General Description

The 8530 is a low skew, 1-to-16 Differential-to- 2.5V LVPECL Fanout Buffer. The CLK, nCLK pair can accept most standard differential input levels. The high gain differential amplifier accepts peak-to-peak input voltages as small as 150mV, as long as the common mode voltage is within the specified minimum and maximum range.

Guaranteed output and part-to-part skew characteristics make the 8530 ideal for those clock distribution applications demanding well defined performance and repeatability.

Features

- Sixteen differential LVPECL output pairs
- CLK, nCLK input pair
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL
- Maximum output frequency: 500MHz
- Translates any single-ended input signal to 2.5V LVPECL levels with a resistor bias on nCLK input
- Output skew: 50ps (maximum)
- Part-to-part skew: 250ps (maximum)
- Propagation delay: 2ns (maximum)
- 3.3V core, 2.5V output operating supply
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

8530
48-Lead LQFP
7mm x 7mm x 1.4mm package body
Y Package
Top View
Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 11, 14, 24, 25, 35, 38, 48</td>
<td>(V_{CCO})</td>
<td>Output</td>
<td>Output power supply pins.</td>
</tr>
<tr>
<td>2, 3</td>
<td>Q11, nQ11</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>4, 5</td>
<td>Q10, nQ10</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>6, 19, 30, 43</td>
<td>(V_{EE})</td>
<td>Power</td>
<td>Negative power supply pins.</td>
</tr>
<tr>
<td>7, 8</td>
<td>Q9, nQ9</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>9, 10</td>
<td>Q8, nQ8</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>12, 13</td>
<td>(V_{CC})</td>
<td>Power</td>
<td>Positive power supply pins.</td>
</tr>
<tr>
<td>15, 16</td>
<td>Q7, nQ7</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>17, 18</td>
<td>Q6, nQ6</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>20, 21</td>
<td>Q5, nQ5</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>22, 23</td>
<td>Q4, nQ4</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>26, 27</td>
<td>Q3, nQ3</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>28, 29</td>
<td>Q2, nQ2</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>31, 32</td>
<td>Q1, nQ1</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>33, 34</td>
<td>Q0, nQ0</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>36</td>
<td>CLK</td>
<td>Input</td>
<td>Pulldown</td>
</tr>
<tr>
<td>37</td>
<td>nCLK</td>
<td>Input</td>
<td>Pullup</td>
</tr>
<tr>
<td>39, 40</td>
<td>Q15, nQ15</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>41, 42</td>
<td>Q14, nQ14</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>44, 45</td>
<td>Q13, nQ13</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>46, 47</td>
<td>Q12, nQ12</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
</tbody>
</table>

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_{PULLUP}</td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_{PULLDOWN}</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>
Function Table
Table 3. Clock Input Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Input to Output Mode</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>nCLK</td>
<td>Q[0:15]</td>
<td>nQ[0:15]</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>0</td>
<td>Biased; NOTE 1</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>1</td>
<td>Biased; NOTE 1</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>Biased; NOTE 1</td>
<td>0</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>Biased; NOTE 1</td>
<td>1</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

NOTE 1: Refer to the Application Information section, Wiring the Differential Input to Accept single-ended Levels.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{CC}</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, V_I</td>
<td>-0.5V to $V_{CC} + 0.5V$</td>
</tr>
<tr>
<td>Outputs, I_O</td>
<td>Continuous Current</td>
</tr>
<tr>
<td></td>
<td>Surge Current</td>
</tr>
<tr>
<td></td>
<td>Package Thermal Impedance, θ_{JA}</td>
</tr>
<tr>
<td></td>
<td>Storage Temperature, T_{STG}</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{CCO} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = 0°C$ to 70°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Positive Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>V_{CCO}</td>
<td>Output Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>25</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>I_{EE}</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>mA</td>
</tr>
</tbody>
</table>
Table 4B. Differential Input DC Characteristics, $V_{CC} = 3.3\,\text{V} \pm 5\%$, $V_{CCO} = 2.5\,\text{V} \pm 5\%$, $V_{EE} = 0\,\text{V}$, $T_A = 0\,^\circ\text{C}$ to $70\,^\circ\text{C}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>CLK</td>
<td>-</td>
<td>150</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nCLK</td>
<td>-</td>
<td>5</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>CLK</td>
<td>-5</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nCLK</td>
<td>-150</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Input Voltage</td>
<td></td>
<td>0.15</td>
<td>1.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Input Voltage; NOTE 1</td>
<td></td>
<td>0.05</td>
<td>$V_{CC} - 0.85$</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Common mode input voltage is defined as V_{IH}.

