FemtoClock® Crystal-to-3.3V, 2.5V
LVPECL Clock Generator

DATA SHEET

General Description

The 843071 is a Serial ATA (SATA)/Serial Attached SCSI (SAS) Clock Generator. The 843071 uses an 18pF parallel resonant crystal over the range of 20.833MHz - 28.3MHz. For SATA/SAS applications, a 25MHz crystal is used and either 75MHz or 150MHz may be selected with the FREQ_SEL pin. For 10Gb Fibre Channel applications, a 26.5625MHz crystal is used for 159.375MHz output. The 843071 has excellent <1ps phase jitter performance, over the 12kHz - 20MHz integration range. The 843071 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

Features

- One differential 3.3V or 2.5V LVPECL output
- Crystal oscillator interface, 18pF parallel resonant crystal (20.833MHz – 28.3MHz)
- Output frequency range: 62.5MHz – 170MHz
- VCO range: 500MHz – 680MHz
- RMS phase jitter at 150MHz, using a 25MHz crystal (12kHz – 20MHz): 0.64ps (typical) @ 3.3V output
- RMS phase jitter at 159.375MHz, using a 26.5625MHz crystal (1.875MHz – 20MHz): 0.40ps (typical) @ 3.3V output
- Full 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Common Configuration Table - Serial ATA/Serial Attached SCSI

<table>
<thead>
<tr>
<th>Crystal Frequency (MHz)</th>
<th>FREQ_SEL</th>
<th>M</th>
<th>N</th>
<th>Multiplication Value M/N</th>
<th>Output Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
<td>24</td>
<td>4</td>
<td>6</td>
<td>150</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>24</td>
<td>8</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>26.5625</td>
<td>0</td>
<td>24</td>
<td>4</td>
<td>6</td>
<td>159.375</td>
</tr>
</tbody>
</table>

Block Diagram

Pin Assignment

843071
8 Lead TSSOP
4.40mm x 3.0mm package body
## Pin Description and Pin Characteristic Tables

### Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$V_{CCA}$</td>
<td>Power</td>
<td>Analog supply pin.</td>
</tr>
<tr>
<td>2, 3</td>
<td>XTAL_OUT</td>
<td>Input</td>
<td>Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.</td>
</tr>
<tr>
<td>4</td>
<td>$V_{EE}$</td>
<td>Power</td>
<td>Negative supply pin.</td>
</tr>
<tr>
<td>5</td>
<td>FREQ_SEL</td>
<td>Input</td>
<td>Pullup Frequency select pin. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>6, 7</td>
<td>nQ, Q</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>8</td>
<td>$V_{CC}$</td>
<td>Power</td>
<td>Core supply pin.</td>
</tr>
</tbody>
</table>

