<td>-0.3</td>
<td>0.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>Input High Current</td>
<td>(nOEA, nOEB, BYPASS, REF_SEL, REF_CLK, F_SEL[1:0])</td>
<td>(V_{DD} = V_{IN} = 2.625V) or (3.465V)</td>
<td>150</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input Low Current</td>
<td>(nOEA, nOEB, BYPASS, REF_SEL, REF_CLK, F_SEL[1:0])</td>
<td>(V_{DD} = 2.625V) or (3.465V), (V_{IN} = 0V)</td>
<td>-5</td>
<td>(\mu A)</td>
<td></td>
</tr>
</tbody>
</table>

Table 11. LVDS 3.3V DC Characteristics, \(V_{DD} = V_{DDA} = 3.3V \pm 5\% \) or \(2.5V \pm 5\% \), \(T_A = -40°C \) to \(85°C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OD})</td>
<td>Differential Output Voltage</td>
<td>(nOEA, nOEB, BYPASS, REF_SEL, REF_CLK, F_SEL[1:0])</td>
<td>200</td>
<td>550</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{OD})</td>
<td>(V_{OD}) Magnitude Change</td>
<td>(nOEA, nOEB, BYPASS, REF_SEL, REF_CLK, F_SEL[1:0])</td>
<td>50</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Offset Voltage</td>
<td></td>
<td>1.1</td>
<td>1.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{OS})</td>
<td>(V_{OS}) Magnitude Change</td>
<td>(nOEA, nOEB, BYPASS, REF_SEL, REF_CLK, F_SEL[1:0])</td>
<td>50</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12. Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td>Fundamental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>25</td>
<td>80</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>Ω</td>
</tr>
<tr>
<td>Shunt Capacitance</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 13. AC Characteristics, \(V_{DD} = V_{DDOA} = V_{DDOB} = 3.3V±5\% \) or \(2.5V±5\% \), \(T_A = -40°C \) to \(85°C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{OUT})</td>
<td>Output Frequency</td>
<td>(F_{SEL} [1:0] = 00)</td>
<td>156.25</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F_{SEL} [1:0] = 01)</td>
<td>125</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F_{SEL} [1:0] = 10)</td>
<td>100</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F_{SEL} [1:0] = 11)</td>
<td>250</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>(f_{REF})</td>
<td>Reference Frequency</td>
<td>(REF_CLK)</td>
<td>25</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>(\phi(t))</td>
<td>RMS Phase Jitter (Random); NOTE 1</td>
<td>(156.25MHz, Integration Range: 1MHz – 20MHz)</td>
<td>0.27</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(156.25MHz, Integration Range: 12kHz – 20MHz)</td>
<td>0.32</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(125MHz, Integration Range: 1MHz – 20MHz)</td>
<td>0.33</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(125MHz, Integration Range: 12kHz – 20MHz)</td>
<td>0.37</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>(\phi_N)</td>
<td>Single-Side Band Noise Power</td>
<td>(156.25MHz, Offset: 100Hz)</td>
<td>-91.6</td>
<td></td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(156.25MHz, Offset: 1kHz)</td>
<td>-120.8</td>
<td></td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(156.25MHz, Offset: 10kHz)</td>
<td>-132.2</td>
<td></td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(156.25MHz, Offset: 100kHz)</td>
<td>-135.0</td>
<td></td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td>PSNR</td>
<td>Power Supply Noise Rejection</td>
<td>From DC to 50MHz</td>
<td>-50</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(t_{sk(o)})</td>
<td>Output Skew</td>
<td>NOTE 2, 3</td>
<td>1.8</td>
<td>2.7</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{sk(b)})</td>
<td>Bank Skew</td>
<td>NOTE 3, 4</td>
<td></td>
<td></td>
<td>55</td>
<td>ps</td>
</tr>
<tr>
<td>(t_R / t_F)</td>
<td>Output Rise/Fall Time</td>
<td>QAx, nQAx</td>
<td>20% to 80%</td>
<td>100</td>
<td>400</td>
<td>ps</td>
</tr>
<tr>
<td>(t_{LOCK})</td>
<td>PLL Lock Time</td>
<td>QBx, nQBx</td>
<td></td>
<td></td>
<td>20</td>
<td>ms</td>
</tr>
<tr>
<td>(V_{RB})</td>
<td>Ring-back Voltage Margin; NOTE 5, 6</td>
<td>QBx, nQBx</td>
<td>-100</td>
<td>100</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(t_{STABLE})</td>
<td>Time before (V_{RB}) is Allowed; NOTE 5, 6</td>
<td>QBx, nQBx</td>
<td></td>
<td></td>
<td>500</td>
<td>ps</td>
</tr>
</tbody>
</table>
Table 13. AC Characteristics, $V_{DD} = V_{DDOA} = V_{DDOB} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{MAX}</td>
<td>Absolute Maximum Output Voltage; NOTE 7, 8</td>
<td>QBx, nQBx</td>
<td></td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{MIN}</td>
<td>Absolute Minimum Output Voltage; NOTE 7, 9</td>
<td>QBx, nQBx</td>
<td>-300</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{CROSS}</td>
<td>Absolute Crossing Voltage; NOTE 7, 10, 11</td>
<td>QBx, nQBx</td>
<td>100</td>
<td>350</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>ΔV_{CROSS}</td>
<td>Total Variation of V_{CROSS} over all edges; NOTE 7, 10, 12</td>
<td>QBx, nQBx</td>
<td></td>
<td></td>
<td>140</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Rise/Fall Edge Rate; NOTE 5, 13</td>
<td>QBx, nQBx</td>
<td>Measured between -150mV to 150mV</td>
<td>0.6</td>
<td>5.5</td>
<td>V/ns</td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle; NOTE 5</td>
<td>QBx, nQBx</td>
<td>47</td>
<td>53</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Output Duty Cycle</td>
<td>QAx, nQAx</td>
<td>47</td>
<td>53</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: Characterized using a 25MHz crystal.

