Device Overview

The 89HPES16T4 is a member of the IDT PRECISE™ family of PCI Express® switching solutions. The PES16T4 is a 16-lane, 4-port peripheral chip that performs PCI Express packet switching with a feature set optimized for high performance applications such as servers, storage, and communications/networking. It provides connectivity and switching functions between a PCI Express upstream port and up to three downstream ports and supports switching between downstream ports.

Features

- **High Performance PCI Express Switch**
 - Sixteen 2.5 Gbps PCI Express lanes
 - Four switch ports
 - Upstream port configurable up to x8
 - Downstream ports configurable up to x4
 - Low-latency cut-through switch architecture
 - Support for Max Payload Size up to 2048 bytes
 - One virtual channel
 - Eight traffic classes
 - PCI Express Base Specification Revision 1.1 compliant

- **Flexible Architecture with Numerous Configuration Options**
 - Automatic per port link width negotiation to x8, x4, x2 or x1
 - Automatic lane reversal on all ports
 - Automatic polarity inversion on all lanes
 - Ability to load device configuration from serial EEPROM

- **Legacy Support**
 - PCI compatible INTx emulation
 - Bus locking

- **Highly Integrated Solution**
 - Requires no external components
 - Incorporates on-chip internal memory for SerDes with 8B/10B encoder/decoder (no separate transceivers needed)

- **Reliability, Availability, and Serviceability (RAS) Features**
 - Supports ECRC and Advanced Error Reporting
 - Internal end-to-end parity protection on all TLPs ensures data integrity even in systems that do not implement end-to-end CRC (ECRC)
 - Supports PCI Express Native Hot-Plug, Hot-Swap capable I/O
 - Compatible with Hot-Plug I/O expanders used on PC and server motherboards

Block Diagram

Figure 1 Internal Block Diagram
Power Management
- Utilizes advanced low-power design techniques to achieve low typical power consumption
- Supports PCI Power Management Interface specification (PCI-PM 1.1)
 - Supports device power management states: D0, D3_hot and D3_cold
- Unused SerDes are disabled

Testability and Debug Features
- Ability to read and write any internal register via the SMBus

Eleven General Purpose Input/Output Pins
- Each pin may be individually configured as an input or output
- Each pin may be individually configured as an interrupt input
- Some pins have selectable alternate functions

Packaged in a 23mm x 23mm 484-ball BCG with 1mm ball spacing

Product Description
Utilizing standard PCI Express interconnect, the PES16T4 provides the most efficient I/O connectivity solution for applications requiring high throughput, low latency, and simple board layout with a minimum number of board layers. It provides connectivity for up to 4 ports across 16 integrated serial lanes. Each lane provides 2.5 Gbps of bandwidth in both directions and is fully compliant with PCI Express Base specification revision 1.1.

SMBus Interface
The PES16T4 contains two SMBus interfaces. The slave interface provides full access to the configuration registers in the PES16T4, allowing every configuration register in the device to be read or written by an external agent. The master interface allows the default configuration register values of the PES16T4 to be overridden following a reset with values programmed in an external serial EEPROM. The master interface is also used by an external Hot-Plug I/O expander.

Six pins make up each of the two SMBus interfaces. These pins consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus address pins. In the slave interface, these address pins allow the SMBus address to which the device responds to be configured. In the master interface, these address pins allow the SMBus address of the serial configuration EEPROM from which data is loaded to be configured. The SMBus address is set up on negation of PERSTN by sampling the corresponding address pins. When the pins are sampled, the resulting address is assigned as shown in Table 1.

Table 1 Master and Slave SMBus Address Assignment

<table>
<thead>
<tr>
<th>Bit</th>
<th>Slave SMBus Address</th>
<th>Master SMBus Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SSMBADDR[1]</td>
<td>MSMBADDR[1]</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>MSMBADDR[4]</td>
</tr>
<tr>
<td>5</td>
<td>SSMBADDR[5]</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

As shown in Figure 2, the master and slave SMBuses may be used in a unified or split configuration. In the unified configuration, shown in Figure 2(a), the master and slave SMBuses are tied together and the PES16T4 acts both as a SMBus master as well as a SMBus slave on this bus. This requires that the SMBus master or processor that has access to PES16T4 registers supports SMBus arbitration. In some systems, this SMBus master interface may be implemented using general purpose I/O pins on a processor or micro controller, and may not support SMBus arbitration. To support these systems, the PES16T4 may be configured to operate in a split configuration as shown in Figure 2(b).

In the split configuration, the master and slave SMBuses operate as two independent buses and thus multi-master arbitration is never required. The PES16T4 supports reading and writing of the serial EEPROM on the master SMBus via the slave SMBus, allowing in system programming of the serial EEPROM.
Hot-Plug Interface

The PES16T4 supports PCI Express Hot-Plug on each downstream port. To reduce the number of pins required on the device, the PES16T4 utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following reset and configuration, whenever the state of a Hot-Plug output needs to be modified, the PES16T4 generates an SMBus transaction to the I/O expander with the new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on the IOEXPINTN input pin (alternate function of GPIO) of the PES16T4. In response to an I/O expander interrupt, the PES16T4 generates an SMBus transaction to read the state of all of the Hot-Plug inputs from the I/O expander.

General Purpose Input/Output

The PES16T4 provides 11 General Purpose Input/Output (GPIO) pins that may be used by the system designer as bit I/O ports. Each GPIO pin may be configured independently as an input or output through software control. Some GPIO pins are shared with other on-chip functions. These alternate functions may be enabled via software, SMBus slave interface, or serial configuration EEPROM.

The PES16T4 is based on a flexible and efficient layered architecture. The PCI Express layer consists of SerDes, Physical, Data Link and Transaction layers in compliance with PCI Express Base specification Revision 1.1. The PES16T4 can operate either as a store and forward or cut-through switch and is designed to switch memory and I/O transactions. It supports eight Traffic Classes (TCs) and one Virtual Channel (VC) with sophisticated resource management to enable efficient switching and I/O connectivity for servers, storage, and embedded applications.
Pin Description

The following tables list the functions of the pins provided on the PES16T4. Some of the functions listed may be multiplexed onto the same pin. The active polarity of a signal is defined using a suffix. Signals ending with an "N" are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.

Note: In the PES16T4, the three downstream ports are labeled port 1, port 6, and port 7.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Name/Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE0RP[3:0]</td>
<td>I</td>
<td>PCI Express Port 0 Serial Data Receive</td>
<td>Differential PCI Express receive pairs for port 0. Port 0 is the upstream port.</td>
</tr>
<tr>
<td>PE0RN[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE0TP[3:0]</td>
<td>O</td>
<td>PCI Express Port 0 Serial Data Transmit</td>
<td>Differential PCI Express transmit pairs for port 0. Port 0 is the upstream port.</td>
</tr>
<tr>
<td>PE0TN[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE1RP[3:0]</td>
<td>I</td>
<td>PCI Express Port 1 Serial Data Receive</td>
<td>Differential PCI Express receive pairs for port 1. When port 0 is merged with port 1, these signals become port 0 receive pairs for lanes 4 through 7.</td>
</tr>
<tr>
<td>PE1RN[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE1TP[3:0]</td>
<td>O</td>
<td>PCI Express Port 1 Serial Data Transmit</td>
<td>Differential PCI Express transmit pairs for port 1. When port 0 is merged with port 1, these signals become port 0 transmit pairs for lanes 4 through 7.</td>
</tr>
<tr>
<td>PE1TN[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE6RN[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE6TN[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE7RP[3:0]</td>
<td>I</td>
<td>PCI Express Port 7 Serial Data Receive</td>
<td>Differential PCI Express receive pairs for port 7. When port 6 is merged with port 7, these signals become port 6 receive pairs for lanes 4 through 7.</td>
</tr>
<tr>
<td>PE7RN[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE7TP[3:0]</td>
<td>O</td>
<td>PCI Express Port 7 Serial Data Transmit</td>
<td>Differential PCI Express transmit pairs for port 7. When port 6 is merged with port 7, these signals become port 6 transmit pairs for lanes 4 through 7.</td>
</tr>
<tr>
<td>PE7TN[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P01MERGEN</td>
<td>I</td>
<td>Port 0 and 1 Merge</td>
<td>P01MERGEN is an active low signal. It is pulled low internally via a 251K ohm resistor. When this pin is low, port 0 is merged with port 1 to form a single x8 port. The Serdes lanes associated with port 1 become lanes 4 through 7 of port 0. When this pin is high, port 0 and port 1 are not merged, and each operates as a single x4 port.</td>
</tr>
<tr>
<td>P67MERGEN</td>
<td>I</td>
<td>Port 6 and 7 Merge</td>
<td>P67MERGEN is an active low signal. It is pulled low internally via a 251K ohm resistor. When this pin is low, port 6 is merged with port 7 to form a single x8 port. The Serdes lanes associated with port 7 become lanes 4 through 7 of port 6. When this pin is high, port 6 and port 7 are not merged, and each operates as a single x4 port.</td>
</tr>
<tr>
<td>PEREFLCKP[2:1]</td>
<td>I</td>
<td>PCI Express Reference Clock</td>
<td>Differential reference clock pair input. This clock is used as the reference clock by on-chip PLLs to generate the clocks required for the system logic and on-chip SerDes. The frequency of the differential reference clock is determined by the REFCLKM signal.</td>
</tr>
<tr>
<td>PEREFLCKN[2:1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFCLKM</td>
<td>I</td>
<td>PCI Express Reference Clock Mode Select</td>
<td>This signal selects the frequency of the reference clock input. 0x0 - 100 MHz 0x1 - 125 MHz</td>
</tr>
</tbody>
</table>

Table 2: PCI Express Interface Pins
<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Name/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSMBADDR[4:1]</td>
<td>I</td>
<td>Master SMBus Address. These pins determine the SMBus address of the serial EEPROM from which configuration information is loaded.</td>
</tr>
<tr>
<td>MSMBCLK</td>
<td>I/O</td>
<td>Master SMBus Clock. This bidirectional signal is used to synchronize transfers on the master SMBus. It is active and generating the clock only when the EEPROM or I/O Expanders are being accessed.</td>
</tr>
<tr>
<td>MSMBDAT</td>
<td>I/O</td>
<td>Master SMBus Data. This bidirectional signal is used for data on the master SMBus.</td>
</tr>
<tr>
<td>SSMBADDR[5,3:1]</td>
<td>I</td>
<td>Slave SMBus Address. These pins determine the SMBus address to which the slave SMBus interface responds.</td>
</tr>
<tr>
<td>SSMBCLK</td>
<td>I/O</td>
<td>Slave SMBus Clock. This bidirectional signal is used to synchronize transfers on the slave SMBus.</td>
</tr>
<tr>
<td>SSMBDAT</td>
<td>I/O</td>
<td>Slave SMBus Data. This bidirectional signal is used for data on the slave SMBus.</td>
</tr>
</tbody>
</table>

