General Description The 85310I-11 is a low skew, high performance 1-to-10 Differential-to-2.5V/3.3V ECL/LVPECL Fanout Buffer. The CLKx, nCLKx pairs can accept most standard differential input levels. The 85310I-11 is characterized to operate from either a 2.5V or a 3.3V power supply. Guaranteed output and part-to-part skew characteristics make the 85310I-11 ideal for those clock distribution applications demanding well defined performance and repeatability. #### **Features** - Ten differential 2.5V, 3.3V LVPECL/ECL output pair - Two selectable differential input pairs - Differential CLKx, nCLKx pairs can accept the following interface levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL - Maximum output frequency: 700MHz - Translates any single ended input signal to 3.3V LVPECL levels with resistor bias on nCLK input - Output skew: 30ps (typical) - Part-to-part skew: 140ps (typical) - Propagation delay: 2ns (typical) - Additive phase jitter, RMS: <0.13ps (typical) - LVPECL mode operating voltage supply range: V_{CC} = 2.375V to 3.8V, V_{EE} = 0V - ECL mode operating voltage supply range: V_{CC} = 0V, V_{EE} = -3.8V to -2.375V - -40°C to 85°C ambient operating temperature - Available in lead-free RoHS compliant package ## **Block Diagram** ## **Pin Assignment** 32-Lead LQFP 7mm x 7mm x 1.4mm package body Y Package Top View **Table 1. Pin Descriptions** | Number | Name | Т | уре | Description | |---------------|------------------|--------|----------|---| | 1 | V _{CC} | Power | | Positive supply pin. | | 2 | CLK_SEL | Input | Pulldown | Clock select input. When HIGH, selects CLK1, nCLK1 inputs. When LOW, selects CLK0, nCLK0 inputs. LVCMOS / LVTTL interface levels. | | 3 | CLK0 | Input | Pulldown | Non-inverting differential clock input. | | 4 | nCLK0 | Input | Pullup | Inverting differential clock input. | | 5 | CLK_EN | Input | Pullup | Synchronizing clock enable. When HIGH, clock outputs follow clock input. When LOW, Q outputs are forced low, nQ outputs are forced high. LVCMOS / LVTTL interface levels. | | 6 | CLK1 | Input | Pulldown | Non-inverting differential clock input. | | 7 | nCLK1 | Input | Pullup | Inverting differential clock input. | | 8 | V_{EE} | Power | | Negative supply pin. | | 9, 16, 25, 32 | V _{CCO} | Power | | Output supply pins. | | 10, 11 | nQ9, Q9 | Output | | Differential output pair. LVPECL interface levels. | | 12, 13 | nQ8, Q8 | Output | | Differential output pair. LVPECL interface levels. | | 14, 15 | nQ7, Q7 | Output | | Differential output pair. LVPECL interface levels. | | 17, 18 | nQ6, Q6 | Output | | Differential output pair. LVPECL interface levels. | | 19, 20 | nQ5, Q5 | Output | | Differential output pair. LVPECL interface levels. | | 21, 22 | nQ4, Q4 | Output | | Differential output pair. LVPECL interface levels. | | 23, 24 | nQ3, Q3 | Output | | Differential output pair. LVPECL interface levels. | | 26, 27 | nQ2, Q2 | Output | | Differential output pair. LVPECL interface levels. | | 28, 29 | nQ1, Q1 | Output | | Differential output pair. LVPECL interface levels. | | 30, 31 | nQ0, Q0 | Output | | Differential output pair. LVPECL interface levels. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. ## **Table 2. Pin Characteristics** | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | ## **Function Tables** **Table 3A. Control Input Function Table** | Inputs | | Outputs | | | |--------|-----------------|---------------|----------------|--| | CLK_EN | Selected Source | Q[0:9] | nQ[0:9] | | | 0 | CLK0, nCLK0 | Disabled; LOW | Disabled; HIGH | | | 1 | CLK1, nCLK1 | Enabled | Enabled | | After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1. In the active mode, the state of the outputs are a function of the CLK0, nCLK0 and CLK1, nCLK1 input as described in Table 3B. Figure 1. CLK_EN Timing Diagram **Table 3B. Clock Input Function Table** | Inp | Inputs | | puts | | | |----------------|----------------|--------|---------|------------------------------|---------------| | CLK0 or CLK1 | nCLK0 or nCLK1 | Q[0:9] | nQ[0:9] | Input to Output Mode | Polarity | | 0 | 1 | LOW | HIGH | Differential to Differential | Non-Inverting | | 1 | 0 | HIGH | LOW | Differential to Differential | Non-Inverting | | 0 | Biased; NOTE 1 | LOW | HIGH | Single-ended to Differential | Non-Inverting | | 1 | Biased; NOTE 1 | HIGH | LOW | Single-ended to Differential | Non-Inverting | | Biased; NOTE 1 | 0 | HIGH | LOW | Single-ended to Differential | Inverting | | Biased; NOTE 1 | 1 | LOW | HIGH | Single-ended to Differential | Inverting | NOTE 1: Please refer to the Applications Information, Wiring the Differential Input to Accept Single-ended Levels. ## **Absolute Maximum Ratings** NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. | Item | Rating | | |--|---------------------------------|--| | Supply Voltage, V _{CC} | 4.6V | | | Inputs, V _I | -0.5V to V _{CC} + 0.5V | | | Outputs, I _O Continuous Current Surge Current | 50mA