NOTE 1: Please refer to the phase noise plots.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew within a bank of outputs at the same voltage and with equal load conditions.

NOTE 5: Measurement taken from differential waveform.

NOTE 6: T_{STABLE} is the time the differential clock must maintain a minimum $\pm 150mV$ differential voltage after rising/falling edges before it is allowed to drop back into the $V_{RB} \pm 100mV$ differential range.

NOTE 7: Measurement taken from single ended waveform.

NOTE 8: Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.

NOTE 9: Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.

NOTE 10: Measured at crossing point where the instantaneous voltage value of the rising edge of Q equals the falling edge of nQ. See Parameter Measurement Information Section.

NOTE 11: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Parameter Measurement Information Section.

NOTE 12: Defined as the total variation of all crossing voltage of rising Q and falling nQ. This is the maximum allowed variance in the V_{CROSS} for any particular system. See Parameter Measurement Information Section.

NOTE 13: Measured from -150mV to +150mV on the differential waveform (derived from Q minus nQ). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.
Typical Phase Noise at 156.25MHz (3.3V)

- **RMS Phase Jitter (Random)**
 - 12kHz to 20MHz = 0.32ps (typical)

- **Noise Power (dBc/Hz)**
 - Offset Frequency (Hz)

Typical Phase Noise at 156.25MHz (3.3V)

- **RMS Phase Jitter (Random)**
 - 1MHz to 20MHz = 0.27ps (typical)

- **Noise Power (dBc/Hz)**
 - Offset Frequency (Hz)
Parameter Measurement Information

Figure 1. 3.3V LVDS Output Load Test Circuit

Figure 2. 3.3V HCSL Output Load Test Circuit

Figure 3. 2.5V HCSL Output Load Test Circuit
Figure 4. 2.5V LVDS Output Load Test Circuit

Figure 5. 3.3V HCSL Output Load Test Circuit

This load condition is used for I_{DD}, $t_{jti}(\theta)$, $t_{sk}(b)$ and $t_{sk}(o)$ measurements.

Figure 6. 2.5V HCSL Output Load Test Circuit

This load condition is used for I_{DD}, $t_{jti}(\theta)$, $t_{sk}(b)$ and $t_{sk}(o)$ measurements.
Figure 7. RMS Phase Jitter

\[
\text{RMS Jitter} = \sqrt{\text{Area Under the Masked Phase Noise Plot}}
\]

Figure 8. Output Skew

nQx
Qx
nQy
Qy
tsk(\alpha)

Figure 9. Differential Measurement Points for Ringback

Figure 10. LVDS Output Duty Cycle/Pulse Width/Period

odc = \frac{t_{PW}}{t_{PERIOD}} \times 100\%
Figure 11. Bank Skew

Where X = Bank A or Bank B

Figure 12. Differential Measurement Points for Duty Cycle/Period

Figure 13. HCSL Differential Measurement Points for Rise/Fall Time

Figure 14. Single-ended Measurement Points for Delta Cross Point
Figure 15. Offset Voltage Setup

![Offset Voltage Setup Diagram]

Figure 16. LVDS Rise/Fall Time

![LVDS Rise/Fall Time Diagram]

Figure 17. Single-ended Measurement Points for Absolute Cross Point/Swing

![Single-ended Measurement Points Diagram]

Figure 18. Differential Output Voltage Setup

![Differential Output Voltage Setup Diagram]
Recommendations for Unused Input Pins

Inputs

REF_CLK Input
For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from the REF_CLK to ground.

Crystal Inputs
For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from XTAL_IN to ground.

LVCMOS Control Pins
All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

Outputs

LVDS Outputs
All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, we recommend that there is no trace attached.