Table 3 SMBus Interface Pins

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Name/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIO[0]</td>
<td>I/O</td>
<td>General Purpose I/O. This pin can be configured as a general purpose I/O pin.</td>
</tr>
<tr>
<td>GPIO[1]</td>
<td>I/O</td>
<td>General Purpose I/O. This pin can be configured as a general purpose I/O pin.</td>
</tr>
<tr>
<td>GPIO[2]</td>
<td>I/O</td>
<td>General Purpose I/O. This pin can be configured as a general purpose I/O pin.</td>
</tr>
<tr>
<td>GPIO[3]</td>
<td>I/O</td>
<td>General Purpose I/O. This pin can be configured as a general purpose I/O pin.</td>
</tr>
<tr>
<td>GPIO[4]</td>
<td>I/O</td>
<td>General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN2 Alternate function pin type: Input Alternate function: I/O Expander interrupt 2 input</td>
</tr>
<tr>
<td>GPIO[5]</td>
<td>I/O</td>
<td>General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN3 Alternate function pin type: Input Alternate function: I/O Expander interrupt 3 input</td>
</tr>
<tr>
<td>GPIO[6]</td>
<td>I/O</td>
<td>General Purpose I/O. This pin can be configured as a general purpose I/O pin.</td>
</tr>
<tr>
<td>GPIO[7]</td>
<td>I/O</td>
<td>General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: GPEN Alternate function pin type: Output Alternate function: General Purpose Event (GPE) output</td>
</tr>
</tbody>
</table>

Table 4 General Purpose I/O Pins (Part 1 of 2)
GPIO[8] I/O
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P1RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 1

GPIO[11] I/O
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P6RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 6

GPIO[12] I/O
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P7RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 7

Table 4 General Purpose I/O Pins (Part 2 of 2)

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Name/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCLKDS</td>
<td>I</td>
<td>Common Clock Downstream. When the CCLKDS pin is asserted, it indicates that a common clock is being used between the downstream device and the downstream port.</td>
</tr>
<tr>
<td>CCLKUS</td>
<td>I</td>
<td>Common Clock Upstream. When the CCLKUS pin is asserted, it indicates that a common clock is being used between the upstream device and the upstream port.</td>
</tr>
<tr>
<td>MSMBSMODE</td>
<td>I</td>
<td>Master SMBus Slow Mode. The assertion of this pin indicates that the master SMBus should operate at 100 KHz instead of 400 KHz. This value may not be overridden.</td>
</tr>
<tr>
<td>PERSTN</td>
<td>I</td>
<td>Fundamental Reset. Assertion of this signal resets all logic inside PES16T4 and initiates a PCI Express fundamental reset.</td>
</tr>
<tr>
<td>RSTHALT</td>
<td>I</td>
<td>Reset Halt. When this signal is asserted during a PCI Express fundamental reset, PES16T4 executes the reset procedure and remains in a reset state with the Master and Slave SMBuses active. This allows software to read and write registers internal to the device before normal device operation begins. The device exits the reset state when the RSTHALT bit is cleared in the SWCTL register by an SMBus master.</td>
</tr>
</tbody>
</table>
| SWMODE[2:0] | I | Switch Mode. These configuration pins determine the PES16T4 switch operating mode. These pins should be static and not change after the negation of PERSTN.
0x0 - Normal switch mode
0x1 - Normal switch mode with Serial EEPROM initialization
0x2 - through 0xF Reserved |

Table 5 System Pins
Signal	Type	Name/Description	
----------	------	--	$ This is an input test clock used to clock the shifting of data into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is independent of the system clock with a nominal 50% duty cycle.
JTAG_TDI	I	JTAG Data Input. This is the serial data input to the boundary scan logic or JTAG Controller.	
JTAG_TDO	O	JTAG Data Output. This is the serial data shifted out from the boundary scan logic or JTAG Controller. When no data is being shifted out, this signal is tri-stated.	
JTAG_TMS	I	JTAG Mode. The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller.	
JTAG_TRST_N	I	JTAG Reset. This active low signal asynchronously resets the boundary scan logic and JTAG TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in functional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board.	

Table 6 Test Pins

Signal	Type	Name/Description	
----------	------	--	$ Core VDD. Power supply for core logic.
VDDIO	I	I/O VDD. LVTTL I/O buffer power supply.	
VDDPE	I	PCI Express Digital Power. PCI Express digital power used by the digital power of the SerDes.	
VDDEAPE	I	PCI Express Analog Power. PCI Express analog power used by the PLL and bias generator.	
VTTYPE	I	PCI Express Termination Power.	
VSS	I	Ground.	

Table 7 Power and Ground Pins
Pin Characteristics

Note: Some input pads of the PES16T4 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left floating can cause a slight increase in power consumption.

<table>
<thead>
<tr>
<th>Function</th>
<th>Pin Name</th>
<th>Type</th>
<th>Buffer</th>
<th>I/O Type</th>
<th>Internal Resistor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI Express Interface</td>
<td>PE0RN[3:0]</td>
<td>I</td>
<td>CML</td>
<td>Serial Link</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE0RP[3:0]</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE0TN[3:0]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE0TP[3:0]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE1RN[3:0]</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE1RP[3:0]</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE1TN[3:0]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE1TP[3:0]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE6RN[3:0]</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE6RP[3:0]</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE6TN[3:0]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE6TP[3:0]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE7RN[3:0]</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE7RP[3:0]</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE7TN[3:0]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE7TP[3:0]</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEREFCLKN[2:1]</td>
<td>I</td>
<td>LVPECL/ CML</td>
<td>Diff. Clock Input</td>
<td>Refer to Table 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEREFCLKP[2:1]</td>
<td>I</td>
<td>LVTTL</td>
<td>Input</td>
<td>pull-down</td>
<td></td>
</tr>
<tr>
<td>SMBus</td>
<td>MSMBADDR[4:1]</td>
<td>I</td>
<td>LVTTL</td>
<td>Input</td>
<td>pull-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSMBCLK</td>
<td>I/O</td>
<td>STI²</td>
<td>pull-up on board</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSMBDAT</td>
<td>I/O</td>
<td>STI</td>
<td>pull-up on board</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSMBADDR[5,3:1]</td>
<td>I</td>
<td></td>
<td>Input</td>
<td>pull-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSMBCLK</td>
<td>I/O</td>
<td>STI</td>
<td>pull-up on board</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSMBDAT</td>
<td>I/O</td>
<td>STI</td>
<td>pull-up on board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Purpose I/O</td>
<td>GPIO[12,11,8:0]</td>
<td>I/O</td>
<td>LVTTL</td>
<td>High Drive</td>
<td>pull-up</td>
<td></td>
</tr>
<tr>
<td>System Pins</td>
<td>CCLKDS</td>
<td>I</td>
<td>LVTTL</td>
<td>Input</td>
<td>pull-up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCLKUS</td>
<td>I</td>
<td></td>
<td>pull-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSMBSMODE</td>
<td>I</td>
<td></td>
<td>pull-down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERSTN</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P01MERGEN</td>
<td>I</td>
<td></td>
<td>pull-down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P07MERGEN</td>
<td>I</td>
<td></td>
<td>pull-down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RSTHALT</td>
<td>I</td>
<td></td>
<td>pull-down</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWMODE[2:0]</td>
<td>I</td>
<td></td>
<td>pull-down</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8 Pin Characteristics (Part 1 of 2)
Table 8 Pin Characteristics (Part 2 of 2)

1. Internal resistor values under typical operating conditions are 54K Ω for pull-up and 251K Ω for pull-down.
2. Schmitt Trigger Input (STI).

Logic Diagram — PES16T4
System Clock Parameters

Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 13 and 14.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RefclkFREQ</td>
<td>Input reference clock frequency range</td>
<td>100</td>
<td></td>
<td>125</td>
<td>MHz</td>
</tr>
<tr>
<td>RefclkDC</td>
<td>Duty cycle of input clock</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td>TR, TF</td>
<td>Rise/Fall time of input clocks</td>
<td></td>
<td></td>
<td>0.2*RCUI</td>
<td>RCUI3</td>
</tr>
<tr>
<td>VSW</td>
<td>Differential input voltage swing4</td>
<td>0.6</td>
<td></td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td>tJitter</td>
<td>Input clock jitter (cycle-to-cycle)</td>
<td></td>
<td></td>
<td>125</td>
<td>ps</td>
</tr>
<tr>
<td>RT</td>
<td>Termination Resistor</td>
<td>110</td>
<td></td>
<td></td>
<td>Ohms</td>
</tr>
</tbody>
</table>

Table 9 Input Clock Requirements

1. The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM.
2. ClkIn must be AC coupled. Use 0.01 — 0.1 µF ceramic capacitors.
3. RCUI (Reference Clock Unit Interval) refers to the reference clock period.
4. AC coupling required.

AC Timing Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min1</th>
<th>Typical1</th>
<th>Max1</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIe Transmit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI</td>
<td>Unit Interval</td>
<td>399.88</td>
<td>400</td>
<td>400.12</td>
<td>ps</td>
</tr>
<tr>
<td>tTX-EYE</td>
<td>Minimum Tx Eye Width</td>
<td>0.7</td>
<td>.9</td>
<td></td>
<td>UI</td>
</tr>
<tr>
<td>tTX-EYE-MEDIAN-TO-MAX-JITTER</td>
<td>Maximum time between the jitter median and maximum deviation from the median</td>
<td></td>
<td></td>
<td>0.15</td>
<td>UI</td>
</tr>
<tr>
<td>tTX-RISE, tTX-FALL</td>
<td>D+ / D- Tx output rise/fall time</td>
<td>50</td>
<td>90</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>tTX-IDLE-MIN</td>
<td>Minimum time in idle</td>
<td>50</td>
<td></td>
<td></td>
<td>UI</td>
</tr>
<tr>
<td>tTX-IDLE-SET-TO-IDLE</td>
<td>Maximum time to transition to a valid Idle after sending an Idle ordered set</td>
<td></td>
<td></td>
<td>20</td>
<td>UI</td>
</tr>
<tr>
<td>tTX-IDLE-TO-DIFF-DATA</td>
<td>Maximum time to transition from valid idle to diff data</td>
<td></td>
<td></td>
<td>20</td>
<td>UI</td>
</tr>
<tr>
<td>tTX-SKEW</td>
<td>Transmitter data skew between any 2 lanes</td>
<td>500</td>
<td></td>
<td>1300</td>
<td>ps</td>
</tr>
<tr>
<td>PCIe Receive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI</td>
<td>Unit Interval</td>
<td>399.88</td>
<td>400</td>
<td>400.12</td>
<td>ps</td>
</tr>
<tr>
<td>tRX-EYE (with jitter)</td>
<td>Minimum Receiver Eye Width (jitter tolerance)</td>
<td>0.4</td>
<td></td>
<td></td>
<td>UI</td>
</tr>
<tr>
<td>tRX-EYE-MEDIUM TO MAX JITTER</td>
<td>Max time between jitter median & max deviation</td>
<td></td>
<td></td>
<td>0.3</td>
<td>UI</td>
</tr>
<tr>
<td>tRX-IDLE-DET-DIFF-ENTER TIME</td>
<td>Unexpected Idle Enter Detect Threshold Integration Time</td>
<td></td>
<td></td>
<td>10</td>
<td>ms</td>
</tr>
<tr>
<td>tRX-SKEW</td>
<td>Lane to lane input skew</td>
<td></td>
<td></td>
<td>20</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 10 PCIe AC Timing Characteristics

1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.1
GPIO AC Timing Characteristics

<table>
<thead>
<tr>
<th>Signal</th>
<th>Symbol</th>
<th>Reference Edge</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Timing Diagram Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIO[10:0]</td>
<td>Tpw²</td>
<td>None</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

1. GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if they are asynchronous.
2. The values for this symbol were determined by calculation, not by testing.