100mA | | | Package Thermal Impedance, θ_{JA} | 47.9°C/W (0 lfpm) | | | Storage Temperature, T _{STG} | -65°C to 150°C | | #### **DC Electrical Characteristics** Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCO} = 2.375V$ to 3.8V; $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-------------------------|-----------------|---------|---------|---------|-------| | V _{CC} | Positive Supply Voltage | | 2.375 | 3.3 | 3.8 | V | | V _{CCO} | Output Supply Voltage | | 2.375 | 3.3 | 3.8 | V | | I _{EE} | Power Supply Current | | | | 120 | mA | Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = V_{CCO} = 2.375V$ to 3.8V; $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|----------------------|---------|------------------------------|---------|---------|-----------------------|-------| | V _{IH} | Input High Voltage | | | 2 | | V _{CC} + 0.3 | V | | V _{IL} | Input Low Voltage | | | -0.3 | | 0.8 | V | | | Input High Current | CLK_EN | $V_{CC} = V_{IN} = 3.8V$ | | | 5 | μΑ | | I IH | Imput riigii Current | CLK_SEL | $V_{CC} = V_{IN} = 3.8V$ | | | 150 | μΑ | | | Input Low Current | CLK_EN | $V_{CC} = 3.8V, V_{IN} = 0V$ | -150 | | | μΑ | | ¹IL | Input Low Current | CLK_SEL | $V_{CC} = 3.8V, V_{IN} = 0V$ | -5 | | | μΑ | Table 4C. DC Characteristics, $V_{CC} = V_{CCO} = 2.375V$ to 3.8V; $V_{EE} = 0V$, $T_A = -40$ °C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------------|----------------------|--------------|------------------------------|-----------------------|---------|------------------------|-------| | I I I I I I I I I I I I I I I I I I I | | CLK[0:1], | $V_{CC} = V_{IN} = 3.8V$ | | | 150 | μΑ | | l IH | Input High Current | nCLK[0:1] | $V_{CC} = V_{IN} = 3.8V$ | | | 5 | μΑ | | | Input Low Current | CLK[0:1] | $V_{CC} = 3.8V, V_{IN} = 0V$ | -5 | | | μΑ | | I IIL | input Low Current | nCLK[0:1] | $V_{CC} = 3.8V, V_{IN} = 0V$ | -150 | | | μΑ | | V _{PP} | Peak-to-Peak Voltage | ; NOTE 1 | | 0.15 | | 1.3 | V | | V _{CMR} | Common Mode Range | e; NOTE 1, 2 | | V _{EE} + 0.5 | | V _{CC} - 0.85 | V | NOTE 1: V_{IL} should not be less than -0.3V. NOTE 2: Common mode voltage is defined as V_{IH}. Table 4D. LVPECL DC Characteristics, $V_{CC} = V_{CCO} = 2.375V$ to 3.8V; $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|------------------------|---------|------------------------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | V _{CCO} – 1.4 | | V _{CCO} - 0.9 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | V _{CCO} - 2.0 | | V _{CCO} – 1.7 | V | | V _{swing} | Peak-to-Peak Output Voltage Swing | | 0.6 | | 1.0 | V | NOTE 1: Outputs terminated with 50 $\!\Omega$ to V_{CCO} – 2V. #### **AC Electrical Characteristics** Table 5. AC Characteristics, $V_{CC} = V_{CCO} = 2.375V$ to 3.8V; $V_{EE} = 0V$, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--|-----------------|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | 700 | MHz | | t _{PD} | Propagation Delay; NOTE 1 | | | 2 | 2.5 | ns | | tsk(pp) | Part-to-Part Skew; NOTE 2, 3 | | | 140 | 340 | ps | | tsk(o) | Output Skew; NOTE 3, 4 | | | 30 | 55 | ps | | <i>t</i> jit | Additive Phase Jitter, RMS; refer to Additive Phase Jitter section | | | <0.13 | | ps | | t _R / t _F | Output Rise/Fall Time | 20% to 80% | 200 | | 700 | ps | | odc | Output Duty Cycle | | 47 | | 53 | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE: All parameters measured at 500MHz, unless otherwise noted. NOTE 1: Measured from the differential input crossing point to the differential output crossing point. NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. NOTE 3: This parameter is defined according with JEDEC Standard 65. NOTE 4: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. #### **Additive Phase Jitter** The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot. As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment. ## **Parameter Measurement Information** **LVPECL Output Load AC Test Circuit** **Part-to-Part Skew** **Propagation Delay** **Differential Input Level** **Output Skew** **Output Rise/Fall Time** #### **Parameter Measurement Information** **Output Duty Cycle/Pulse Width/Period** ### **Applications Information** #### Wiring the Differential Input to Accept Single-Ended Levels Figure 2 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{CC}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is 2.5V and $V_{CC} = 3.3V$, R1 and R2 value should be adjusted to set V_{REF} at 1.25V. The values below are for when both the single ended swing and V_{CC} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3V and V_{IH} cannot be more than V_{CC} + 0.3V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal. Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels #### **Differential Clock Input Interface** The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3F* show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. 1.8V $Z_0 = 50\Omega$ $Z_0 = 50\Omega$ LVHSTL DIT LVHSTL Driver R_1 $S_0\Omega$ $S_0\Omega$ $S_0\Omega$ R_2 $S_0\Omega$ $S_0\Omega$ R_2 $S_0\Omega$ $S_0\Omega$ Figure 3A. CLK/nCLK Input Driven by an IDT Open Emitter LVHSTL Driver Figure 3C. CLK/nCLK Input Driven by a 3.3V LVPECL Driver Figure 3E. CLK/nCLK Input Driven by a 3.3V HCSL Driver Please consult with the vendor of the driver component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation. Figure 3B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver Figure 3D. CLK/nCLK Input Driven by a 3.3V LVDS Driver Figure 3F. CLK/nCLK Input Driven by a 2.5V SSTL Driver #### **Recommendations for Unused Input Pins** #### Inputs: #### **CLK/nCLK Inputs** For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground. #### **LVCMOS Control Pins** The control pins have an internal pullup and pulldown; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **Outputs:** #### **LVPECL Outputs** All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. #### **Termination for 3.3V LVPECL Outputs** The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. Figure 4A. 3.3V LVPECL Output Termination Figure 4B. 3.3V LVPECL Output Termination ## **Termination for 2.5V LVPECL Outputs** Figure 5A and Figure 5B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{CC} – 2V. For V_{CC} = 2.5V, the V_{CC} – 2V is very close to ground level. The R3 in Figure 5B can be eliminated and the termination is shown in *Figure 5C*. Figure 5A. 2.5V LVPECL Driver Termination Example Figure 5B. 2.5V LVPECL Driver Termination Example Figure 5C. 2.5V LVPECL Driver Termination Example #### **Power Considerations** This section provides information on power dissipation and junction temperature for the ICS5311I-01. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS5311I-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.8V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.8V * 120mA = 456mW - Power (outputs)_{MAX} = 30mW/Loaded Output pair If all outputs are loaded, the total power is 10 * 30mW = 300mW Total Power_MAX (3.8V, with all outputs switching) = 456mW + 300mW = 756mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: $85^{\circ}\text{C} + 0.756\text{W} * 42.1^{\circ}\text{C/W} = 116.8^{\circ}\text{C}$. This is well below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer). Table 6. Thermal Resistance θ_{JA} for 32 Lead LQFP, Forced Convection | θ_{JA} by Velocity | | | | | | | |--|------------------------------|-----------------------------|----------|--|--|--| | Linear Feet per Minute | 0 | 200 | 500 | | | | | Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W | | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 47.9°C/W | 42.1°C/W | 39.4°C/W | | | | | NOTE: Most modern PCB designs use multi-layere | d boards. The data in the se | cond row pertains to most d | esigns. | | | | #### 3. Calculations and Equations. The purpose of this section is to calculate the power dissipation for the LVPECL output pair. LVPECL output driver circuit and termination are shown in Figure 6. Figure 6. LVPECL Driver Circuit and Termination To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CCO} - 2V$. - For logic high, $V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} 0.9V$ $(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$ - For logic low, $V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} 1.7V$ $(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$ Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. $$Pd_H = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$ $$Pd_L = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = \textbf{10.2mW}$$ Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW ## **Reliability Information** ## Table 7. θ_{JA} vs. Air Flow Table for a 32 Lead LQFP | θ_{JA} by Velocity | | | | | | | | |---|-----------------------------|------------------------------|----------|--|--|--|--| | Linear Feet per Minute | 0 | 200 | 500 | | | | | | Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W | | | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 47.9°C/W | 42.1°C/W | 39.4°C/W | | | | | | NOTE: Most modern PCB designs use multi-layered boa | rds. The data in the second | d row pertains to most desig | ns. | | | | | #### **Transistor Count** The transistor count for 85310I-11 is: 1034 ## **Package Outline and Package Dimensions** Package Outline - Y Suffix for 32 Lead LQFP Table 8. Package Dimensions for 32 Lead LQFP | JEDEC Variation: BBA All Dimensions in Millimeters | | | | | | | |--|------------|------------|---------|--|--|--| | Symbol | Minimum | Nominal | Maximum | | | | | N | 32 | | | | | | | Α | | | 1.60 | | | | | A1 | 0.05 | | 0.15 | | | | | A2 | 1.35 | 1.40 | 1.45 | | | | | b | 0.30 | 0.37 | 0.45 | | | | | С | 0.09 | | 0.20 | | | | | D&E | | 9.00 Basic | | | | | | D1 & E1 | 7.00 Basic | | | | | | | D2 & E2 | 5.60 Ref. | | | | | | | е | 0.80 Basic | | | | | | | L | 0.45 | 0.60 | 0.75 | | | | | θ | 0° | | 7° | | | | | ccc | | | 0.10 | | | | Reference Document: JEDEC Publication 95, MS-026 ## **Ordering Information** ### **Table 9. Ordering Information** | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|--------------|--------------------------|--------------------|---------------| | 85310AYI-11LF | ICS5310AI11L | "Lead-Free" 32 Lead LQFP | Tray | -40°C to 85°C | | 85310AYI-11LFT | ICS5310AI11L | "Lead-Free" 32 Lead LQFP | Tape & Reel | -40°C to 85°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. # **Revision History Sheet** | Rev | Table | Page | Description of Change | | |-----|-----------------|-------------------------|---|--------| | В | T5 | 5 | AC Characteristics table - t _{PD} row, revised value from 2.25ns Max. to 2.5ns Max. | | | В | | 9 | Added Termination for LVPECL Outputs. | | | С | T4D | 5 | Added LVPECL DC Characteristics table. Changed part number from ICS85310-11 to 85310I-11 in title and all subsequent areas throughout the datasheet. | | | D | T4A | 4
7 | Power Supply table - increased max. value for I _{EE} to 120mA from 30mA max. Power Considerations have re-adjusted to the increased I _{EE} value. | | | | T2
T5 | 1
2
5 | Features Section - added Additive Phase Jitter bullet and Lead-Free bullet. Pin Characteristics - changed C _{IN} 4pF max. to 4pF typical. AC Characteristics Table - added Additive Phase Jitter spec. | | | E | Т9 | 6
9
10
15 | Added Additive Phase Jitter Section. Added Termination for 2.5V LVPECL Outputs. Added Differential Clock Input Interface. Ordering Information Table - added Lead-Free Part Number and Note. | 7/7/05 | | F | T4D | 5
11 - 12 | LVPECL DC Characteristics Table -corrected V_{OH} max. from V_{CCO} - 1.0V to V_{CCO} - 0.9V; and V_{SWING} max. from 0.85V to 1.0V. Power Considerations - corrected power dissipation to reflect V_{OH} max in Table 4D. | | | F | T4C
T5
T9 | 4
5
8
10
16 | Differential DC Characteristics Table -updated NOTES. AC Characteristics Table - added thermal note. Updated Wiring the Differential Input to Accept Single-ended Levels section. Updated Figure 4A & 4B. Ordering Information Table - corrected lead-free marking. | 6/9/10 | | | | | Converted datasheet format. | | | F | Т9 | 16 | Ordering Information - removed leaded devices. Updated data sheet format. | | #### **Notice** - Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. - 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. - 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or - 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. - 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document. - 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. - 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. - 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. - 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. - 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. - 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. - (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. - (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) #### **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/