Table 4C. LVPECL DC Characteristics, $V_{CC} = 3.3\,\text{V} \pm 5\%$, $V_{CCO} = 2.5\,\text{V} \pm 5\%$, $V_{EE} = 0\,\text{V}$, $T_A = 0\,^\circ\text{C}$ to $70\,^\circ\text{C}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>$V_{CCO} - 1.1$</td>
<td></td>
<td>$V_{CCO} - 0.7$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$V_{CCO} - 2.0$</td>
<td></td>
<td>$V_{CCO} - 1.4$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{SWING}</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td></td>
<td>0.55</td>
<td>0.93</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Outputs terminated with $50\,\Omega$ to $V_{CCO} - 2\,\text{V}$.

AC Electrical Characteristics

Table 5. AC Electrical Characteristics, $V_{CC} = 3.3\,\text{V} \pm 5\%$, $V_{CCO} = 2.5\,\text{V} \pm 5\%$, $V_{EE} = 0\,\text{V}$, $T_A = 0\,^\circ\text{C}$ to $70\,^\circ\text{C}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MAX}</td>
<td>Output Frequency</td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>t_{PD}</td>
<td>Propagation Delay; NOTE 1</td>
<td>$f \leq 500\text{MHz}$</td>
<td>1</td>
<td>2</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_{sk(o)}$</td>
<td>Output Skew; NOTE 2, 3</td>
<td></td>
<td>26</td>
<td>50</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{sk(pp)}$</td>
<td>Part-to-Part Skew; NOTE 2, 4</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t_R / t_F</td>
<td>Output Rise/ Fall Time</td>
<td>20% to 80% @ 50MHz</td>
<td>300</td>
<td>700</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>ocdc</td>
<td>Output Duty Cycle</td>
<td></td>
<td>47</td>
<td>50</td>
<td>53</td>
<td>%</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device is mounted in a test socket with maintained transverse airflow greater than 500 lpm. Device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE All parameters measured at 250MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.
Parameter Measurement Information

3.3V Core/2.5V LVPECL Output Load AC Test Circuit

Differential Input Level

Output Skew

Part-to-Part Skew

Output Duty Cycle/Pulse Width/Period

Propagation Delay
Output Rise/Fall Time

Applications Information

Recommendations for Unused Output Pins

Outputs:

LVPECL Outputs
The unused LVPECL output pair can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.
Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_{\text{REF}} = V_{\text{CC}}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is 2.5V and $V_{\text{CC}} = 3.3$V, R1 and R2 value should be adjusted to set V_{REF} at 1.25V. The values below are for when both the single ended swing and V_{CC} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (R_o) and the series resistance (R_s) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R_3 and R_4 in parallel should equal the transmission line impedance. For most 50Ω applications, R_3 and R_4 can be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3V and V_{IH} cannot be more than $V_{\text{CC}} + 0.3$V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels
Differential Clock Input Interface

The CLK/nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both \(V_{\text{SWING}} \) and \(V_{\text{OH}} \) must meet the \(V_{\text{PP}} \) and \(V_{\text{CMR}} \) input requirements. Figures 2A to 2F show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 2A, the input termination applies for IDT LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

Figure 2A. CLK/nCLK Input Driven by an IDT LVHSTL Driver

Figure 2B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 2C. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 2D. CLK/nCLK Input Driven by a 3.3V LVDS Driver

Figure 2E. CLK/nCLK Input Driven by a 3.3V HCSL Driver

Figure 2F. CLK/nCLK Input Driven by a 2.5V SSTL Driver
Termination for 2.5V LVPECL Outputs

Figure 3A and Figure 3B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CCO} - 2V$. For $V_{CCO} = 2.5V$, the $V_{CCO} - 2V$ is very close to ground level. The R3 in Figure 3B can be eliminated and the termination is shown in Figure 3C.