JTAG AC Timing Characteristics

<table>
<thead>
<tr>
<th>Signal</th>
<th>Symbol</th>
<th>Reference Edge</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
<th>Timing Diagram Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTAG_TCK</td>
<td>Tper_16a</td>
<td>none</td>
<td>50.0</td>
<td>—</td>
<td>ns</td>
<td>See Figure 5.</td>
</tr>
<tr>
<td>Thigh_16a, Tlow_16a</td>
<td></td>
<td></td>
<td>10.0</td>
<td>25.0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>JTAG_TMS¹, JTAG_TDI</td>
<td>Tsu_16b</td>
<td>JTAG_TCK rising</td>
<td>2.4</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Thld_16b</td>
<td></td>
<td></td>
<td>1.0</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>JTAG_TDO</td>
<td>Tdo_16c</td>
<td>JTAG_TCK falling</td>
<td>—</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Tdz_16c²</td>
<td></td>
<td></td>
<td>—</td>
<td>20</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>JTAG_TRST_N</td>
<td>Tpw_16d²</td>
<td>none</td>
<td>25.0</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

1. The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.
2. The values for this symbol were determined by calculation, not by testing.
Recommended Operating Supply Voltages

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}CORE</td>
<td>Internal logic supply</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>V_{DD}I/O</td>
<td>I/O supply except for SerDes LVPECL/CML</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{DD}PE</td>
<td>PCI Express Digital Power</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>V_{DD}APE</td>
<td>PCI Express Analog Power</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>V_{TT}PE</td>
<td>PCI Express Serial Data Transmit Termination Voltage</td>
<td>1.425</td>
<td>1.5</td>
<td>1.575</td>
<td>V</td>
</tr>
<tr>
<td>V_{SS}</td>
<td>Common ground</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 13 PES16T4 Operating Voltages

Power-Up Sequence

This section describes the sequence in which various voltages must be applied to the part during power-up to ensure proper functionality. For the PES16T4, the power-up sequence must be as follows:

1. $V_{DD}I/O$ — 3.3 V
2. $V_{DD}Core, V_{DD}PE, V_{DD}APE$ — 1.0 V
3. $V_{TT}PE$ — 1.5 V

When powering up, each voltage level must ramp and stabilize prior to applying the next voltage in the sequence to ensure internal latch-up issues are avoided. There are no maximum time limitations in ramping to valid power levels. The power-down sequence must be in the reverse order of the power-up sequence.
Recommended Operating Temperature

<table>
<thead>
<tr>
<th>Grade</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>0°C to +70°C Ambient</td>
</tr>
</tbody>
</table>

Table 14 PES16T4 Operating Temperatures

Power Consumption

Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 13 (and also listed below).

Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in Table 13 (and also listed below).

<table>
<thead>
<tr>
<th>Number of active Lanes per Port</th>
<th>Core Supply</th>
<th>PCIe Digital Supply</th>
<th>PCIe Analog Supply</th>
<th>PCIe Termination Supply</th>
<th>I/O Supply</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typ 1.0V</td>
<td>Max 1.1V</td>
<td>Typ 1.0V</td>
<td>Max 1.1V</td>
<td>Typ 1.0V</td>
<td>Max 1.1V</td>
</tr>
<tr>
<td>4/4/4/4</td>
<td>mA</td>
<td>598</td>
<td>756</td>
<td>308</td>
<td>342</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>Watts</td>
<td>0.6</td>
<td>0.83</td>
<td>0.31</td>
<td>0.38</td>
<td>0.56</td>
</tr>
<tr>
<td>4/4/1/1</td>
<td>mA</td>
<td>528</td>
<td>642</td>
<td>279</td>
<td>298</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Watts</td>
<td>0.53</td>
<td>0.71</td>
<td>0.55</td>
<td>0.28</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 15 PES16T4 Power Consumption

Thermal Considerations

This section describes thermal considerations for the PES16T4 (23mm² BCG484 package). The data in Table 16 below contains information that is relevant to the thermal performance of the PES16T4 switch.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{J_{\text{max}}}$</td>
<td>Junction Temperature</td>
<td>125</td>
<td>°C</td>
<td>Maximum</td>
</tr>
<tr>
<td>$T_{A_{\text{max}}}$</td>
<td>Ambient Temperature</td>
<td>70</td>
<td>°C</td>
<td>Maximum for commercial-rated products</td>
</tr>
<tr>
<td>$\theta_{JA_{\text{effective}}}$</td>
<td>Effective Thermal Resistance, Junction-to-Ambient</td>
<td>11.5</td>
<td>°C/W</td>
<td>Zero air flow</td>
</tr>
<tr>
<td>θ_{JB}</td>
<td>Thermal Resistance, Junction-to-Board</td>
<td>9.6</td>
<td>°C/W</td>
<td>1 m/S air flow</td>
</tr>
<tr>
<td>θ_{JC}</td>
<td>Thermal Resistance, Junction-to-Case</td>
<td>9.0</td>
<td>°C/W</td>
<td>2 m/S air flow</td>
</tr>
<tr>
<td>P</td>
<td>Power Dissipation of the Device</td>
<td>2.9</td>
<td>Watts</td>
<td>Maximum</td>
</tr>
</tbody>
</table>

Table 16 Thermal Specifications for PES16T4, 23x23mm BCG484 Package

Note: The parameter $\theta_{JA_{\text{eff}}}$ is not the absolute thermal resistance for the package as defined by JEDEC (JESD-51). Because resistance can vary with the number of board layers, size of the board, and airflow, $\theta_{JA_{\text{eff}}}$ is the effective thermal resistance. The values for effective θ_{JA} given above are based on a 10-layer, standard height, full length (4.3”x12.2”) PCIe add-in card.
Heat Sink

Table 17 lists heat sink requirements for the PES16T4 under three common usage scenarios. As shown in this table, a heat sink is not required in most cases.

<table>
<thead>
<tr>
<th>Air Flow</th>
<th>Board Size</th>
<th>Board Layers</th>
<th>Heat Sink Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>3.9”x6.2” (ExpressModule form factor) or larger</td>
<td>6 or more</td>
<td>No heat sink required</td>
</tr>
<tr>
<td>Zero</td>
<td>Any</td>
<td>10 or more</td>
<td>No heat sink required</td>
</tr>
<tr>
<td>1 m/S or more</td>
<td>Any</td>
<td>Any</td>
<td>No heat sink required</td>
</tr>
</tbody>
</table>

Table 17 Heat Sink Requirements Based on Air Flow and Board Characteristics

Thermal Usage Examples

The junction-to-ambient thermal resistance is a measure of a device’s ability to dissipate heat from the die to its surroundings in the absence of a heat sink. The general formula to determine θ_{JA} is:

$$\theta_{JA} = (T_J - T_A)/P$$

Thermal reliability of a device is generally assured when the actual value of T_J in the specific system environment being considered is less than the maximum T_J specified for the device. Using an ambient temperature of 70°C and assuming a system with 1m/S airflow, the actual value of T_J is:

$$T_J(actual) = T_A + P \cdot \theta_{JA(eff)} = 70°C + 2.9W \cdot 9.6W/°C = 98°C$$

The actual T_J of 98°C is well below the maximum T_J of 125°C specified for the device (shown in Table 16). Therefore, no heat sink is needed in this scenario. The formula is also useful from a system design perspective. It can be used to determine if a heat sink should be added to the device based on some desired value of T_J. For example, if for reliability purposes the desired T_J is 100°C, then the maximum allowable T_A is:

$$T_A(allowed) = T_J(desired) - (P \cdot \theta_{JA(effective)})$$

$$T_A(allowed) = 100°C - (2.9W \cdot 9.6W/°C) = 100°C - 28°C = 72°C$$

An appropriate level of increased air flow and/or a heat sink can be added to achieve this lower ambient temperature. Please contact ssdhelp@idt.com for further assistance.
DC Electrical Characteristics

Values based on systems running at recommended supply voltages, as shown in Table 13.

Note: See Table 8, Pin Characteristics, for a complete I/O listing.