NOTE: *Pullup* refers to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

### Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{IN}$</td>
<td>Input Capacitance</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>$R_{PULLUP}$</td>
<td>Input Pullup Resistor</td>
<td></td>
<td></td>
<td>51</td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, $V_{CC}$</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, $V_I$</td>
<td>-0.5V to $V_{CC} + 0.5V$</td>
</tr>
<tr>
<td>Outputs, $I_O$</td>
<td>50mA</td>
</tr>
<tr>
<td>Continuous Current</td>
<td>100mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Impedance, $\theta_{JA}$</td>
<td>101.7°C/W (0 mps)</td>
</tr>
<tr>
<td>Storage Temperature, $T_{STG}$</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 10\%$, $V_{EE} = 0V$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CC}$</td>
<td>Core Supply Voltage</td>
<td></td>
<td>3.0</td>
<td>3.3</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CCA}$</td>
<td>Analog Supply Voltage</td>
<td></td>
<td>3.0</td>
<td>3.3</td>
<td>3.63</td>
<td>V</td>
</tr>
<tr>
<td>$I_{CC}$</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{CCA}$</td>
<td>Analog Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{EE}$</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 3B. Power Supply DC Characteristics, $V_{CC} = V_{CCA} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CC}$</td>
<td>Core Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CCA}$</td>
<td>Analog Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>$I_{CC}$</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{CCA}$</td>
<td>Analog Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{EE}$</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 3C. LVCMOS/LVTTL DC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 10\%$, 2.5V \pm 5\%, $V_{EE} = 0V$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{IH}$</td>
<td>Input High Voltage</td>
<td></td>
<td>3.3V</td>
<td>2</td>
<td>$V_{CC} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5V</td>
<td>1.7</td>
<td>$V_{CC} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>$V_{IL}$</td>
<td>Input Low Voltage</td>
<td></td>
<td>3.3V</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5V</td>
<td>-0.3</td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>$I_{IH}$</td>
<td>Input High Current</td>
<td>$V_{CC} = V_{IN} = 3.63V or 2.625V$</td>
<td></td>
<td></td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>$I_{IL}$</td>
<td>Input Low Current</td>
<td>$V_{CC} = 3.63V or 2.625V, V_{IN} = 0V$</td>
<td></td>
<td>-150</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>
Table 3D. LVPECL DC Characteristics, $V_{CC} = V_{CCA} = 3.3V \pm 10\%$, $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OH}$</td>
<td>Output High Voltage; NOTE 1</td>
<td>$V_{CC} - 1.4$</td>
<td>$V_{CC} - 0.9$</td>
<td>$V_{CC} - 0.9$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{OL}$</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$V_{CC} - 2.0$</td>
<td>$V_{CC} - 1.7$</td>
<td>$V_{CC} - 1.7$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{SWING}$</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td>0.6</td>
<td>1.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Outputs termination with 50$\Omega$ to $V_{CC} - 2V$.

Table 4. Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td>Fundamentals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>20.833</td>
<td>28.3</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td>50</td>
<td>$\Omega$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt Capacitance</td>
<td>7</td>
<td>pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive Level</td>
<td>1</td>
<td>mW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{CC} = 3.3V \pm 10\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{OUT}$</td>
<td>Output Frequency</td>
<td>62.5</td>
<td>170</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\xi(t)$</td>
<td>RMS Phase Jitter, Random; NOTE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150MHz, Integration Range: 12kHz – 20MHz</td>
<td>0.64</td>
<td>ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75MHz, Integration Range: 12kHz – 20MHz</td>
<td>0.64</td>
<td>ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159.375MHz, Integration Range: 1.875MHz – 20MHz</td>
<td>0.40</td>
<td>ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_r / t_f$</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>500</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\odc$</td>
<td>Output Duty Cycle</td>
<td>48</td>
<td>52</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Please refer to Phase Noise Plots.

Table 5B. AC Characteristics, $V_{CC} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{OUT}$</td>
<td>Output Frequency</td>
<td>62.5</td>
<td>170</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\xi(t)$</td>
<td>RMS Phase Jitter, Random; NOTE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150MHz, Integration Range: 12kHz – 20MHz</td>
<td>0.94</td>
<td>ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75MHz, Integration Range: 12kHz – 20MHz</td>
<td>0.80</td>
<td>ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159.375MHz, Integration Range: 1.875MHz – 20MHz</td>
<td>0.42</td>
<td>ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_r / t_f$</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>500</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\odc$</td>
<td>Output Duty Cycle</td>
<td>48</td>
<td>52</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Please refer to Phase Noise Plots.
Typical Phase Noise at 75MHz (3.3V)

![Graph showing phase noise data at 75MHz with filter applied.]

- RMS Phase Jitter (Random): 12kHz to 20MHz = 0.64ps (typical)
Typical Phase Noise at 150MHz (3.3V)

![Graph showing typical phase noise at 150MHz.]

RMS Phase Jitter (Random) 12kHz to 20MHz = 0.64ps (typical)

Typical Phase Noise at 159.375MHz (3.3V)

![Graph showing typical phase noise at 159.375MHz.]

RMS Phase Jitter (Random) 1.875MHz to 20MHz = 0.404ps (typical)
Parameter Measurement Information

3.3V LVPECL Output Load AC Test Circuit

2.5V LVPECL Output Load AC Test Circuit

RMS Phase Jitter

Output Duty Cycle/Pulse Width/Period

Output Rise/Fall Time
Applications Information

Power Supply Filtering Technique
As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 843071 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. VCC and VCCA should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic VCC pin and also shows that VCCA requires that an additional 10Ω resistor along with a 10µF bypass capacitor be connected to the VCCA pin.