![Figure 3A. 2.5V LVPECL Driver Termination Example](image)

![Figure 3B. 2.5V LVPECL Driver Termination Example](image)

![Figure 3C. 2.5V LVPECL Driver Termination Example](image)
Power Considerations
This section provides information on power dissipation and junction temperature for the 8530. Equations and example calculations are also provided.

1. Power Dissipation.
The total power dissipation for the 8530 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)$_{MAX} = V_{CC_MAX} * I_{EE_MAX} = 3.465V * 150mA = 519.75mW$
- Power (outputs)$_{MAX} = 35mW/Loaded\(Output\ pair)$

If all outputs are loaded, the total power is $16 \times 35mW = 560mW$

Total Power$_{MAX}$ (3.465V, with all outputs switching) $= 519.75mW + 560mW = 1079.75mW$

2. Junction Temperature.
Junction temperature, T_j, is the temperature at the junction of the bond wire and bond pad and it directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, T_j, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature
θ_{JA} = Junction-to-Ambient Thermal Resistance
P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)
T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 47.9°C/W per Table 6 below.

Therefore, T_j for an ambient temperature of 70°C with all outputs switching is:

$70°C + 1.080W \times 47.9°C/W = 121.7°C$. This is below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 48 Lead LQFP, Forced Convection

<table>
<thead>
<tr>
<th>θ_{JA} by Velocity</th>
<th>0</th>
<th>200</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Feet per Minute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Layer PCB, JEDEC Standard Test Boards</td>
<td>$67.8°C/W$</td>
<td>$55.9°C/W$</td>
<td>$50.1°C/W$</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>$47.9°C/W$</td>
<td>$42.1°C/W$</td>
<td>$39.4°C/W$</td>
</tr>
</tbody>
</table>

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pairs. LVPECL output driver circuit and termination are shown in Figure 4.

![Figure 4. LVPECL Driver Circuit and Termination](image)

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of \(V_{CCO} - 2V \).

- For logic high, \(V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.7V \)
 \((V_{CCO_MAX} - V_{OH_MAX}) = 0.7V \)
- For logic low, \(V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.4V \)
 \((V_{CCO_MAX} - V_{OL_MAX}) = 1.4V \)

\[P_{d_H} = \frac{(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/RL}{(V_{CCO_MAX} - V_{OH_MAX})} \times (V_{CCO_MAX} - V_{OH_MAX}) = \frac{(2V - (V_{CCO_MAX} - V_{OH_MAX}))/50\Omega}{0.7V} \times 0.7V = 18.2mW \]

\[P_{d_L} = \frac{(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/RL}{(V_{CCO_MAX} - V_{OL_MAX})} \times (V_{CCO_MAX} - V_{OL_MAX}) = \frac{(2V - (V_{CCO_MAX} - V_{OL_MAX}))/50\Omega}{1.4V} \times 1.4V = 16.8mW \]

Total Power Dissipation per output pair = \(P_{d_H} + P_{d_L} = 35mW \)
Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 48 Lead LQFP

<table>
<thead>
<tr>
<th>Linear Feet per Minute</th>
<th>0</th>
<th>200</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Layer PCB, JEDEC Standard Test Boards</td>
<td>67.8°C/W</td>
<td>55.9°C/W</td>
<td>50.1°C/W</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>47.9°C/W</td>
<td>42.1°C/W</td>
<td>39.4°C/W</td>
</tr>
</tbody>
</table>