<table>
<thead>
<tr>
<th>I/O Type</th>
<th>Parameter</th>
<th>Description</th>
<th>Min¹</th>
<th>Typ¹</th>
<th>Max¹</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Link</td>
<td>PCIe Transmit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{TX-DIFF-p-p})</td>
<td>Differential peak-to-peak output voltage</td>
<td>800</td>
<td>1200</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{TX-DE-RATIO})</td>
<td>De-emphasized differential output voltage</td>
<td>-3</td>
<td>-4</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{TX-DC-CM})</td>
<td>DC Common mode voltage</td>
<td>-0.1</td>
<td>1</td>
<td>3.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{TX-CM-ACP})</td>
<td>RMS AC peak common mode output voltage</td>
<td></td>
<td></td>
<td>20</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{TX-CM-DC-active-idle-delta})</td>
<td>Abs delta of DC common mode voltage between L0 and idle</td>
<td></td>
<td></td>
<td>100</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{TX-CM-DC-line-delta})</td>
<td>Abs delta of DC common mode voltage between D+ and D-</td>
<td></td>
<td></td>
<td>25</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{TX-Idle-DiffP})</td>
<td>Electrical idle diff peak output</td>
<td></td>
<td></td>
<td>20</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{TX-RCV-Detect})</td>
<td>Voltage change during receiver detection</td>
<td></td>
<td></td>
<td>600</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(RL_{TX-DIFF})</td>
<td>Transmitter Differential Return loss</td>
<td>12</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(RL_{TX-CM})</td>
<td>Transmitter Common Mode Return loss</td>
<td>6</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Z_{TX-DEFF-DC})</td>
<td>DC Differential TX impedance</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Z_{OSE})</td>
<td>Single ended TX Impedance</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmitter Eye Diagram</td>
<td>TX Eye Height (De-emphasized bits)</td>
<td>505</td>
<td>650</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmitter Eye Diagram</td>
<td>TX Eye Height (Transition bits)</td>
<td>800</td>
<td>950</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Link (cont.)</td>
<td>PCIe Receive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{RX-DIFF-p-p})</td>
<td>Differential input voltage (peak-to-peak)</td>
<td>175</td>
<td>1200</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{RX-CM-AC})</td>
<td>Receiver common-mode voltage for AC coupling</td>
<td></td>
<td></td>
<td>150</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(RL_{RX-DIFF})</td>
<td>Receiver Differential Return Loss</td>
<td>15</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(RL_{RX-CM})</td>
<td>Receiver Common Mode Return Loss</td>
<td>6</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Z_{RX-DIFF-DC})</td>
<td>Differential input impedance (DC)</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Z_{RX-COMM-DC})</td>
<td>Single-ended input impedance</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Z_{RX-COMM-HIGH-Z-DC})</td>
<td>Powered down input common mode impedance (DC)</td>
<td>200k</td>
<td>350k</td>
<td></td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{RX-IDLE-DET-DIFF-p-p})</td>
<td>Electrical idle detect threshold</td>
<td>65</td>
<td>175</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe REFCLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(C_{IN})</td>
<td>Input Capacitance</td>
<td>1.5</td>
<td>—</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 18 DC Electrical Characteristics (Part 1 of 2)
Table 18 DC Electrical Characteristics (Part 2 of 2)

<table>
<thead>
<tr>
<th>I/O Type</th>
<th>Parameter</th>
<th>Description</th>
<th>Min(^1)</th>
<th>Typ(^1)</th>
<th>Max(^1)</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other I/Os</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW Drive Output</td>
<td>I(_{OL})</td>
<td>—</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
<td>mA</td>
<td>V(_{OL}) = 0.4V</td>
</tr>
<tr>
<td></td>
<td>I(_{OH})</td>
<td>—</td>
<td>—</td>
<td>-5.5</td>
<td>—</td>
<td>mA</td>
<td>V(_{OH}) = 1.5V</td>
</tr>
<tr>
<td>High Drive Output</td>
<td>I(_{OL})</td>
<td>—</td>
<td>—</td>
<td>12.0</td>
<td>—</td>
<td>mA</td>
<td>V(_{OL}) = 0.4V</td>
</tr>
<tr>
<td></td>
<td>I(_{OH})</td>
<td>—</td>
<td>—</td>
<td>-20.0</td>
<td>—</td>
<td>mA</td>
<td>V(_{OH}) = 1.5V</td>
</tr>
<tr>
<td>Schmitt Trigger Input (STI)</td>
<td>V(_{IL})</td>
<td>-0.3</td>
<td>—</td>
<td>0.8</td>
<td>—</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>V(_{IH})</td>
<td>2.0</td>
<td>—</td>
<td>V(_{DD})IO + 0.5</td>
<td>—</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>Input</td>
<td>V(_{IL})</td>
<td>-0.3</td>
<td>—</td>
<td>0.8</td>
<td>—</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>V(_{IH})</td>
<td>2.0</td>
<td>—</td>
<td>V(_{DD})IO + 0.5</td>
<td>—</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>Capacitance</td>
<td>C(_{IN})</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8.5</td>
<td>pF</td>
<td>—</td>
</tr>
<tr>
<td>Leakage</td>
<td>Inputs</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±10</td>
<td>μA</td>
<td>V(_{DD})IO (max)</td>
</tr>
<tr>
<td></td>
<td>I/O(_{LEAK}) W/O Pull-ups/downs</td>
<td>—</td>
<td>—</td>
<td>±10</td>
<td>μA</td>
<td>V(_{DD})IO (max)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I/O(_{LEAK}) WITH Pull-ups/downs</td>
<td>—</td>
<td>—</td>
<td>±80</td>
<td>μA</td>
<td>V(_{DD})IO (max)</td>
<td></td>
</tr>
</tbody>
</table>

1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.1.
Package Pinout — 484-BGA Signal Pinout for PES16T4

The following table lists the pin numbers and signal names for the PES16T4 device.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>VSS</td>
<td></td>
<td>A13</td>
<td>VSS</td>
<td></td>
<td>D3</td>
<td>SSMBCLK</td>
<td></td>
<td>E15</td>
<td>VDDPE</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>VSS</td>
<td></td>
<td>B13</td>
<td>VSS</td>
<td></td>
<td>D4</td>
<td>VSS</td>
<td></td>
<td>E16</td>
<td>VDDPE</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>VSS</td>
<td></td>
<td>B14</td>
<td>PE0TP02</td>
<td></td>
<td>D5</td>
<td>PE1RP03</td>
<td></td>
<td>E17</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>PE1TN03</td>
<td></td>
<td>B15</td>
<td>VSS</td>
<td></td>
<td>D6</td>
<td>VSS</td>
<td></td>
<td>E18</td>
<td>VDDAPE</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>VSS</td>
<td></td>
<td>B16</td>
<td>PE0TP01</td>
<td></td>
<td>D7</td>
<td>PE1RP02</td>
<td></td>
<td>E19</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>PE1TP02</td>
<td></td>
<td>B17</td>
<td>VSS</td>
<td></td>
<td>D8</td>
<td>VSS</td>
<td></td>
<td>E20</td>
<td>SWMODE_0</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>VSS</td>
<td></td>
<td>B18</td>
<td>PE0TP00</td>
<td></td>
<td>D9</td>
<td>PE1RN01</td>
<td></td>
<td>E21</td>
<td>SWMODE_1</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>PE1TN01</td>
<td></td>
<td>B19</td>
<td>VSS</td>
<td></td>
<td>D10</td>
<td>VSS</td>
<td></td>
<td>E22</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>VSS</td>
<td></td>
<td>B20</td>
<td>VSS</td>
<td></td>
<td>D11</td>
<td>PE1RP00</td>
<td></td>
<td>F1</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>PE1TP00</td>
<td></td>
<td>B21</td>
<td>VSS</td>
<td></td>
<td>D12</td>
<td>VSS</td>
<td></td>
<td>F2</td>
<td>VDDIO</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>VSS</td>
<td></td>
<td>B22</td>
<td>VSS</td>
<td></td>
<td>D13</td>
<td>0</td>
<td></td>
<td>F3</td>
<td>VDDIO</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>PE0TN03</td>
<td></td>
<td>C1</td>
<td>VDDCORE</td>
<td></td>
<td>D14</td>
<td>VSS</td>
<td></td>
<td>F4</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>VSS</td>
<td></td>
<td>C2</td>
<td>SSMBADDR_3</td>
<td></td>
<td>D15</td>
<td>PE0RN02</td>
<td></td>
<td>F5</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>A14</td>
<td>PE0TN02</td>
<td></td>
<td>C3</td>
<td>SSMBDAT</td>
<td></td>
<td>D16</td>
<td>VTTPE</td>
<td></td>
<td>F6</td>
<td>VDDIO</td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>VSS</td>
<td></td>
<td>C4</td>
<td>VSS</td>
<td></td>
<td>D17</td>
<td>PE0RP01</td>
<td></td>
<td>F7</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>PE0TN01</td>
<td></td>
<td>C5</td>
<td>PE1RN03</td>
<td></td>
<td>D18</td>
<td>VSS</td>
<td></td>
<td>F8</td>
<td>VDDPE</td>
<td></td>
</tr>
<tr>
<td>A17</td>
<td>VSS</td>
<td></td>
<td>C6</td>
<td>VSS</td>
<td></td>
<td>D19</td>
<td>PE0RN02</td>
<td></td>
<td>F9</td>
<td>VDDAPE</td>
<td></td>
</tr>
<tr>
<td>A18</td>
<td>PE0TN00</td>
<td></td>
<td>C7</td>
<td>PE1RN02</td>
<td></td>
<td>D20</td>
<td>VSS</td>
<td></td>
<td>F10</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>A19</td>
<td>VSS</td>
<td></td>
<td>C8</td>
<td>VSS</td>
<td></td>
<td>D21</td>
<td>VDDIO</td>
<td></td>
<td>F11</td>
<td>VDDPE</td>
<td></td>
</tr>
<tr>
<td>A20</td>
<td>VSS</td>
<td></td>
<td>C9</td>
<td>PE1RP01</td>
<td></td>
<td>D22</td>
<td>VSS</td>
<td></td>
<td>F12</td>
<td>VDDIO</td>
<td></td>
</tr>
<tr>
<td>A21</td>
<td>VSS</td>
<td></td>
<td>C10</td>
<td>VSS</td>
<td></td>
<td>E1</td>
<td>VDDCORE</td>
<td></td>
<td>F13</td>
<td>VDDPE</td>
<td></td>
</tr>
<tr>
<td>A22</td>
<td>VSS</td>
<td></td>
<td>C11</td>
<td>PE1RN00</td>
<td></td>
<td>E2</td>
<td>SSMBADDR_1</td>
<td></td>
<td>F14</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>VSS</td>
<td></td>
<td>C12</td>
<td>VSS</td>
<td></td>
<td>E3</td>
<td>SSMBADDR_5</td>
<td></td>
<td>F15</td>
<td>VDDAPE</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>VDDIO</td>
<td></td>
<td>C13</td>
<td>PE0RN03</td>
<td></td>
<td>E4</td>
<td>CCLKUS</td>
<td></td>
<td>F16</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>VSS</td>
<td></td>
<td>C14</td>
<td>VSS</td>
<td></td>
<td>E5</td>
<td>VSS</td>
<td></td>
<td>F17</td>
<td>VDDIO</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>PE1TP03</td>
<td></td>
<td>C15</td>
<td>PE0RP02</td>
<td></td>
<td>E6</td>
<td>VDDPE</td>
<td></td>
<td>F18</td>
<td>CCLKDS</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>VSS</td>
<td></td>
<td>C16</td>
<td>VSS</td>
<td></td>
<td>E7</td>
<td>VTTPE</td>
<td></td>
<td>F19</td>
<td>RSTHALT</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>PE1TN02</td>
<td></td>
<td>C17</td>
<td>PE0RN01</td>
<td></td>
<td>E8</td>
<td>VSS</td>
<td></td>
<td>F20</td>
<td>PERSTN</td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>VSS</td>
<td></td>
<td>C18</td>
<td>VSS</td>
<td></td>
<td>E9</td>
<td>VDDAPE</td>
<td></td>
<td>F21</td>
<td>SWMODE_2</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>PE1TP01</td>
<td></td>
<td>C19</td>
<td>PE0RP00</td>
<td></td>
<td>E10</td>
<td>VTTPE</td>
<td></td>
<td>F22</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>VSS</td>
<td></td>
<td>C20</td>
<td>VSS</td>
<td></td>
<td>E11</td>
<td>VDDAPE</td>
<td></td>
<td>G1</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>PE1TN00</td>
<td></td>
<td>C21</td>
<td>VDDAPE</td>
<td></td>
<td>E12</td>
<td>VDDPE</td>
<td></td>
<td>G2</td>
<td>MSMBADDR_4</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>VSS</td>
<td></td>
<td>C22</td>
<td>VDDCORE</td>
<td></td>
<td>E13</td>
<td>VTTPE</td>
<td></td>
<td>G3</td>
<td>MSMBCLK</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>PE0TP03</td>
<td></td>
<td>C23</td>
<td>SSMBADDR_2</td>
<td></td>
<td>E14</td>
<td>VDDAPE</td>
<td></td>
<td>G4</td>
<td>MSMBDAT</td>
<td></td>
</tr>
</tbody>
</table>