![Figure 1. Power Supply Filtering](image)

Crystal Input Interface
The 843071 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in Figure 2 below were determined using an 18pF parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

![Figure 2. Crystal Input Interface](image)
Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 3A shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and changing R2 to 50Ω. The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. Figure 3B shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

![Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface](image)

![Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface](image)
Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 4A and 4B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

![Figure 4A. 3.3V LVPECL Output Termination](image)

![Figure 4B. 3.3V LVPECL Output Termination](image)
Termination for 2.5V LVPECL Outputs

*Figure 5A and Figure 5B* show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to \( V_{CC} - 2V \). For \( V_{CC} = 2.5V \), the \( V_{CC} - 2V \) is very close to ground level. The R3 in Figure 5B can be eliminated and the termination is shown in *Figure 5C*. 

![Figure 5A. 2.5V LVPECL Driver Termination Example](image1)

![Figure 5B. 2.5V LVPECL Driver Termination Example](image2)

![Figure 5C. 2.5V LVPECL Driver Termination Example](image3)
Schematic Layout

Figure 6 shows an example of 843071 application schematic. In this example, the device is operated $V_{CC} = V_{CCA} = 3.3V$. An 18pF parallel resonant 25MHz crystal is used. The load capacitance $C_1 = 33pF$ and $C_2 = 27pF$ are recommended for frequency accuracy. Depending on the parasitic of the printed circuit board layout, these values might require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will require adjusting $C_1$ and $C_2$.

As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 843071 provides separate power supplies to isolate noise from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1µF capacitor in each power pin filter should be placed on the device side of the PCB and the other components can be placed on the opposite side.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for wide range of noise frequency. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component with high amplitude interference is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required,
Power Considerations

This section provides information on power dissipation and junction temperature for the 843071. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 843071 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 10\% = 3.63V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)$_{\text{MAX}} = V_{CC,\text{MAX}} \cdot I_{EE,\text{MAX}} = 3.63V \cdot 96mA = 348.5mW$
- Power (outputs)$_{\text{MAX}} = 30mW/\text{Loaded Output pair}$

Total Power$_{\text{MAX}}$ (3.63V, with all outputs switching) = $348.55mW + 30mW = 378.5mW$

2. Junction Temperature.

Junction temperature, $T_j$, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is $125^\circ C$. Limiting the internal transistor junction temperature, $T_j$, to $125^\circ C$ ensures that the bond wire and bond pad temperature remains below $125^\circ C$.

The equation for $T_j$ is as follows: $T_j = \theta_{JA} \cdot P_{d,\text{total}} + T_A$

$T_j = $ Junction Temperature

$\theta_{JA} = $ Junction-to-Ambient Thermal Resistance

$P_{d,\text{total}} = $ Total Device Power Dissipation (example calculation is in section 1 above)

$T_A = $ Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance $\theta_{JA}$ must be used. Assuming a moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is $65^\circ C/W$ per Table 6 below.

Therefore, $T_j$ for an ambient temperature of $85^\circ C$ with all outputs switching is:

$85^\circ C + 0.379W \cdot 90.5^\circ C/W = 119.3^\circ C$. This is below the limit of $125^\circ C$.

This calculation is only an example. $T_j$ will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance $\theta_{JA}$ for 8 Lead TSSOP, Forced Convection

<table>
<thead>
<tr>
<th>$\theta_{JA}$ vs. Air Flow</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meters per Second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>101.7°C/W</td>
<td>90.5°C/W</td>
<td>89.8°C/W</td>
</tr>
</tbody>
</table>
3. Calculations and Equations.
The purpose of this section is to calculate the power dissipation for the LVPECL output pair. LVPECL output driver circuit and termination are shown in Figure 6.

![Figure 6. LVPECL Driver Circuit and Termination](image)

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of \( V_{CC} - 2V \).

