GENERAL DESCRIPTION

The 844021I-01 is an Ethernet Clock Generator. The 844021I-01 uses an 18pF parallel resonant crystal over the range of 24.5MHz – 34MHz. For Ethernet applications, a 25MHz crystal is used. The 844021I-01 has excellent <1ps phase jitter performance, over the 1.875MHz – 20MHz integration range. The 844021I-01 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

FEATURES

- One Differential LVDS output
- Crystal oscillator interface, 18pF parallel resonant crystal (24.5MHz – 34MHz)
- Output frequency range: 122.5MHz – 170MHz
- VCO range: 490MHz – 680MHz
- RMS phase jitter @ 125MHz, using a 25MHz crystal (1.875MHz – 20MHz): 0.32ps (typical) @ 3.3V
- 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

COMMON CONFIGURATION TABLE - Gb ETHERNET

<table>
<thead>
<tr>
<th>Crystal Frequency (MHz)</th>
<th>M</th>
<th>N</th>
<th>Multiplication Value M/N</th>
<th>Output Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>20</td>
<td>4</td>
<td>5</td>
<td>125</td>
</tr>
<tr>
<td>26.666</td>
<td>20</td>
<td>4</td>
<td>5</td>
<td>133.33</td>
</tr>
<tr>
<td>33.33</td>
<td>20</td>
<td>4</td>
<td>5</td>
<td>166.66</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

PIN ASSIGNMENT

8-Lead TSSOP
4.40mm x 3.0mm x 0.925mm package body
G Package
Top View
TABLE 1. PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Power</td>
<td>Analog supply pin.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Power</td>
<td>Power supply ground.</td>
</tr>
<tr>
<td>3, 4</td>
<td>XTAL_OUT, XTAL_IN</td>
<td>Input</td>
<td>Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.</td>
</tr>
<tr>
<td>5</td>
<td>OE</td>
<td>Input</td>
<td>Pullup Output enable pin. When HIGH, Q/nQ output is active. When LOW, the Q/nQ output is in a high impedance state. LVCMOS/LVT-TL interface levels.</td>
</tr>
<tr>
<td>6, 7</td>
<td>nQ, Q</td>
<td>Output</td>
<td>Differential clock outputs. LVDS interface levels.</td>
</tr>
<tr>
<td>8</td>
<td>VDD</td>
<td>Power</td>
<td>Core supply pin.</td>
</tr>
</tbody>
</table>

NOTE: Pulup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_IN</td>
<td>Input Capacitance</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_PULLUP</td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td>51</td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{DD}</td>
<td></td>
<td>4.6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inputs, V_i</td>
<td>-0.5V to $V_{DD} + 0.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs, I_O (LVDS)</td>
<td>Continuous Current</td>
<td>10mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surge Current</td>
<td>15mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_J</td>
<td></td>
<td>129.5°C/W (0 mps)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature, T_{STG}</td>
<td>-65°C to 150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40°C$ TO $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Core Supply Voltage</td>
<td>$V_{DD} = 3.3V$</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog Supply Voltage</td>
<td>$V_{DD} - 0.10$</td>
<td>3.3</td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current</td>
<td>$V_{DD} = 3.3V$</td>
<td>-0.3</td>
<td>0.8</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDA}</td>
<td>Analog Supply Current</td>
<td>$V_{DD} = 3.3V$</td>
<td>-0.3</td>
<td>0.7</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

TABLE 3B. POWER SUPPLY DC CHARACTERISTICS, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ TO $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Core Supply Voltage</td>
<td>$V_{DD} = 2.5V$</td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog Supply Voltage</td>
<td>$V_{DD} - 0.10$</td>
<td>2.5</td>
<td>V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current</td>
<td>$V_{DD} = 2.5V$</td>
<td>-0.3</td>
<td>0.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{DDA}</td>
<td>Analog Supply Current</td>
<td>$V_{DD} = 2.5V$</td>
<td>-0.3</td>
<td>0.7</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