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Transistor Count

The transistor count for 8530 is: 930
Package Outline and Package Dimensions

Package Outline - Y Suffix for 48 Lead LQFP

Table 8. Package Dimensions for 48 Lead LQFP

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.05</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>A1</td>
<td>1.35</td>
<td>1.40</td>
<td>1.45</td>
</tr>
<tr>
<td>A2</td>
<td>0.17</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td>b</td>
<td>0.09</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D & E</td>
<td>9.00 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1 & E1</td>
<td>7.00 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2 & E2</td>
<td>5.50 Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0.5 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td>θ</td>
<td>0°</td>
<td>7°</td>
<td></td>
</tr>
<tr>
<td>ccc</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MS-026
Table 9. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>8530DYLFF</td>
<td>ICS8530DYLFF</td>
<td>Lead-Free, 48 Lead LQFP</td>
<td>Tray</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>8530DYLFT</td>
<td>ICS8530DYLFF</td>
<td>Lead-Free, 48 Lead LQFP</td>
<td>2500 Tape & Reel, pin 1 orientation: EIA-481-C</td>
<td>0°C to 70°C</td>
</tr>
<tr>
<td>8530DYLFW</td>
<td>ICS8530DYLFF</td>
<td>Lead-Free, 48 Lead LQFP</td>
<td>2500 Tape & Reel, pin 1 orientation EIA-481-D</td>
<td>0°C to 70°C</td>
</tr>
</tbody>
</table>

NOTE: Parts that are ordered with an “LF” suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Table 10. Pin 1 Orientation in Tape and Reel Packaging

<table>
<thead>
<tr>
<th>Part Number Suffix</th>
<th>Pin 1 Orientation</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Quadrant 1 (EIA-481-C)</td>
<td></td>
</tr>
<tr>
<td>/W</td>
<td>Quadrant 2 (EIA-481-D)</td>
<td></td>
</tr>
</tbody>
</table>
Revision History Sheet

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5-6</td>
<td>5</td>
<td>Updated figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Added Termination for LVPECL Outputs section.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>7</td>
<td>Output Load Test Circuit - corrected VEE equation to read: ""VEE = -0.5V ± 0.165V"" from ""VEE = -0.5V ± 0.135V"".</td>
<td>10/2/02</td>
</tr>
<tr>
<td>D</td>
<td>T2</td>
<td>2</td>
<td>Pin Characteristics - changed C_IN 4pF max. to 4pF typical.</td>
<td>11/20/03</td>
</tr>
<tr>
<td></td>
<td>T4C</td>
<td>3</td>
<td>LVPECL Characteristics - changed VOH from VCCO - 1.4V min. to VCCO - 1.1V min.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Changed VCCO - 1.0V max. to VCCO - 0.7V max.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Changed VOL from VCCO - 1.7V max. to VCCO - 1.4V max.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Output Load Test Circuit - corrected VEE equation to read: ""VEE = -0.5V ± 0.125V"" from ""VEE = -0.5V ± 0.165V"".</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Corrected VCC equation to read ""VCC = 2.8V ± 0.04V"" from ""VCC = 2.8V"".</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Updated Figure 1, Single Ended Signal Driving Differential Input diagram.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Updated Figures 2A and 2B, LVPECL Output Termination diagrams.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Added Differential Clock Input Interface section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-9</td>
<td>Adjusted worse case power dissipation to reflect VOH/VOL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated format throughout datasheet.</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>T4A</td>
<td>3</td>
<td>Power Supply Table - changed IEE max. from 115mA to 125mA.</td>
<td>12/2/03</td>
</tr>
<tr>
<td>E</td>
<td>T4B</td>
<td>4</td>
<td>Differential DC Characteristics Table - updated notes.</td>
<td>9/15/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Added Recommendations for Unused Output Pins section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Updated Wiring the Differential Input to Accept Single-ended Levels section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T9</td>
<td>9</td>
<td>Updated Termination for LVPECL Outputs section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>Ordering Information Table - deleted “ICS” prefix from part/order column.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Added lead-free marking.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Converted datasheet format.</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T4A</td>
<td>3</td>
<td>Power Supply DC Characteristics Table - changed IEE spec to 150mA maximum.</td>
<td>10/11/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Power Considerations, updated calculations to coincide with new IEE spec.</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>T10</td>
<td>14</td>
<td>Added Pin 1 Orientation in Tape and Reel Packaging Table.</td>
<td>6/26/15</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microprocessor software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.