GENERAL DESCRIPTION

The ICS853S12I is a low skew, 1-to-12 Differential-to-3.3V, 2.5V LVPECL Fanout Buffer and a member of the HiPerClockS™ family of High Performance Clock Solutions from IDT. The PCLK, nPCLK pair accepts LVPECL, CML, and SSTL differential input levels. The high gain differential amplifier accepts peak-to-peak input voltages as small as 150mV, as long as the common mode voltage is within the specified minimum and maximum range. Guaranteed output and part-to-part skew characteristics make the ICS853S12I ideal for those clock distribution applications demanding well defined performance and repeatability.

FEATURES

- Twelve differential 3.3V, 2.5V LVPECL outputs
- PCLK, nPCLK input pair
- PCLK, nPCLK pair can accept the following differential input levels: LVPECL, CML, SSTL
- Maximum output frequency: 1.5GHz
- Translates any single-ended input signal to 2.5V or 3.3V LVPECL levels with a resistor bias on nPCLK input
- Additive phase jitter, RMS: 0.06ps (typical)
- Output skew: 50ps (maximum)
- Part-to-part skew: 250ps (maximum)
- Propagation delay: 680ps (maximum)
- Full 3.3V or 2.5V operating supply modes
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

BLOCK DIAGRAM

PIN ASSIGNMENT
Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Q11, nQ11</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>3, 6</td>
<td>Vref</td>
<td>Power</td>
<td>Negative supply pins.</td>
</tr>
<tr>
<td>4</td>
<td>PCLK</td>
<td>Input</td>
<td>Non-inverting differential clock input.</td>
</tr>
<tr>
<td>5</td>
<td>nPCLK</td>
<td>Input</td>
<td>Inverting differential clock input.</td>
</tr>
<tr>
<td>7, 8</td>
<td>Q0, nQ0</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>9, 10</td>
<td>Q1, nQ1</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>11, 16, 25, 30</td>
<td>Vcc</td>
<td>Power</td>
<td>Positive supply pins.</td>
</tr>
<tr>
<td>12, 13</td>
<td>Q2, nQ2</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>14, 15</td>
<td>Q3, nQ3</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>17, 18</td>
<td>Q4, nQ4</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>19, 20</td>
<td>Q5, nQ5</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>21, 22</td>
<td>Q6, nQ6</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>23, 24</td>
<td>Q7, nQ7</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>28, 29</td>
<td>Q9, nQ9</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>26, 27</td>
<td>Q8, nQ8</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>31, 32</td>
<td>Q10, nQ10</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
</tbody>
</table>

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cin</td>
<td>Input Capacitance</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Rpullup</td>
<td>Input Pullup Resistor</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Rpulldown</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>

Table 3. Clock Input Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Input to Output Mode</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCLK</td>
<td>nPCLK</td>
<td>Q0:Q11</td>
<td>nQ0:nQ11</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>0</td>
<td>Biased; NOTE 1</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>1</td>
<td>Biased; NOTE 1</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>Biased; NOTE 1</td>
<td>0</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>Biased; NOTE 1</td>
<td>1</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

NOTE 1: Please refer to the Application Information "Wiring the Differential Input to Accept Single Ended Levels".
Absolute Maximum Ratings

Supply Voltage, V_{CC}: 4.6V

Inputs, V_i: -0.5V to $V_{CC} + 0.5V$

Outputs, I_O
- Continuous Current: 50mA
- Surge Current: 100mA

Package Thermal Impedance, θ_{JA}:
- For 32 Lead VFQFN: 42.7°C/W (0 mps)

Storage Temperature, T_{STG}: -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. Power Supply DC Characteristics, $V_{CC} = 3.3\% \pm 5\%$, $V_{EE} = 0V$, $T_{A} = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Positive Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>I_{EE}</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td>137</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

TABLE 4B. Power Supply DC Characteristics, $V_{CC} = 2.5\% \pm 5\%$, $V_{EE} = 0V$, $T_{A} = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Positive Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>I_{EE}</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td>130</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