TABLE 3C. LVCMOS/LVTTL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$ OR $2.5V \pm 5\%$, $T_A = -40°C$ TO $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>$V_{DD} = 3.3V$</td>
<td>2</td>
<td>$V_{DD} + 0.3$</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.5V$</td>
<td>1.7</td>
<td>$V_{DD} + 0.3$</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td>$V_{DD} = 3.3V$</td>
<td>-0.3</td>
<td>0.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 2.5V$</td>
<td>-0.3</td>
<td>0.7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>$V_{DD} = V_{IH} = 3.465V$ or $2.625V$</td>
<td>5</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>$V_{DD} = 3.465V$ or $2.625V, V_{IH} = 0V$</td>
<td>-150</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>
Table 3D. LVDS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OD}</td>
<td>Differential Output Voltage</td>
<td></td>
<td>215</td>
<td>430</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>ΔV_{OD}</td>
<td>V_{OD} Magnitude Change</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Offset Voltage</td>
<td></td>
<td>1.05</td>
<td>1.45</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ΔV_{OS}</td>
<td>V_{OS} Magnitude Change</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
</tbody>
</table>

NOTE: Please refer to Parameter Measurement Information for output information.

Table 3E. LVDS DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OD}</td>
<td>Differential Output Voltage</td>
<td></td>
<td>275</td>
<td>425</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>ΔV_{OD}</td>
<td>V_{OD} Magnitude Change</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Offset Voltage</td>
<td></td>
<td>1.15</td>
<td>1.45</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ΔV_{OS}</td>
<td>V_{OS} Magnitude Change</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
</tbody>
</table>

NOTE: Please refer to Parameter Measurement Information for output information.

Table 4. Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td>Fundamental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>24.5</td>
<td>34</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Shunt Capacitance</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTE: It is not recommended to overdrive the crystal input with an external clock.

Table 5. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{OUT}</td>
<td>Output Frequency</td>
<td>122.5</td>
<td>170</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>$t_{\text{jit}(\Omega)}$</td>
<td>RMS Phase Jitter (Random); NOTE 1</td>
<td>125MHz @ Integration Range: 1.875MHz - 20MHz</td>
<td>0.32</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{\text{R}} / t_{\text{F}}$</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>200</td>
<td>400</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td>48</td>
<td>52</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

NOTE 1: Please refer to the Phase Noise Plots following this section.
Typical Phase Noise at 125MHz @ 3.3V

- RMS Phase Jitter (Random) 1.875MHz to 20MHz = 0.32ps (typical)

Typical Phase Noise at 125MHz @ 2.5V

- RMS Phase Jitter (Random) 1.875MHz to 20MHz = 0.32ps (typical)
PARAMETER MEASUREMENT INFORMATION

LVDS 3.3V OUTPUT LOAD AC TEST CIRCUIT

LVDS 2.5V OUTPUT LOAD AC TEST CIRCUIT

RMS PHASE JITTER

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

OFFSET VOLTAGE SETUP

DIFFERENTIAL OUTPUT VOLTAGE SETUP
APPLICATION INFORMATION

POWER SUPPLY FILTERING TECHNIQUES
As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 844021I-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_DD and V_DDA should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V_DD pin and also shows that V_DDA requires that an additional 10Ω resistor along with a 10µF bypass capacitor be connected to the V_DDA pin.

CRYSTAL INPUT INTERFACE
The 844021I-01 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in Figure 2 below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.
3.3V, 2.5V LVDS DRIVER TERMINATION

A general LVDS interface is shown in Figure 4 in a 100Ω differential transmission line environment, LVDS drivers require a matched load termination of 100Ω across near the receiver input. For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.

Figure 4. Typical LVDS Driver Termination
SCHEMATIC LAYOUT

Figure 5 shows an example of 844021I-01 application schematic. In this example, the device is operated at $V_{DD} = 3.3\, \text{V}$. The decoupling capacitor should be located as close as possible to the power pin. The 18pF parallel resonant 25MHz crystal is used. The $C_1 = 33\, \text{pF}$ and $C_2 = 27\, \text{pF}$ are recommended for frequency accuracy. For different board layout, the C_1 and C_2 may be slightly adjusted for optimizing frequency accuracy. For the LVDS output drivers, place a $100\, \Omega$ resistor as close to the receiver as possible.

