GENERAL DESCRIPTION

The 87021I is a high performance ÷1/÷2 Differential-to-LVCMOS/LVTTL Clock Generator and a member of the family of High Performance Clock Solutions from IDT. The CLK, nCLK pair can accept most standard differential input levels. Guaranteed part-to-part skew characteristics make the 87021I ideal for those clock distribution applications demanding well defined performance and repeatability.

FEATURES

- Two single-ended LVCMOS/LVTTL outputs
- One differential CLK, nCLK input pair
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- Maximum output frequency: 250MHz
- Additive phase jitter, RMS: 0.18ps (typical)
- Output skew: 50ps (maximum)
- Part-to-part skew: 450ps (maximum)
- Propagation delay: 3.4ns (maximum)
- Full 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

BLOCK DIAGRAM

PIN ASSIGNMENT

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLK</td>
</tr>
<tr>
<td>2</td>
<td>nCLK</td>
</tr>
<tr>
<td>3</td>
<td>MR</td>
</tr>
<tr>
<td>4</td>
<td>F_SEL</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>Q0</td>
</tr>
<tr>
<td>7</td>
<td>Q1</td>
</tr>
<tr>
<td>8</td>
<td>VDD</td>
</tr>
</tbody>
</table>

87021I
8-Lead SOIC
3.90mm x 4.90mm x 1.375mm package body
M Package
Top View
Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLK</td>
<td>Input</td>
<td>Non-inverting differential clock input.</td>
</tr>
<tr>
<td>2</td>
<td>nCLK</td>
<td>Input</td>
<td>Inverting differential clock input.</td>
</tr>
<tr>
<td>3</td>
<td>MR</td>
<td>Input</td>
<td>Active High Master Reset. When logic HIGH, the internal dividers are reset causing the outputs to go low. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels. See Table 3.</td>
</tr>
<tr>
<td>4</td>
<td>F_SEL</td>
<td>Input</td>
<td>Selects divider value for Qx outputs as described in Table 3. LVCMOS / LVTTL interface levels.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Power</td>
<td>Power supply ground.</td>
</tr>
<tr>
<td>6</td>
<td>Q1</td>
<td>Output</td>
<td>Singled-ended output. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>7</td>
<td>Q0</td>
<td>Output</td>
<td>Singled-ended output. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>8</td>
<td>V_{DD}</td>
<td>Power</td>
<td>Positive supply pin.</td>
</tr>
</tbody>
</table>

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{in}</td>
<td>Input Capacitance</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C_{PD}</td>
<td>Power Dissipation Capacitance</td>
<td>V_{DD} = 3.465V</td>
<td>24</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>(per output)</td>
<td>V_{DD} = 2.625V</td>
<td>16</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_{PULLUP}</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_{PULLDOWN}</td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_{OUT}</td>
<td>Output Impedance</td>
<td>V_{DD} = 3.465V</td>
<td>9</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>
TABLE 3. FUNCTION TABLE

<table>
<thead>
<tr>
<th>MR</th>
<th>F_SEL</th>
<th>Divide Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>Reset: Q0, Q1 outputs low</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>÷1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>÷2</td>
</tr>
</tbody>
</table>

FIGURE 1. TIMING DIAGRAM
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{DD}</td>
<td></td>
<td>4.6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inputs, V_i</td>
<td>$-0.5V$ to $V_{DD} + 0.5V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs, V_o</td>
<td>$-0.5V$ to $V_{DD} + 0.5V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_{JA}</td>
<td>103°C/W (0 lfpm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature, T_{STG}</td>
<td>$-65°C$ to $150°C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Positive Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4B. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Positive Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td></td>
<td>1.3</td>
<td></td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_L</td>
<td>Input Low Voltage</td>
<td></td>
<td>-0.3</td>
<td></td>
<td>0.7</td>
<td>V</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>$V_{DD} = V_{IN} = 3.465V$</td>
<td>150</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_L</td>
<td>Input Low Current</td>
<td>$V_{DD} = 3.465V, V_{IN} = 0V$</td>
<td>-5</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>$V_{DD} = 3.465V$</td>
<td>2.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$V_{DD} = 2.625V$ or $2.625V$</td>
<td>0.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Outputs terminated with 50Ω to $V_{DD}/2$. See Parameter Measurement Information section, “3.3V Output Load Test Circuit” diagram.

Table 4D. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td></td>
<td>1.1</td>
<td></td>
<td>$V_{DD} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_L</td>
<td>Input Low Voltage</td>
<td></td>
<td>-0.3</td>
<td></td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>$V_{DD} = V_{IN} = 2.625V$</td>
<td>150</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_L</td>
<td>Input Low Current</td>
<td>$V_{DD} = 2.625V, V_{IN} = 0V$</td>
<td>-5</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>$V_{DD} = 2.625V$</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$V_{DD} = 2.625V$</td>
<td>0.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Outputs terminated with 50Ω to $V_{DD}/2$. See Parameter Measurement Information section, “2.5V Output Load Test Circuit” diagram.
TABLE 4E. DIFFERENTIAL DC CHARACTERISTICS, $V_{DD} = 3.3V\pm5\%$ or $V_{DD} = 2.5V\pm5\%$, $TA = -40^\circ C$ TO $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>CLK $V_{DD} = V_{IN} = 3.465V$ or $2.625V$</td>
<td>150 µA</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>nCLK $V_{DD} = V_{IN} = 3.465V$ or $2.625V$</td>
<td>5 µA</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Input Voltage</td>
<td></td>
<td>0.15</td>
<td>1.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Input Voltage; NOTE 1</td>
<td></td>
<td>GND + 0.5</td>
<td>$V_{DD} - 0.85$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Common mode voltage is defined as V_{in}.