TABLE 4C. LVPECL DC Characteristics, $V_{CC} = 3.3\% \pm 5\%$ or $2.5\% \pm 5\%$, $V_{EE} = 0V$, $T_{A} = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>Input High Current: PCLK</td>
<td>$V_{CC} = V_{IH} = 3.465V or 2.625V$</td>
<td>150</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>nPCLK</td>
<td>$V_{CC} = V_{IN} = 3.465V or 2.625V$</td>
<td>10</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current: PCLK</td>
<td>$V_{CC} = 3.465V or 2.625V, V_{IN} = 0V$</td>
<td>-10</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>nPCLK</td>
<td>$V_{CC} = 3.465V or 2.625V, V_{IN} = 0V$</td>
<td>-150</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Input Voltage</td>
<td></td>
<td>0.3</td>
<td>1.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Input Voltage; NOTE 1, 2</td>
<td>$V_{EE} + 1.5$</td>
<td></td>
<td>V_{CC}</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 3</td>
<td>$V_{CC} - 1.3$</td>
<td></td>
<td>$V_{CC} - 0.8$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 3</td>
<td>$V_{CC} - 2.0$</td>
<td></td>
<td>$V_{CC} - 1.6$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{SWING}</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td></td>
<td>0.6</td>
<td>1.0</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is $V_{CC} + 0.3V$.

NOTE 2: Common mode voltage is defined as V_{IH}.

NOTE 3: Outputs terminated with 50Ω to $V_{CC} - 2V$.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MAX}</td>
<td>Output Frequency</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>GHz</td>
</tr>
<tr>
<td>t_{PD}</td>
<td>Propagation Delay; NOTE 1</td>
<td></td>
<td>300</td>
<td></td>
<td>680</td>
<td>ps</td>
</tr>
<tr>
<td>f_{jit}</td>
<td>Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section</td>
<td>622MHz, Integration Range: 12kHz – 20MHz</td>
<td>0.06</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{\text{sk(o)}}$</td>
<td>Output Skew; NOTE 2, 4</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{\text{sk(pp)}}$</td>
<td>Part-to-Part Skew; NOTE 3, 4</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{\text{tr}} / t_{\text{f}}$</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>80</td>
<td></td>
<td>300</td>
<td>ps</td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td></td>
<td>47</td>
<td></td>
<td>53</td>
<td>%</td>
</tr>
</tbody>
</table>

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.
ADDITIVE PHASE JITTER

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the dBc Phase Noise. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a dBc value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

As with most timing specifications, phase noise measurements have issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.
PARAMETER MEASUREMENT INFORMATION

OUTPUT LOAD 3.3V AC TEST CIRCUIT

DIFFERENTIAL INPUT LEVEL

OUTPUT SKEW

PROPAGATION DELAY

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME
APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage \(V_{\text{REF}} = V_{CC}/2 \) is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the \(V_{\text{REF}} \) in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and \(V_{CC} = 3.3V \), \(V_{\text{REF}} \) should be 1.25V and \(R2/R1 = 0.609 \).

![Figure 1. Single Ended Signal Driving Differential Input](image)

RECOMMENDATIONS FOR UNUSED OUTPUT PINS

OUTPUTS:

LVPECL OUTPUTS:

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.
LVPECL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2E show interface examples for the HiPerClockS PCLK/nPCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 2A. HiPerClockS PCLK/nPCLK Input Driven By A CML Driver

Figure 2B. HiPerClockS PCLK/nPCLK Input Driven By A Built-In Pullup CML Driver

Figure 2C. HiPerClockS PCLK/nPCLK Input Driven By A 3.3V LVPECL Driver

Figure 2D. HiPerClockS PCLK/nPCLK Input Driven By A 3.3V LVPECL Driver With AC Couple

Figure 2E. HiPerClockS PCLK/nPCLK Input Driven By An SSTL Driver
VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 3. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 3. PCB Assembly for Exposed Pad Thermal Release Path – Side View (Drawing not to Scale)
Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 4A and 4B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

![Figure 4A. LVPECL Output Termination](image)

![Figure 4B. LVPECL Output Termination](image)
Termination for 2.5V LVPECL Outputs

Figure 5A and Figure 5B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{cc} - 2V. For V_{cc} = 2.5V, the V_{cc} - 2V is very close to ground level. The R3 in Figure 5B can be eliminated and the termination is shown in Figure 5C.
POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the ICS853S12I. Equations and example calculations are also provided.