![Schematic Layout](image)

Figure 5. 844021I-01 Schematic Layout
POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 844021I-01. Equations and example calculations are also provided.

1. Power Dissipation.
 The total power dissipation for the 844021I-01 is the sum of the core power plus the analog plus the power dissipated in the load(s). The following is the power dissipation for \(V_{DD} = 3.3V + 5\% = 3.465V \), which gives worst case results.

 \[\text{Power (core)}_{\text{MAX}} = V_{DD_{\text{MAX}}} \times (I_{DD_{\text{MAX}}} + I_{DA_{\text{MAX}}}) = 3.465V \times (75mA + 10mA) = 294.5mW \]

2. Junction Temperature.
 Junction temperature, \(T_j \), is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C.

 \(T_j = \theta_{JA} \times Pd_{\text{total}} + T_a \)

 \(\theta_{JA} = \text{Junction-to-Ambient Thermal Resistance} \)

 \(Pd_{\text{total}} = \text{Total Device Power Dissipation (example calculation is in section 1 above)} \)

 \(T_a = \text{Ambient Temperature} \)

 In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance \(\theta_{JA} \) must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 6 below.

 Therefore, \(T_j \) for an ambient temperature of 85°C with all outputs switching is:

 \[85°C + 0.295W \times 129.5°C/W = 123.2°C \]

 This is below the limit of 125°C.

 This calculation is only an example. \(T_j \) will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance \(\theta_{JA} \) for 8-Lead TSSOP, Forced Convection

<table>
<thead>
<tr>
<th>(\theta_{JA}) by Velocity (Meters per Second)</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>129.5°C/W</td>
<td>125.5°C/W</td>
<td>123.5°C/W</td>
</tr>
</tbody>
</table>
RELIABILITY INFORMATION

Table 7. \(\theta_{JA} \) vs. Air Flow Table for 8 Lead TSSOP

<table>
<thead>
<tr>
<th>(\theta_{JA}) by Velocity (Meters per Second)</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>129.5°C/W</td>
<td>125.5°C/W</td>
<td>123.5°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for 844021I-01 is: 2533

PACKAGE OUTLINE & DIMENSIONS

Package Outline - G Suffix for 8 Lead TSSOP

Table 8. Package Dimensions

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>--</td>
<td>1.20</td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>A2</td>
<td>0.80</td>
<td>1.05</td>
</tr>
<tr>
<td>b</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td>0.20</td>
</tr>
<tr>
<td>D</td>
<td>2.90</td>
<td>3.10</td>
</tr>
<tr>
<td>E</td>
<td>6.40 BASIC</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>4.30</td>
<td>4.50</td>
</tr>
<tr>
<td>e</td>
<td>0.65 BASIC</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0°</td>
<td>8°</td>
</tr>
<tr>
<td>aaa</td>
<td>--</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MO-153
TABLE 9. ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS844021BGI-01LF</td>
<td>BI01L</td>
<td>8 lead “Lead-Free” TSSOP</td>
<td>tube</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>ICS844021BGI-01LFT</td>
<td>BI01L</td>
<td>8 lead “Lead-Free” TSSOP</td>
<td>tape & reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

NOTE: Parts that are ordered with an “LF” suffix to the part number are the Pb-Free configuration and are RoHS compliant.
REVISION HISTORY SHEET

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>T4</td>
<td>1</td>
<td>Deleted HiPerClockS references.</td>
<td>9/23/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Crystal Characteristics Table - added note.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Deleted application note, LVCMOS to XTAL Interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Deleted quantity from tape and reel.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>T9</td>
<td>12</td>
<td>Ordering Information - removed leaded devices.</td>
<td>10/27/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated data sheet format.</td>
<td></td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.) or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.) and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunction, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.