Table 19 PES16T4 484-pin Signal Pin-Out (Part 1 of 4)
<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5</td>
<td>VSS</td>
<td></td>
<td>H20</td>
<td>GPIO_00</td>
<td></td>
<td>K13</td>
<td>VDDCORE</td>
<td></td>
<td>M6</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>VDDCORE</td>
<td></td>
<td>H21</td>
<td>GPIO_01</td>
<td></td>
<td>K14</td>
<td>VSS</td>
<td></td>
<td>M7</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>VSS</td>
<td></td>
<td>H22</td>
<td>VSS</td>
<td></td>
<td>K15</td>
<td>VDDCORE</td>
<td></td>
<td>M8</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G8</td>
<td>VSS</td>
<td></td>
<td>J1</td>
<td>VDDCORE</td>
<td></td>
<td>K16</td>
<td>VSS</td>
<td></td>
<td>M9</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>G9</td>
<td>VSS</td>
<td></td>
<td>J2</td>
<td>JTAG_TDO</td>
<td></td>
<td>K17</td>
<td>VDDCORE</td>
<td></td>
<td>M10</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G10</td>
<td>VDDCORE</td>
<td></td>
<td>J3</td>
<td>JTAG_TMS</td>
<td></td>
<td>K18</td>
<td>VSS</td>
<td></td>
<td>M11</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>G11</td>
<td>VSS</td>
<td></td>
<td>J4</td>
<td>JTAG_TRST_N</td>
<td></td>
<td>K19</td>
<td>GPIO_07</td>
<td>1</td>
<td>M12</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G12</td>
<td>VSS</td>
<td></td>
<td>J5</td>
<td>VSS</td>
<td></td>
<td>K20</td>
<td>GPIO_06</td>
<td></td>
<td>M13</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>G13</td>
<td>VDDCORE</td>
<td></td>
<td>J6</td>
<td>VSS</td>
<td></td>
<td>K21</td>
<td>GPIO_05</td>
<td>1</td>
<td>M14</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G14</td>
<td>VSS</td>
<td></td>
<td>J7</td>
<td>VSS</td>
<td></td>
<td>K22</td>
<td>VSS</td>
<td></td>
<td>M15</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>G15</td>
<td>VSS</td>
<td></td>
<td>J8</td>
<td>VDDCORE</td>
<td></td>
<td>L1</td>
<td>VDDCORE</td>
<td></td>
<td>M16</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G16</td>
<td>VSS</td>
<td></td>
<td>J9</td>
<td>VSS</td>
<td></td>
<td>L2</td>
<td>VDDCORE</td>
<td></td>
<td>M17</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>G17</td>
<td>VSS</td>
<td></td>
<td>J10</td>
<td>VDDCORE</td>
<td></td>
<td>L3</td>
<td>VSS</td>
<td></td>
<td>M18</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G18</td>
<td>VDDAPE</td>
<td></td>
<td>J11</td>
<td>VSS</td>
<td></td>
<td>L4</td>
<td>VDDCORE</td>
<td></td>
<td>M19</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G19</td>
<td>VSS</td>
<td></td>
<td>J12</td>
<td>VDDCORE</td>
<td></td>
<td>L5</td>
<td>VSS</td>
<td></td>
<td>M20</td>
<td>VDDIO</td>
<td></td>
</tr>
<tr>
<td>G20</td>
<td>VDDAPE</td>
<td></td>
<td>J13</td>
<td>VSS</td>
<td></td>
<td>L6</td>
<td>VDDCORE</td>
<td></td>
<td>M21</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G21</td>
<td>VDDIO</td>
<td></td>
<td>J14</td>
<td>VSS</td>
<td></td>
<td>L7</td>
<td>VSS</td>
<td></td>
<td>M22</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>G22</td>
<td>VDDCORE</td>
<td></td>
<td>J15</td>
<td>VSS</td>
<td></td>
<td>L8</td>
<td>VDDCORE</td>
<td></td>
<td>M23</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>VSS</td>
<td></td>
<td>J16</td>
<td>VSS</td>
<td></td>
<td>L9</td>
<td>VSS</td>
<td></td>
<td>N1</td>
<td>PERECLKP1</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>MSMBADDR_1</td>
<td></td>
<td>J17</td>
<td>VDDIO</td>
<td></td>
<td>L10</td>
<td>VDDCORE</td>
<td></td>
<td>N3</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>MSMBADDR_2</td>
<td></td>
<td>J18</td>
<td>GPIO_02</td>
<td></td>
<td>L11</td>
<td>VSS</td>
<td></td>
<td>N4</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>MSMBADDR_3</td>
<td></td>
<td>J19</td>
<td>GPIO_04</td>
<td>1</td>
<td>L12</td>
<td>VDDCORE</td>
<td></td>
<td>N5</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>VDDCORE</td>
<td></td>
<td>J20</td>
<td>GPIO_03</td>
<td></td>
<td>L13</td>
<td>VSS</td>
<td></td>
<td>N6</td>
<td>VDDAPE</td>
<td></td>
</tr>
<tr>
<td>H6</td>
<td>VSS</td>
<td></td>
<td>J21</td>
<td>GPIO_02</td>
<td></td>
<td>L14</td>
<td>VDDCORE</td>
<td></td>
<td>N7</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>VDDCORE</td>
<td></td>
<td>J22</td>
<td>VDDCORE</td>
<td></td>
<td>L15</td>
<td>VSS</td>
<td></td>
<td>N8</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>VSS</td>
<td></td>
<td>K1</td>
<td>VDDIO</td>
<td></td>
<td>L16</td>
<td>VSS</td>
<td></td>
<td>N9</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>H9</td>
<td>VDDCORE</td>
<td></td>
<td>K2</td>
<td>VDDIO</td>
<td></td>
<td>L17</td>
<td>VSS</td>
<td></td>
<td>N10</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>VSS</td>
<td></td>
<td>K3</td>
<td>JTAG_TDI</td>
<td></td>
<td>L18</td>
<td>VDDCORE</td>
<td></td>
<td>N11</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>VDDCORE</td>
<td></td>
<td>K4</td>
<td>JTAG_TCK</td>
<td></td>
<td>L19</td>
<td>VSS</td>
<td></td>
<td>N12</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>H12</td>
<td>VSS</td>
<td></td>
<td>K5</td>
<td>VDDCORE</td>
<td></td>
<td>L20</td>
<td>VSS</td>
<td></td>
<td>N13</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>H13</td>
<td>VDDCORE</td>
<td></td>
<td>K6</td>
<td>VSS</td>
<td></td>
<td>L21</td>
<td>VDDIO</td>
<td></td>
<td>N14</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>H14</td>
<td>VSS</td>
<td></td>
<td>K7</td>
<td>VDDCORE</td>
<td></td>
<td>L22</td>
<td>VDDCORE</td>
<td></td>
<td>N15</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>H15</td>
<td>VDDCORE</td>
<td></td>
<td>K8</td>
<td>VSS</td>
<td></td>
<td>M1</td>
<td>VSS</td>
<td></td>
<td>N16</td>
<td>VSS</td>
<td></td>
</tr>
<tr>
<td>H16</td>
<td>VSS</td>
<td></td>
<td>K9</td>
<td>VDDCORE</td>
<td></td>
<td>M2</td>
<td>VSS</td>
<td></td>
<td>N17</td>
<td>VDDAPE</td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>VDDCORE</td>
<td></td>
<td>K10</td>
<td>VSS</td>
<td></td>
<td>M3</td>
<td>VSS</td>
<td></td>
<td>N18</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>H18</td>
<td>VSS</td>
<td></td>
<td>K11</td>
<td>VDDCORE</td>
<td></td>
<td>M4</td>
<td>VSS</td>
<td></td>
<td>N19</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>H19</td>
<td>VSS</td>
<td></td>
<td>K12</td>
<td>VSS</td>
<td></td>
<td>M5</td>
<td>VDDCORE</td>
<td></td>
<td>N20</td>
<td>VDDCORE</td>
<td></td>
</tr>
</tbody>
</table>