1. Power Dissipation.
The total power dissipation for the ICS853S12I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for \(V_{CC} = 3.3V + 5\% = 3.465V \), which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)\(_{\text{MAX}}\) = \(V_{CC,\text{MAX}} \times I_{EE,\text{MAX}} = 3.465V \times 137mA = 474.7mW \)
- Power (outputs)\(_{\text{MAX}}\) = \(32mW/\text{Loaded Output pair} \)

 If all outputs are loaded, the total power is \(12 \times 32mW = 384mW \)

Total Power\(_{\text{MAX}}\) (3.465V, with all outputs switching) = \(474.7mW + 384mW = 858.7mW \)

2. Junction Temperature.

Junction temperature, \(T_j \), is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.

The equation for \(T_j \) is as follows: \(T_j = \theta_{JA} \times P_{d_{total}} + T_A \)

- \(T_j \) = Junction Temperature
- \(\theta_{JA} \) = Junction-to-Ambient Thermal Resistance
- \(P_{d_{total}} \) = Total Device Power Dissipation (example calculation is in section 1 above)
- \(T_A \) = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance \(\theta_{JA} \) must be used. Assuming no air flow and a multi-layer board, the appropriate value is 42.7°C/W per Table 6 below.

Therefore, \(T_j \) for an ambient temperature of 85°C with all outputs switching is:

\(85^\circ\text{C} + 0.859W \times 42.7^\circ\text{C/W} = 121.7^\circ\text{C} \). This is below the limit of 125°C.

This calculation is only an example. \(T_j \) will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

TABLE 6. THERMAL RESISTANCE \(\theta_{JA} \) FOR 32 LEAD VFQFN, FORCED CONVECTION

<table>
<thead>
<tr>
<th>(\theta_{JA}) vs. Air Flow (Meter per Second)</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>42.7°C/W</td>
<td>37.3°C/W</td>
<td>33.5°C/W</td>
</tr>
</tbody>
</table>
3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 6.

![Figure 6. LVPECL Driver Circuit and Termination](image)

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of \(V_{CC} - 2V \).

- For logic high, \(V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 0.8V \)

 \[
 (V_{CC_MAX} - V_{OH_MAX}) = 0.8V
 \]

- For logic low, \(V_{OUT} = V_{OL_MAX} = V_{CC_MAX} - 1.6V \)

 \[
 (V_{CC_MAX} - V_{OL_MAX}) = 1.6V
 \]

\(P_{d_H} \) is power dissipation when the output drives high.

\(P_{d_L} \) is the power dissipation when the output drives low.

\[
P_{d_H} = \left(\frac{V_{OH_MAX} - (V_{CC_MAX} - 2V)}{R_{L}} \right) \times (V_{CC_MAX} - V_{OH_MAX}) = \left(\frac{2V - (V_{CC_MAX} - V_{OH_MAX})}{50\Omega} \right) \times 0.8V = 19.2mW
\]

\[
P_{d_L} = \left(\frac{V_{OL_MAX} - (V_{CC_MAX} - 2V)}{R_{L}} \right) \times (V_{CC_MAX} - V_{OL_MAX}) = \left(\frac{2V - (V_{CC_MAX} - V_{OL_MAX})}{50\Omega} \right) \times 1.6V = 12.8mW
\]

Total Power Dissipation per output pair = \(P_{d_H} + P_{d_L} = 32mW \)
RELIABILITY INFORMATION

TABLE 7. θ_{JA} vs. Air Flow Table for 32 Lead VFQFN

<table>
<thead>
<tr>
<th>θ_{JA} vs. Air Flow (Meter per Second)</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>42.7°C/W</td>
<td>37.3°C/W</td>
<td>33.5°C/W</td>
</tr>
</tbody>
</table>

TRANSISTOR COUNT
The transistor count for ICS853S12I is: 475
NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 8 below.

<table>
<thead>
<tr>
<th>TABLE 8. PACKAGE DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMBOL</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>N_e</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>D2</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>E2</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>L</td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MO-220
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

TABLE 9. ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>853S12AKILF</td>
<td>ICS53S12AIL</td>
<td>32 Lead "Lead-Free" VFQFN</td>
<td>Tray</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>853S12AKILFT</td>
<td>ICS53S12AIL</td>
<td>32 Lead "Lead-Free" VFQFN</td>
<td>1000 Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

© 2019 Renesas Electronics Corporation. All rights reserved.