Differential Outputs
All unused differential outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Interface to IDT S-RIO Switches

The 841N254B is designed for driving the differential reference clock input (REF_CLK) of IDT’s S-RIO 1.3 and 2.0 switch devices. Both the LVDS and the HCSL outputs of the ICS841N254BI have the low-jitter, differential voltage and impedance characteristics required to provide a high-quality 156.25MHz clock signal for both S-RIO 1.3 and 2.0 switch devices. Please see Figure 19 and Figure 20 for suggested interfaces. The interfaces differ by the driving output, LVDS and HCSL, and the corresponding source termination method. In both figures, the AC-coupling capacitors are mandatory by the IDT S-RIO switch devices. The differential REF_CLK input is internally re-biased and AC-terminated. Both interface circuits are optimized for 50Ω transmission lines and generate the voltage swing required to reliably drive the clock reference input of a IDT S-RIO switch. Please refer to IDT’s S-RIO device datasheet for more details.

Figure 19. LVDS-to-S-RIO 2.0 Reference Clock Interface

![Diagram of LVDS-to-S-RIO 2.0 Reference Clock Interface](image-url)
Figure 19 shows the recommended interface circuit for driving the 156.25MHz reference clock of an IDT S-RIO 2.0 switch by a LVDS output (QA0, QA1) of the ICS841N254BI. The LVDS-to-differential interface as shown in Figure 19 does not require any external termination resistors: the ICS841N254BI driver contains an internal source termination at QA0 and QA1. The differential REF_CLK input contains an internal AC-termination (RL) and re-bias (VBIAS).

Figure 20 shows the interface circuit for driving the 156.25MHz reference clock of an IDT S-RIO 2.0 switch by an HCSL output of the 841N254B (QB0, QB1): The HCSL-to-differential interface requires external termination resistors (22...33Ω and 50Ω) for source termination, which should be placed close the driver (QB0, QB1).

Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/nS. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 21 shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance.

For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and changing R2 to 50Ω. The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. Figure 22 shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

Figure 21. General Diagram for LVCMOS Driver to XTAL Input Interface
HCSL Recommended Termination

Figure 23 is the recommended source termination for applications where the driver and receiver will be on a separate PCBs. This termination is the standard for PCI Express™ and HCSL output types. All traces should be 50Ω impedance single-ended or 100Ω differential.

Figure 23. Recommended Source Termination (Where the driver and receiver will be on separate PCBs)

Figure 24 is the recommended termination for applications where a point-to-point connection can be used. A point-to-point connection contains both the driver and the receiver on the same PCB. With a matched termination at the receiver, transmission-line reflections will be minimized. In addition, a series resistor (Rs) at the driver offers flexibility and can help dampen unwanted reflections. The optional resistor can range from 0Ω to 33Ω. All traces should be 50Ω impedance single-ended or 100Ω differential.
LVDS Driver Termination

A general LVDS interface is shown in Figure 25. Standard termination for LVDS type output structure requires both a 100Ω parallel resistor at the receiver and a 100Ω differential transmission line environment. In order to avoid any transmission line reflection issues, the 100Ω resistor must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard termination schematic as shown in Figure 25 can be used with either type of output structure. If using a non-standard termination, it is recommended to contact IDT and confirm if the output is a current source or a voltage source type structure. In addition, since these outputs are LVDS compatible, the amplitude and common mode input range of the input receivers should be verified for compatibility with the output.

Figure 25. Typical LVDS Driver Termination
VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 26. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern.

Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 26. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (Drawing not to scale)

Schematic Layout

Figure 27 shows an example of 841N254B application schematic. In this example, the device is operated at $V_{DD} = V_{DDOA} = V_{DDOB} = 3.3V$. The 12pF parallel resonant 25MHz crystal is used. The load capacitance $C1 = 5pF$ and $C2 = 5pF$ are recommended for frequency accuracy. Depending on the parasitic of the printed circuit board layout, these values might require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will require adjusting $C1$ and $C2$. For this device, the crystal load capacitors are required for proper operation.

As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 841N254B provides separate power supplies to isolate any high switching noise from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the $0.1\mu F$ capacitor in each power pin filter should be placed on the device side. The other components can be on the opposite side of the PCB.
Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.

The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set.