Table 19 PES16T4 484-pin Signal Pin-Out (Part 2 of 4)
<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
<th>Pin</th>
<th>Function</th>
<th>Alt</th>
</tr>
</thead>
<tbody>
<tr>
<td>N21</td>
<td>V_SS</td>
<td>R14</td>
<td>VDDCORE</td>
<td></td>
<td></td>
<td>U7</td>
<td>VDDIO</td>
<td></td>
<td>V22</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>N22</td>
<td>PEREFCCLKN2</td>
<td>R15</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>U8</td>
<td>VDDPE</td>
<td></td>
<td>W1</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>PEREFCCLKN1</td>
<td>R16</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>U9</td>
<td>VDDAPE</td>
<td></td>
<td>W2</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>V_SS</td>
<td>R17</td>
<td>VDDIO</td>
<td></td>
<td></td>
<td>U10</td>
<td>VDDPE</td>
<td></td>
<td>W3</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>V_SS</td>
<td>R18</td>
<td>VDDCORE</td>
<td></td>
<td></td>
<td>U11</td>
<td>V_SS</td>
<td></td>
<td>W4</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>V_SS</td>
<td>R19</td>
<td>GPIO_08</td>
<td>1</td>
<td>U12</td>
<td>VDDIO</td>
<td></td>
<td>W5</td>
<td>PE6RP00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>V_SS</td>
<td>R20</td>
<td>GPIO_-11</td>
<td>1</td>
<td>U13</td>
<td>VDDPE</td>
<td></td>
<td>W6</td>
<td>V_SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>V_SS</td>
<td>R21</td>
<td>GPIO_12</td>
<td>1</td>
<td>U14</td>
<td>VDDAPE</td>
<td></td>
<td>W7</td>
<td>PE6RP01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>VDDCORE</td>
<td>R22</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>U15</td>
<td>V_SS</td>
<td></td>
<td>W8</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>V_SS</td>
<td>T1</td>
<td>VDDCORE</td>
<td></td>
<td></td>
<td>U16</td>
<td>VDDIO</td>
<td></td>
<td>W9</td>
<td>PE6RN02</td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>VDDCORE</td>
<td>T2</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>U17</td>
<td>V_SS</td>
<td></td>
<td>W10</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>V_SS</td>
<td>T3</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>U18</td>
<td>VDDAPE</td>
<td></td>
<td>W11</td>
<td>PE6RP03</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>VDDCORE</td>
<td>T4</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>U19</td>
<td>REFCLKM</td>
<td></td>
<td>W12</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>V_SS</td>
<td>T5</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>U20</td>
<td>MSMBSMODE</td>
<td></td>
<td>W13</td>
<td>PE7RP00</td>
<td></td>
</tr>
<tr>
<td>P13</td>
<td>VDDCORE</td>
<td>T6</td>
<td>VDDIO</td>
<td></td>
<td></td>
<td>U21</td>
<td>V_SS</td>
<td></td>
<td>W14</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>V_SS</td>
<td>T7</td>
<td>VDDCORE</td>
<td></td>
<td></td>
<td>U22</td>
<td>V_SS</td>
<td></td>
<td>W15</td>
<td>PE7RN01</td>
<td></td>
</tr>
<tr>
<td>P15</td>
<td>VDDCORE</td>
<td>T8</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V1</td>
<td>VDDCORE</td>
<td></td>
<td>W16</td>
<td>V_TPE</td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>V_SS</td>
<td>T9</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V2</td>
<td>V_SS</td>
<td></td>
<td>W17</td>
<td>PE7RP02</td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>VDDCORE</td>
<td>T10</td>
<td>VDDCORE</td>
<td></td>
<td></td>
<td>V3</td>
<td>VDDCORE</td>
<td></td>
<td>W18</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P18</td>
<td>V_SS</td>
<td>T11</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V4</td>
<td>V_SS</td>
<td></td>
<td>W19</td>
<td>PE7RN03</td>
<td></td>
</tr>
<tr>
<td>P19</td>
<td>V_SS</td>
<td>T12</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V5</td>
<td>V_SS</td>
<td></td>
<td>W20</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P20</td>
<td>V_SS</td>
<td>T13</td>
<td>VDDCORE</td>
<td></td>
<td></td>
<td>V6</td>
<td>VDDPE</td>
<td></td>
<td>W21</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td>V_SS</td>
<td>T14</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V7</td>
<td>V_TPE</td>
<td></td>
<td>W22</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>P22</td>
<td>PEREFCCLKP2</td>
<td>T15</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V8</td>
<td>V_SS</td>
<td></td>
<td>Y1</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>V_SS</td>
<td>T16</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V9</td>
<td>VDDAPE</td>
<td></td>
<td>Y2</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>VDDAPE</td>
<td>T17</td>
<td>VDDCORE</td>
<td></td>
<td></td>
<td>V10</td>
<td>V_TPE</td>
<td></td>
<td>Y3</td>
<td>VDDCORE</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>P01MERGEN</td>
<td>T18</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V11</td>
<td>VDDPE</td>
<td></td>
<td>Y4</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>P67MERGEN</td>
<td>T19</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V12</td>
<td>VDDPE</td>
<td></td>
<td>Y5</td>
<td>PE6RN00</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>V_SS</td>
<td>T20</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V13</td>
<td>V_TPE</td>
<td></td>
<td>Y6</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>VDDIO</td>
<td>T21</td>
<td>VDDAPE</td>
<td></td>
<td></td>
<td>V14</td>
<td>VDDAPE</td>
<td></td>
<td>Y7</td>
<td>PE6RN01</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>V_SS</td>
<td>T22</td>
<td>VDDAPE</td>
<td></td>
<td></td>
<td>V15</td>
<td>VDDAPE</td>
<td></td>
<td>Y8</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>VDDCORE</td>
<td>U1</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V16</td>
<td>VDDPE</td>
<td></td>
<td>Y9</td>
<td>PE6RP02</td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>V_SS</td>
<td>U2</td>
<td>VDDCORE</td>
<td></td>
<td></td>
<td>V17</td>
<td>V_SS</td>
<td></td>
<td>Y10</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>VDDCORE</td>
<td>U3</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V18</td>
<td>VDDAPE</td>
<td></td>
<td>Y11</td>
<td>PE6RN03</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>V_SS</td>
<td>U4</td>
<td>VDDAPE</td>
<td></td>
<td></td>
<td>V19</td>
<td>V_SS</td>
<td></td>
<td>Y12</td>
<td>V_SS</td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>VDDCORE</td>
<td>U5</td>
<td>V_SS</td>
<td></td>
<td></td>
<td>V20</td>
<td>V_SS</td>
<td></td>
<td>Y13</td>
<td>PE7RN00</td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>V_SS</td>
<td>U6</td>
<td>VDDAPE</td>
<td></td>
<td></td>
<td>V21</td>
<td>V_SS</td>
<td></td>
<td>Y14</td>
<td>V_SS</td>
<td></td>
</tr>
</tbody>
</table>

Table 19 PES16T4 484-pin Signal Pin-Out (Part 3 of 4)
Alternate Signal Functions

<table>
<thead>
<tr>
<th>Pin</th>
<th>GPIO</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>J19</td>
<td>GPIO_04</td>
<td>IOEXPINTN2</td>
</tr>
<tr>
<td>K21</td>
<td>GPIO_05</td>
<td>IOEXPINTN3</td>
</tr>
<tr>
<td>K19</td>
<td>GPIO_07</td>
<td>GPEN</td>
</tr>
<tr>
<td>R19</td>
<td>GPIO_08</td>
<td>P1RSTN</td>
</tr>
<tr>
<td>R20</td>
<td>GPIO_11</td>
<td>P6RSTN</td>
</tr>
<tr>
<td>R21</td>
<td>GPIO_12</td>
<td>P7RSTN</td>
</tr>
</tbody>
</table>

Table 20 PES16T4 Alternate Signal Functions
Power Pins

<table>
<thead>
<tr>
<th>V_{DDCore}</th>
<th>V_{DDCore}</th>
<th>V_{DDCore}</th>
<th>V_{DDCore}</th>
<th>V_{DDIO}</th>
<th>V_{DDPE}</th>
<th>V_{DDAPE}</th>
<th>V_{TTPE}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>J10</td>
<td>M7</td>
<td>R10</td>
<td>B2</td>
<td>E6</td>
<td>C21</td>
<td>D16</td>
</tr>
<tr>
<td>C22</td>
<td>J12</td>
<td>M9</td>
<td>R12</td>
<td>D21</td>
<td>E11</td>
<td>E9</td>
<td>E7</td>
</tr>
<tr>
<td>E1</td>
<td>J18</td>
<td>M11</td>
<td>R14</td>
<td>F2</td>
<td>E12</td>
<td>E14</td>
<td>E10</td>
</tr>
<tr>
<td>E22</td>
<td>J22</td>
<td>M13</td>
<td>R18</td>
<td>F3</td>
<td>E15</td>
<td>E18</td>
<td>E13</td>
</tr>
<tr>
<td>F5</td>
<td>K5</td>
<td>M15</td>
<td>T1</td>
<td>F6</td>
<td>E16</td>
<td>F9</td>
<td>V7</td>
</tr>
<tr>
<td>F10</td>
<td>K7</td>
<td>M17</td>
<td>T7</td>
<td>F12</td>
<td>F8</td>
<td>F15</td>
<td>V10</td>
</tr>
<tr>
<td>F14</td>
<td>K9</td>
<td>N3</td>
<td>T10</td>
<td>F17</td>
<td>F11</td>
<td>G18</td>
<td>V13</td>
</tr>
<tr>
<td>F16</td>
<td>K11</td>
<td>N4</td>
<td>T13</td>
<td>G21</td>
<td>F13</td>
<td>G20</td>
<td>W16</td>
</tr>
<tr>
<td>G1</td>
<td>K13</td>
<td>N8</td>
<td>T17</td>
<td>J17</td>
<td>U8</td>
<td>N6</td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>K15</td>
<td>N10</td>
<td>T22</td>
<td>K2</td>
<td>U10</td>
<td>N17</td>
<td></td>
</tr>
<tr>
<td>G10</td>
<td>K17</td>
<td>N12</td>
<td>U2</td>
<td>L21</td>
<td>U13</td>
<td>R2</td>
<td></td>
</tr>
<tr>
<td>G13</td>
<td>L1</td>
<td>N14</td>
<td>V1</td>
<td>M20</td>
<td>V6</td>
<td>T21</td>
<td></td>
</tr>
<tr>
<td>G22</td>
<td>L2</td>
<td>N18</td>
<td>V3</td>
<td>R6</td>
<td>V11</td>
<td>U4</td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>L4</td>
<td>N19</td>
<td>V22</td>
<td>R17</td>
<td>V12</td>
<td>U6</td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>L6</td>
<td>N20</td>
<td>W2</td>
<td>T6</td>
<td>V15</td>
<td>U9</td>
<td></td>
</tr>
<tr>
<td>H9</td>
<td>L8</td>
<td>P7</td>
<td>W21</td>
<td>U7</td>
<td>V16</td>
<td>U14</td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>L10</td>
<td>P9</td>
<td>Y1</td>
<td>U12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H13</td>
<td>L12</td>
<td>P11</td>
<td>Y3</td>
<td>U16</td>
<td></td>
<td>V9</td>
<td></td>
</tr>
<tr>
<td>H15</td>
<td>L14</td>
<td>P13</td>
<td>Y20</td>
<td></td>
<td>V14</td>
<td>V18</td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>L18</td>
<td>P15</td>
<td>Y22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>L22</td>
<td>P17</td>
<td>AA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J8</td>
<td>M5</td>
<td>R8</td>
<td>AA21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 21: PES16T4 Power Pins
Ground Pins