TABLE 5A. AC CHARACTERISTICS, $V_{DD} = 3.3V\pm5\%$, $TA = -40^\circ C$ TO $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MAX}</td>
<td>Output Frequency</td>
<td></td>
<td>250 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PD}</td>
<td>Propagation Delay; NOTE 1</td>
<td>CLK to Qx</td>
<td>2.1</td>
<td>3.4</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{jit}</td>
<td>Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section</td>
<td>250MHz, Integration Range: 12kHz – 20MHz</td>
<td>0.18 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{sk(pp)}$</td>
<td>Part-to-Part Skew; NOTE 2, 3</td>
<td></td>
<td>450 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{sk(o)}$</td>
<td>Output Skew; NOTE 3, 4</td>
<td></td>
<td>50 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{r} / t_{f}</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>250</td>
<td>700</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle;</td>
<td>Fout ≤ 133MHz</td>
<td>45</td>
<td>55</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>NOTE 5: Fout > 133MHz</td>
<td></td>
<td>40</td>
<td>60</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

NOTE 1: Measured from the differential input crossing point to the output at $V_{in}/2$.
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{in}/2$.
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 4: Defined as skew between outputs at the same supply voltage and with equal load conditions.
NOTE 5: Output Duty Cycle assuming 50% input duty cycle.

TABLE 5B. AC CHARACTERISTICS, $V_{DD} = 2.5V\pm5\%$, $TA = -40^\circ C$ TO $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MAX}</td>
<td>Output Frequency</td>
<td></td>
<td>250 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PD}</td>
<td>Propagation Delay; NOTE 1</td>
<td>CLK to Qx</td>
<td>2.7</td>
<td>3.4</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{jit}</td>
<td>Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section</td>
<td>250MHz, Integration Range: 12kHz – 20MHz</td>
<td>0.3 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{sk(pp)}$</td>
<td>Part-to-Part Skew; NOTE 2, 3</td>
<td></td>
<td>450 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{sk(o)}$</td>
<td>Output Skew; NOTE 3, 4</td>
<td></td>
<td>25 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{r} / t_{f}</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>250</td>
<td>700</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle;</td>
<td>Fout ≤ 133MHz</td>
<td>45</td>
<td>55</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>NOTE 5: Fout > 133MHz</td>
<td></td>
<td>40</td>
<td>60</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

For **NOTES**, please see above Table 5A.
ADDITIVE PHASE JITTER

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the dBc Phase Noise. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a dBc value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.
PARAMETER MEASUREMENT INFORMATION

3.3V OUTPUT LOAD AC TEST CIRCUIT

DIFFERENTIAL INPUT LEVEL

PART-TO-PART SKew

OUTPUT SKew

OUTPUT RISE/FALL TIME

PROPAGATION DELAY

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD
APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage \(V_{\text{REF}} = \frac{V_{\text{DD}}}{2} \) is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the \(V_{\text{REF}} \) in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and \(V_{\text{DD}} = 3.3\text{V} \), \(V_{\text{REF}} \) should be 1.25V and \(\frac{R2}{R1} = 0.609 \).

![Figure 1. Single Ended Signal Driving Differential Input](image)

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

LVCMOS CONTROL PINS
All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

OUTPUTS:

LVCMOS OUTPUTS
All unused LVCMOS output can be left floating. There should be no trace attached.
Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both signals must meet the V_{pp} and V_{CMR} input requirements. Figures 2A to 2E show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only.

Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 2A, the input termination applies for IDT HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.
RELIABILITY INFORMATION

TABLE 6. θ_{JA} vs. Air Flow Table for 8 Lead SOIC

<table>
<thead>
<tr>
<th></th>
<th>θ_{JA} by Velocity (Linear Feet per Minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Single-Layer PCB, JEDEC Standard Test Boards</td>
<td>123°C/W</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>103°C/W</td>
</tr>
</tbody>
</table>

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT
The transistor count for 87021I is: 414
TABLE 7. PACKAGE DIMENSIONS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MINIMUM</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.35</td>
</tr>
<tr>
<td>A1</td>
<td>0.10</td>
</tr>
<tr>
<td>B</td>
<td>0.33</td>
</tr>
<tr>
<td>C</td>
<td>0.19</td>
</tr>
<tr>
<td>D</td>
<td>4.80</td>
</tr>
<tr>
<td>E</td>
<td>3.80</td>
</tr>
<tr>
<td>e</td>
<td>1.27 BASIC</td>
</tr>
<tr>
<td>H</td>
<td>5.80</td>
</tr>
<tr>
<td>h</td>
<td>0.25</td>
</tr>
<tr>
<td>L</td>
<td>0.40</td>
</tr>
<tr>
<td>α</td>
<td>0°</td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MS-012
<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>87021AMILF</td>
<td>87021AIL</td>
<td>8 lead “Lead Free” SOIC</td>
<td>Tray</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>87021AMILFT</td>
<td>87021AIL</td>
<td>8 lead “Lead Free” SOIC</td>
<td>Tape and Reel</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>
REVISION HISTORY SHEET

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>T2</td>
<td>2</td>
<td>Pin Characteristics Table - added R_{out} row.</td>
<td>8/26/08</td>
</tr>
<tr>
<td>B</td>
<td>T8</td>
<td>1</td>
<td>Removed ICS from the part numbers where needed.</td>
<td>1-26-16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>General Description - Removed the ICS chip and HiPerClockS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Features Section - Removed reference to lead free packages.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ordering Information - removed quantity from tape and reel. Deleted LF note below the table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated header and footer.</td>
<td></td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 a. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 b. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.