Figure 27. 841N254B Application Schematic
Power Considerations

This section provides information on power dissipation and junction temperature for the 841N254B. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 841N254B is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for \(V_{DD} = 3.3V + 5\% = 3.465V \), which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)\(_{\text{MAX}}\) = \(V_{DD_\text{MAX}} \times (I_{DD_\text{MAX}} + I_{DDA_\text{MAX}} + I_{DDO\&A_\text{MAX}}) = 3.465V \times (113mA + 30mA + 72mA) = 744.98mW \)
- Power (HCSL_output)\(_{\text{MAX}}\) = 44.5mW * 2 = 89.0mW

Total Power\(_{\text{MAX}}\) = (3.465V, with all outputs switching) = 744.98mW + 89.0mW = 833.98mW

2. Junction Temperature.

Junction temperature, \(T_j \), is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, \(T_j \), to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for \(T_j \) is as follows: \(T_j = \theta_{JA} \times Pd_\text{total} + T_A \)

\(T_j \) = Junction Temperature
\(\theta_{JA} \) = Junction-to-Ambient Thermal Resistance
\(Pd_\text{total} \) = Total Device Power Dissipation (example calculation is in section 1 above)
\(T_A \) = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance \(\theta_{JA} \) must be used. Assuming no air flow and a multi-layer board, the appropriate value is 37.7°C/W per Table 14.

Therefore, \(T_j \) for an ambient temperature of 85°C with all outputs switching is:

\[85°C + 0.834W \times 37.7°C/W = 116.4°C \]. This is below the limit of 125°C.

This calculation is only an example. \(T_j \) will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 14. Thermal Resistance \(\theta_{JA} \) for 32-Lead VFQFN, Forced Convection

<table>
<thead>
<tr>
<th>(\theta_{JA}) Vs. Air Flow</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meters per Second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>37.7°C/W</td>
<td>32.9°C/W</td>
<td>29.5°C/W</td>
</tr>
</tbody>
</table>
3. Calculations and Equations.

The purpose of this section is to calculate power dissipation on the IC per HCSL output pair. HCSL output driver circuit and termination are shown in Figure 28.

Figure 28. HCSL Driver Circuit and Termination

![HCSL Driver Circuit and Termination Diagram](image)

HCSL is a current steering output which sources a maximum of 17mA of current per output. To calculate worst case on-chip power dissipation, use the following equations which assume a 50Ω load to ground.

The highest power dissipation occurs when $V_{DD_{MAX}}$.

\[
\text{Power} = (V_{DD_{MAX}} - V_{OUT}) \times I_{OUT}, \text{ since } V_{OUT} = I_{OUT} \times R_L \\
= (V_{DD_{MAX}} - I_{OUT} \times R_L) \times I_{OUT} \\
= (3.465V - 17mA \times 50\Omega) \times 17mA
\]

Total Power Dissipation per output pair = **44.5mW**

Reliability Information

Table 15. θ_{JA} vs. Air Flow Table for a 32-lead VFQFN

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>37.7°C/W</td>
<td>32.9°C/W</td>
<td>29.5°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for 841N254B is: 23,445
Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Marking</th>
<th>Package</th>
<th>Carrier Type</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>841N254BKILF</td>
<td>ICS1N254BIL</td>
<td>Lead-Free 32-Lead VFQFN</td>
<td>Tray</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>841N254BKILFT</td>
<td>ICS1N254BIL</td>
<td>Lead-Free 32-Lead VFQFN</td>
<td>Tape and Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 17, 2018</td>
<td>Updated the package out drawings; however, no technical changes</td>
</tr>
<tr>
<td></td>
<td>Completed other minor changes throughout the document</td>
</tr>
<tr>
<td>May 23, 2016</td>
<td>Updated datasheet header/footer.</td>
</tr>
<tr>
<td></td>
<td>Deleted “ICS” prefix from part number throughout the datasheet.</td>
</tr>
<tr>
<td>November 4, 2013</td>
<td>Replacement part for ICS841N254AKI, per PCN# N1309-01.</td>
</tr>
</tbody>
</table>
32-VFQFPN, Package Outline Drawing

5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm.
NLG32P1, PSC-4171-01, Rev 02, Page 1

NOTE:
1. ALL DIMENSIONS ARE IN MM. ANGLES IN DEGREES.
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
 COPLANARITY SHALL NOT EXCEED 0.08 MM.
3. WARPAGE SHALL NOT EXCEED 0.10 MM.
4. PIN LOCATION IS UNIDENTIFIED BY EITHER CHAMFER OR NOTCH.

© Integrated Device Technology, Inc.
RECOMMENDED LAND PATTERN DIMENSION

1. ALL DIMENSIONS ARE IN MM. ANGLES IN DEGREES.
2. TOP DOWN VIEW, AS VIEWED ON PCB.
3. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

Package Revision History

<table>
<thead>
<tr>
<th>Date Created</th>
<th>Rev No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 12, 2018</td>
<td>Rev 02</td>
<td>New Format</td>
</tr>
<tr>
<td>Feb 8, 2016</td>
<td>Rev 01</td>
<td>Added "k: Value</td>
</tr>
</tbody>
</table>

© Integrated Device Technology, Inc.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations that are administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Rev. 4.0-1 November 2017)

Corporate Headquarters

TOYSU FORESIA, 3-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.