<table>
<thead>
<tr>
<th>V_{ss}</th>
<th>V_{ss}</th>
<th>V_{ss}</th>
<th>V_{ss}</th>
<th>V_{ss}</th>
<th>V_{ss}</th>
<th>V_{ss}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>C16</td>
<td>H6</td>
<td>L15</td>
<td>P8</td>
<td>U3</td>
<td>Y16</td>
</tr>
<tr>
<td>A2</td>
<td>C18</td>
<td>H8</td>
<td>L16</td>
<td>P10</td>
<td>U5</td>
<td>Y18</td>
</tr>
<tr>
<td>A3</td>
<td>C20</td>
<td>H10</td>
<td>L17</td>
<td>P12</td>
<td>U11</td>
<td>Y21</td>
</tr>
<tr>
<td>A5</td>
<td>D1</td>
<td>H12</td>
<td>L19</td>
<td>P14</td>
<td>U15</td>
<td>AA1</td>
</tr>
<tr>
<td>A7</td>
<td>D4</td>
<td>H14</td>
<td>L20</td>
<td>P16</td>
<td>U17</td>
<td>AA3</td>
</tr>
<tr>
<td>A9</td>
<td>D6</td>
<td>H16</td>
<td>M1</td>
<td>P18</td>
<td>U21</td>
<td>AA5</td>
</tr>
<tr>
<td>A11</td>
<td>D8</td>
<td>H18</td>
<td>M2</td>
<td>P19</td>
<td>U22</td>
<td>AA7</td>
</tr>
<tr>
<td>A13</td>
<td>D10</td>
<td>H19</td>
<td>M3</td>
<td>P20</td>
<td>V2</td>
<td>AA9</td>
</tr>
<tr>
<td>A15</td>
<td>D12</td>
<td>H22</td>
<td>M4</td>
<td>P21</td>
<td>V4</td>
<td>AA11</td>
</tr>
<tr>
<td>A17</td>
<td>D14</td>
<td>J5</td>
<td>M6</td>
<td>R1</td>
<td>V5</td>
<td>AA13</td>
</tr>
<tr>
<td>A19</td>
<td>D18</td>
<td>J6</td>
<td>M8</td>
<td>R5</td>
<td>V8</td>
<td>AA15</td>
</tr>
<tr>
<td>A20</td>
<td>D20</td>
<td>J7</td>
<td>M10</td>
<td>R7</td>
<td>V17</td>
<td>AA17</td>
</tr>
<tr>
<td>A21</td>
<td>D22</td>
<td>J9</td>
<td>M12</td>
<td>R9</td>
<td>V19</td>
<td>AA19</td>
</tr>
<tr>
<td>A22</td>
<td>E5</td>
<td>J11</td>
<td>M14</td>
<td>R11</td>
<td>V20</td>
<td>AA20</td>
</tr>
<tr>
<td>B1</td>
<td>E8</td>
<td>J13</td>
<td>M16</td>
<td>R13</td>
<td>V21</td>
<td>AA22</td>
</tr>
<tr>
<td>B3</td>
<td>E17</td>
<td>J14</td>
<td>M18</td>
<td>R15</td>
<td>W1</td>
<td>AB1</td>
</tr>
<tr>
<td>B5</td>
<td>E19</td>
<td>J15</td>
<td>M19</td>
<td>R16</td>
<td>W3</td>
<td>AB2</td>
</tr>
<tr>
<td>B7</td>
<td>F1</td>
<td>J16</td>
<td>M21</td>
<td>R22</td>
<td>W4</td>
<td>AB3</td>
</tr>
<tr>
<td>B9</td>
<td>F4</td>
<td>K1</td>
<td>M22</td>
<td>T2</td>
<td>W6</td>
<td>AB5</td>
</tr>
<tr>
<td>B11</td>
<td>F7</td>
<td>K6</td>
<td>N2</td>
<td>T3</td>
<td>W8</td>
<td>AB7</td>
</tr>
<tr>
<td>B13</td>
<td>F22</td>
<td>K8</td>
<td>N5</td>
<td>T4</td>
<td>W10</td>
<td>AB9</td>
</tr>
<tr>
<td>B15</td>
<td>G5</td>
<td>K10</td>
<td>N7</td>
<td>T5</td>
<td>W12</td>
<td>AB11</td>
</tr>
<tr>
<td>B17</td>
<td>G7</td>
<td>K12</td>
<td>N9</td>
<td>T8</td>
<td>W14</td>
<td>AB13</td>
</tr>
<tr>
<td>B19</td>
<td>G8</td>
<td>K14</td>
<td>N11</td>
<td>T9</td>
<td>W18</td>
<td>AB15</td>
</tr>
<tr>
<td>B20</td>
<td>G9</td>
<td>K16</td>
<td>N13</td>
<td>T11</td>
<td>W20</td>
<td>AB17</td>
</tr>
<tr>
<td>B21</td>
<td>G11</td>
<td>K18</td>
<td>N15</td>
<td>T12</td>
<td>W22</td>
<td>AB19</td>
</tr>
<tr>
<td>B22</td>
<td>G12</td>
<td>K22</td>
<td>N16</td>
<td>T14</td>
<td>Y2</td>
<td>AB20</td>
</tr>
<tr>
<td>C4</td>
<td>G14</td>
<td>L3</td>
<td>N21</td>
<td>T15</td>
<td>Y4</td>
<td>AB21</td>
</tr>
<tr>
<td>C6</td>
<td>G15</td>
<td>L5</td>
<td>P2</td>
<td>T16</td>
<td>Y6</td>
<td>AB22</td>
</tr>
<tr>
<td>C8</td>
<td>G16</td>
<td>L7</td>
<td>P3</td>
<td>T18</td>
<td>Y8</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>G17</td>
<td>L9</td>
<td>P4</td>
<td>T19</td>
<td>Y10</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>G19</td>
<td>L11</td>
<td>P5</td>
<td>T20</td>
<td>Y12</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>H1</td>
<td>L13</td>
<td>P6</td>
<td>U1</td>
<td>Y14</td>
<td></td>
</tr>
</tbody>
</table>

Table 22 PES16T4 Ground Pins
Signals Listed Alphabetically

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>I/O Type</th>
<th>Location</th>
<th>Signal Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCLKDS</td>
<td>I</td>
<td>F18</td>
<td>System</td>
</tr>
<tr>
<td>CCLKUS</td>
<td>I</td>
<td>E4</td>
<td></td>
</tr>
<tr>
<td>GPIO_00</td>
<td>I/O</td>
<td>H20</td>
<td>General Purpose I/O</td>
</tr>
<tr>
<td>GPIO_01</td>
<td>I/O</td>
<td>H21</td>
<td></td>
</tr>
<tr>
<td>GPIO_02</td>
<td>I/O</td>
<td>J21</td>
<td></td>
</tr>
<tr>
<td>GPIO_03</td>
<td>I/O</td>
<td>J20</td>
<td></td>
</tr>
<tr>
<td>GPIO_04</td>
<td>I/O</td>
<td>J19</td>
<td></td>
</tr>
<tr>
<td>GPIO_05</td>
<td>I/O</td>
<td>K21</td>
<td></td>
</tr>
<tr>
<td>GPIO_06</td>
<td>I/O</td>
<td>K20</td>
<td></td>
</tr>
<tr>
<td>GPIO_07</td>
<td>I/O</td>
<td>K19</td>
<td></td>
</tr>
<tr>
<td>GPIO_08</td>
<td>I/O</td>
<td>R19</td>
<td></td>
</tr>
<tr>
<td>GPIO_11</td>
<td>I/O</td>
<td>R20</td>
<td></td>
</tr>
<tr>
<td>GPIO_12</td>
<td>I/O</td>
<td>R21</td>
<td></td>
</tr>
<tr>
<td>JTAG_TCK</td>
<td>I</td>
<td>K4</td>
<td>JTAG</td>
</tr>
<tr>
<td>JTAG_TDI</td>
<td>I</td>
<td>K3</td>
<td></td>
</tr>
<tr>
<td>JTAG_TDO</td>
<td>O</td>
<td>J2</td>
<td></td>
</tr>
<tr>
<td>JTAG_TMS</td>
<td>I</td>
<td>J3</td>
<td></td>
</tr>
<tr>
<td>JTAG_TRST_N</td>
<td>I</td>
<td>J4</td>
<td></td>
</tr>
<tr>
<td>MSMBADDR_1</td>
<td>I</td>
<td>H2</td>
<td>SMBus</td>
</tr>
<tr>
<td>MSMBADDR_2</td>
<td>I</td>
<td>H3</td>
<td></td>
</tr>
<tr>
<td>MSMBADDR_3</td>
<td>I</td>
<td>H4</td>
<td></td>
</tr>
<tr>
<td>MSMBADDR_4</td>
<td>I</td>
<td>G2</td>
<td></td>
</tr>
<tr>
<td>MSMBCLK</td>
<td>I/O</td>
<td>G3</td>
<td></td>
</tr>
<tr>
<td>MSMBDAT</td>
<td>I/O</td>
<td>G4</td>
<td></td>
</tr>
<tr>
<td>MSMBSMODE</td>
<td>I</td>
<td>U20</td>
<td>System</td>
</tr>
<tr>
<td>P01MERGEN</td>
<td>I</td>
<td>R3</td>
<td>PCI Express</td>
</tr>
<tr>
<td>P67MERGEN</td>
<td>I</td>
<td>R4</td>
<td></td>
</tr>
<tr>
<td>PE0RN00</td>
<td>I</td>
<td>D19</td>
<td></td>
</tr>
<tr>
<td>PE0RN01</td>
<td>I</td>
<td>C17</td>
<td></td>
</tr>
<tr>
<td>PE0RN02</td>
<td>I</td>
<td>D15</td>
<td></td>
</tr>
<tr>
<td>PE0RN03</td>
<td>I</td>
<td>C13</td>
<td></td>
</tr>
<tr>
<td>PE0RP00</td>
<td>I</td>
<td>C19</td>
<td></td>
</tr>
<tr>
<td>PE0RP01</td>
<td>I</td>
<td>D17</td>
<td></td>
</tr>
<tr>
<td>PE0RP02</td>
<td>I</td>
<td>C15</td>
<td></td>
</tr>
</tbody>
</table>