- For logic high, \( V_{OUT} = V_{OH\_MAX} = V_{CC\_MAX} - 0.9V \)
  \( (V_{CC\_MAX} - V_{OH\_MAX}) = 0.9V \)
- For logic low, \( V_{OUT} = V_{OL\_MAX} = V_{CC\_MAX} - 1.7V \)
  \( (V_{CC\_MAX} - V_{OL\_MAX}) = 1.7V \)

Pd_H is power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.

\[
Pd_H = \frac{[(2V - (V_{CC\_MAX} - 2V))/RL] * (V_{CC\_MAX} - V_{OH\_MAX})}{[(2V - 0.9V)/50Ω] * 0.9V} = 19.8mW
\]

\[
Pd_L = \frac{[(2V - (V_{CC\_MAX} - 2V))/RL] * (V_{CC\_MAX} - V_{OL\_MAX})}{[(2V - 1.7V)/50Ω] * 1.7V} = 10.2mW
\]

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW
Reliability Information

Table 7. $\theta_{JA}$ vs. Air Flow Table for a 8 Lead TSSOP

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>101.7°C/W</td>
<td>90.5°C/W</td>
<td>89.8°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for 843071 is: 1732

Package Outline and Package Dimension

Table 8. Package Dimensions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.5</td>
<td>1.20</td>
</tr>
<tr>
<td>A1</td>
<td>0.09</td>
<td>0.20</td>
</tr>
<tr>
<td>A2</td>
<td>0.80</td>
<td>1.05</td>
</tr>
<tr>
<td>b</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td>0.20</td>
</tr>
<tr>
<td>D</td>
<td>2.90</td>
<td>3.10</td>
</tr>
<tr>
<td>E</td>
<td>6.40 Basic</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>4.30</td>
<td>4.50</td>
</tr>
<tr>
<td>e</td>
<td>0.65 Basic</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>0°</td>
<td>8°</td>
</tr>
<tr>
<td>aaa</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MO-153
## Ordering Information

### Table 9. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>843071AGILF</td>
<td>71AIL</td>
<td>8 Lead TSSOP, Lead-Free</td>
<td>Tube</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>843071AGILFT</td>
<td>71AIL</td>
<td>8 Lead TSSOP, Lead-Free</td>
<td>Tape &amp; Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>
## Revision History Sheet

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>T9</td>
<td>15</td>
<td>Ordering Information Table - added lead-free marking.</td>
<td>4/10/06</td>
</tr>
<tr>
<td>B</td>
<td>T3C</td>
<td>3</td>
<td>2.5V Power Supply Table - Changed 2.5V±10% to 2.5V±5%. &lt;br&gt; VCC &amp; VCCA - changed 2.25V min./2.75V max. to 2.375V min./2.625V max. &lt;br&gt; Corrected 2.5V throughout the datasheet.</td>
<td>6/11/07</td>
</tr>
<tr>
<td></td>
<td>T9</td>
<td>8</td>
<td>Crystal Input Interface - changed C1/C2 capacitor values from 22p/22p to 27p/33p. &lt;br&gt; Added LVC MOS to XTAL Interface section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Ordering Information Table - corrected standard marking from 3071A to 071AI.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>T3D</td>
<td>4</td>
<td>LVPECL DC Characteristics Table - corrected VOH/VOL parameters from &quot;Current&quot; to &quot;Voltage&quot; and units from &quot;µA&quot; to &quot;V&quot;.</td>
<td>10/13/10</td>
</tr>
<tr>
<td></td>
<td>T5A, T5B</td>
<td>8</td>
<td>AC Characteristics Table - added thermal note.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Updated text in Power Supply Filtering Techniques section. &lt;br&gt; Updated “Overdriving the Crystal Interface” section. &lt;br&gt; Updated header/footer.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>12</td>
<td>Added schematic</td>
<td>11/9/12</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td>Updated header/footer throughout the datasheet. &lt;br&gt; Deleted IDT prefix and “I” suffix from part number. &lt;br&gt; Features Section - deleted leaded information in the last bullet. &lt;br&gt; Added outline box around Block Diagram.</td>
<td>10/19/15</td>
</tr>
<tr>
<td></td>
<td>T9</td>
<td>16</td>
<td>Updated Overdriving the XTAL Interface application note. &lt;br&gt; Ordering Information table - deleted leaded parts rows and note.</td>
<td></td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

   "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

   "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

   Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or for protecting the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.