Table 23 89PES16T4 Alphabetical Signal List (Part 1 of 4)
<table>
<thead>
<tr>
<th>Signal Name</th>
<th>I/O Type</th>
<th>Location</th>
<th>Signal Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE0RP03</td>
<td>I</td>
<td>D13</td>
<td>PCI Express (Cont.)</td>
</tr>
<tr>
<td>PE0TN00</td>
<td>O</td>
<td>A18</td>
<td></td>
</tr>
<tr>
<td>PE0TN01</td>
<td>O</td>
<td>A16</td>
<td></td>
</tr>
<tr>
<td>PE0TN02</td>
<td>O</td>
<td>A14</td>
<td></td>
</tr>
<tr>
<td>PE0TN03</td>
<td>O</td>
<td>A12</td>
<td></td>
</tr>
<tr>
<td>PE0TP00</td>
<td>O</td>
<td>B18</td>
<td></td>
</tr>
<tr>
<td>PE0TP01</td>
<td>O</td>
<td>B16</td>
<td></td>
</tr>
<tr>
<td>PE0TP02</td>
<td>O</td>
<td>B14</td>
<td></td>
</tr>
<tr>
<td>PE0TP03</td>
<td>O</td>
<td>B12</td>
<td></td>
</tr>
<tr>
<td>PE1RN00</td>
<td>I</td>
<td>C11</td>
<td></td>
</tr>
<tr>
<td>PE1RN01</td>
<td>I</td>
<td>D9</td>
<td></td>
</tr>
<tr>
<td>PE1RN02</td>
<td>I</td>
<td>C7</td>
<td></td>
</tr>
<tr>
<td>PE1RN03</td>
<td>I</td>
<td>C5</td>
<td></td>
</tr>
<tr>
<td>PE1RP00</td>
<td>I</td>
<td>D11</td>
<td></td>
</tr>
<tr>
<td>PE1RP01</td>
<td>I</td>
<td>C9</td>
<td></td>
</tr>
<tr>
<td>PE1RP02</td>
<td>I</td>
<td>D7</td>
<td></td>
</tr>
<tr>
<td>PE1RP03</td>
<td>I</td>
<td>D5</td>
<td></td>
</tr>
<tr>
<td>PE1TN00</td>
<td>O</td>
<td>B10</td>
<td></td>
</tr>
<tr>
<td>PE1TN01</td>
<td>O</td>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>PE1TN02</td>
<td>O</td>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>PE1TN03</td>
<td>O</td>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>PE1TP00</td>
<td>O</td>
<td>A10</td>
<td></td>
</tr>
<tr>
<td>PE1TP01</td>
<td>O</td>
<td>B8</td>
<td></td>
</tr>
<tr>
<td>PE1TP02</td>
<td>O</td>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>PE1TP03</td>
<td>O</td>
<td>B4</td>
<td></td>
</tr>
<tr>
<td>PE6RN00</td>
<td>I</td>
<td>Y5</td>
<td></td>
</tr>
<tr>
<td>PE6RN01</td>
<td>I</td>
<td>Y7</td>
<td></td>
</tr>
<tr>
<td>PE6RN02</td>
<td>I</td>
<td>W9</td>
<td></td>
</tr>
<tr>
<td>PE6RN03</td>
<td>I</td>
<td>Y11</td>
<td></td>
</tr>
<tr>
<td>PE6RP00</td>
<td>I</td>
<td>W5</td>
<td></td>
</tr>
<tr>
<td>PE6RP01</td>
<td>I</td>
<td>W7</td>
<td></td>
</tr>
<tr>
<td>PE6RP02</td>
<td>I</td>
<td>Y9</td>
<td></td>
</tr>
<tr>
<td>PE6RP03</td>
<td>I</td>
<td>W11</td>
<td></td>
</tr>
<tr>
<td>PE6TN00</td>
<td>O</td>
<td>AB4</td>
<td></td>
</tr>
<tr>
<td>PE6TN01</td>
<td>O</td>
<td>AA6</td>
<td></td>
</tr>
<tr>
<td>PE6TN02</td>
<td>O</td>
<td>AB8</td>
<td></td>
</tr>
</tbody>
</table>

Table 23 89PES16T4 Alphabetical Signal List (Part 2 of 4)
<table>
<thead>
<tr>
<th>Signal Name</th>
<th>I/O Type</th>
<th>Location</th>
<th>Signal Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE6TN03</td>
<td>O</td>
<td>AA10</td>
<td>PCI Express (Cont.)</td>
</tr>
<tr>
<td>PE6TP00</td>
<td>O</td>
<td>AA4</td>
<td>PCI Express (Cont.)</td>
</tr>
<tr>
<td>PE6TP01</td>
<td>O</td>
<td>A86</td>
<td>PCI Express (Cont.)</td>
</tr>
<tr>
<td>PE6TP02</td>
<td>O</td>
<td>AA8</td>
<td>PCI Express (Cont.)</td>
</tr>
<tr>
<td>PE6TP03</td>
<td>O</td>
<td>AB10</td>
<td>PCI Express (Cont.)</td>
</tr>
<tr>
<td>PE7RN00</td>
<td>I</td>
<td>Y13</td>
<td>System</td>
</tr>
<tr>
<td>PE7RN01</td>
<td>I</td>
<td>W15</td>
<td>System</td>
</tr>
<tr>
<td>PE7RN02</td>
<td>I</td>
<td>Y17</td>
<td>System</td>
</tr>
<tr>
<td>PE7RN03</td>
<td>I</td>
<td>W19</td>
<td>System</td>
</tr>
<tr>
<td>PE7RP00</td>
<td>I</td>
<td>W13</td>
<td>System</td>
</tr>
<tr>
<td>PE7RP01</td>
<td>I</td>
<td>Y15</td>
<td>System</td>
</tr>
<tr>
<td>PE7RP02</td>
<td>I</td>
<td>W17</td>
<td>System</td>
</tr>
<tr>
<td>PE7RP03</td>
<td>I</td>
<td>Y19</td>
<td>System</td>
</tr>
<tr>
<td>PE7TN00</td>
<td>O</td>
<td>AB12</td>
<td>PCI Express</td>
</tr>
<tr>
<td>PE7TN01</td>
<td>O</td>
<td>AB14</td>
<td>PCI Express</td>
</tr>
<tr>
<td>PE7TN02</td>
<td>O</td>
<td>AB16</td>
<td>PCI Express</td>
</tr>
<tr>
<td>PE7TN03</td>
<td>O</td>
<td>AB18</td>
<td>PCI Express</td>
</tr>
<tr>
<td>PE7TP00</td>
<td>O</td>
<td>AA12</td>
<td>PCI Express</td>
</tr>
<tr>
<td>PE7TP01</td>
<td>O</td>
<td>AA14</td>
<td>PCI Express</td>
</tr>
<tr>
<td>PE7TP02</td>
<td>O</td>
<td>AA16</td>
<td>PCI Express</td>
</tr>
<tr>
<td>PE7TP03</td>
<td>O</td>
<td>AA18</td>
<td>PCI Express</td>
</tr>
<tr>
<td>PEREFLKN1</td>
<td>I</td>
<td>P1</td>
<td>System</td>
</tr>
<tr>
<td>PEREFLKN2</td>
<td>I</td>
<td>N22</td>
<td>System</td>
</tr>
<tr>
<td>PEREFLKPN1</td>
<td>I</td>
<td>N1</td>
<td>System</td>
</tr>
<tr>
<td>PEREFLKPN2</td>
<td>I</td>
<td>P22</td>
<td>System</td>
</tr>
<tr>
<td>PERSTN</td>
<td>I</td>
<td>F20</td>
<td>System</td>
</tr>
<tr>
<td>REFCLKM</td>
<td>I</td>
<td>U19</td>
<td>PCI Express</td>
</tr>
<tr>
<td>RSTHALT</td>
<td>I</td>
<td>F19</td>
<td>System</td>
</tr>
<tr>
<td>SSMBADDR_1</td>
<td>I</td>
<td>E2</td>
<td>SMBus</td>
</tr>
<tr>
<td>SSMBADDR_2</td>
<td>I</td>
<td>D2</td>
<td>SMBus</td>
</tr>
<tr>
<td>SSMBADDR_3</td>
<td>I</td>
<td>C2</td>
<td>SMBus</td>
</tr>
<tr>
<td>SSMBADDR_5</td>
<td>I</td>
<td>E3</td>
<td>SMBus</td>
</tr>
<tr>
<td>SSMBCLK</td>
<td>I/O</td>
<td>D3</td>
<td>SMBus</td>
</tr>
<tr>
<td>SSMBDAT</td>
<td>I/O</td>
<td>C3</td>
<td>SMBus</td>
</tr>
</tbody>
</table>

Table 23 89PES16T4 Alphabetical Signal List (Part 3 of 4)
### Signal Name	I/O Type	Location	Signal Category
SWMODE_0 | I | E20 | System
SWMODE_1 | I | E21 |
SWMODE_2 | I | F21 |
VDDCORE, VDDAPE, VDDIO, VDDPE, VTTPE | | | See Table 21 for a listing of power pins.
VSS | | | See Table 22 for a listing of ground pins.

Table 23 89PES16T4 Alphabetical Signal List (Part 4 of 4)
NOTES: UNLESS OTHERWISE SPECIFIED

2. THE BASIC SOLDER BALL GRID PITCH IS 1.00 mm.
3. THE MAXIMUM SOLDER BALL MATRIX SIZE IS 22 x 22.
4. THE MAXIMUM ALLOWABLE NUMBER OF SOLDER BALLS IS 484.
5. DIMENSION IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
6. PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CHORDS OF THE SOLDER BALLS.
7. "A1" CORNER MUST BE IDENTIFIED. IDENTIFICATION MAY BE BY MEANS OF CHAFTER, METALLIZED OR INK MARK, INDENTATION OR OTHER FEATURE OF THE PACKAGE BODY.
8. THIS DRAWING CONFORMS TO THE JEDC REGISTERED OUTLINE MS-024/A/Var 0.0-1 EXCEPT FOR A1, B, AND E DIMENSIONS.

BOTTOM VIEW
484 SOLDER BALLS
Revision History

February 8, 2007: Initial publication.

April 4, 2007: In Table 3, revised description for MSMBCLK signal.

May 30, 2007: Changed device revision in Ordering Information from ZD to ZH.

November 1, 2007: Changed package drawing to reflect correct ball/package dimensions.

November 6, 2007: Updated package drawing with solder ball tolerance added.

November 8, 2007: Added new parameter, Termination Resistor, to Table 9, Input Clock Requirements.

March 25, 2008: Added θ_{JB} and θ_{JC} parameters to Table 16, Thermal Specifications.
Ordering Information

<table>
<thead>
<tr>
<th>NN</th>
<th>A</th>
<th>AAA</th>
<th>NNAN</th>
<th>AA</th>
<th>AA</th>
<th>A</th>
<th>Temp Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Family</td>
<td>Operating Voltage</td>
<td>Device Family</td>
<td>Product Detail</td>
<td>Device Revision</td>
<td>Package</td>
<td></td>
<td>Commercial Temperature (0°C to +70°C Ambient)</td>
</tr>
<tr>
<td>BC</td>
<td>484-ball CABGA</td>
<td>BC</td>
<td>ZH</td>
<td>ZH revision</td>
<td>16T4</td>
<td>16-lane, 4-port</td>
<td></td>
</tr>
<tr>
<td>BCG</td>
<td>484-ball CABGA, Green</td>
<td>BCG</td>
<td>16T4</td>
<td>16-lane, 4-port</td>
<td>89</td>
<td>Serial Switching Product</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.0V +/- 0.1V Core Voltage</td>
<td>PES</td>
<td>PCI Express Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid Combinations

- **89HPES16T4ZHBC** 484-ball CABGA package, Commercial Temperature
- **89HPES16T4ZBCG** 484-ball Green CABGA package, Commercial Temperature
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard" : Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality" : Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.