General Description

The 8S89200 is a high speed 1-to-8 Differential-to-LVDS Clock Divider and is part of the high performance clock solutions from IDT. The 8S89200 is optimized for high speed and very low output skew, making it suitable for use in demanding applications such as SONET, 1 Gigabit and 10 Gigabit Ethernet, and Fibre Channel. The internally terminated differential inputs and \(V_{\text{REF, AC}} \) pins allow other differential signal families such as LVPECL, LVDS and CML to be easily interfaced to the input with minimal use of external components.

The device also has a selectable \(\div 1, \div 2, \div 4 \) output divider, which can allow the part to support multiple output frequencies from the same reference clock.

The 8S89200 is packaged in a small 5mm x 5mm 32-pin VFQFN package which makes it ideal for use in space-constrained applications.

Features

- Three output banks, consisting of eight LVDS output pairs total
- \(\text{IN}_x, \text{nIN}_x \) inputs can accept the following differential input levels: LVPECL, LVDS, CML
- Selectable output divider values of \(\div 1, \div 2, \div 4 \)
- Maximum output frequency: 1.5GHz
- Maximum input frequency: 3GHz
- Bank Skew: 10ps (typical)
- Part-to-part skew: 100ps (typical)
- Additive phase jitter, RMS: 0.170ps (typical)
- Propagation delay: 802ps (typical)
- Output rise time: 150ps (typical)
- 2.5V±5% operating supply voltage
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Pin Assignment

The pin assignment diagram shows the layout of the 8S89200 pin configuration. The diagram includes all the necessary pins such as GND, \(\text{DIVSEL}_A \), \(\text{IN} \), \(V_{\text{I}} \), \(V_{\text{REF, AC}} \), \(\text{nIN} \), \(\text{DIVSEL}_B \), \(\text{DIVSEL}_C \), \(\text{EN} \), \(V_{\text{DD}} \), \(\text{VB} \), \(\text{nVB} \), \(\text{QC} \), \(\text{nQC} \), and the output pins QA0 to QA3.

The 8S89200 is a 2:1 LVDS MUX with 1:8 Fanout and Internal Termination.
Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 20, 21</td>
<td>GND</td>
<td>Power</td>
<td>Ground supply pins.</td>
</tr>
<tr>
<td>2</td>
<td>DIVSEL_A</td>
<td>Input</td>
<td>Pullup Output divider select pin. Controls output divider settings for Bank A. See Table 3 for additional information. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>3</td>
<td>IN</td>
<td>Input</td>
<td>Non-inverting differential LVPECL clock input. R_{IN} = 50\Omega termination to V_T.</td>
</tr>
<tr>
<td>4</td>
<td>V_T</td>
<td>Input</td>
<td>Termination center-tap input.</td>
</tr>
<tr>
<td>5</td>
<td>V_{REF,AC}</td>
<td>Output</td>
<td>Reference voltage for AC-coupled applications.</td>
</tr>
<tr>
<td>6</td>
<td>nIN</td>
<td>Input</td>
<td>Inverting differential LVPECL clock input. R_{IN} = 50\Omega termination to V_T.</td>
</tr>
<tr>
<td>7</td>
<td>DIVSEL_B</td>
<td>Input</td>
<td>Pullup Output divider select pin. Controls output divider settings for Bank B. See Table 3 for additional information. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>8</td>
<td>DIVSEL_C</td>
<td>Input</td>
<td>Pullup Output divider select pin. Controls output divider settings for Bank C. See Table 3 for additional information. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>9</td>
<td>EN</td>
<td>Input</td>
<td>Pullup Output enable pin. See Table 3 for additional information. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>10, 19, 22, 31</td>
<td>V_{DD}</td>
<td>Power</td>
<td>Positive supply pins.</td>
</tr>
<tr>
<td>11, 12</td>
<td>nQB2, QB2</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>13, 14</td>
<td>nQB1, QB1</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>15, 16</td>
<td>nQB0, QB0</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>17, 18</td>
<td>nQC, QC</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>23, 24</td>
<td>nQA3, QA3</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>25, 26</td>
<td>nQA2, QA2</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>27, 28</td>
<td>nQA1, QA1</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>29, 30</td>
<td>nQA0, QA0</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>32</td>
<td>nMR</td>
<td>Input</td>
<td>Pullup Master Reset. See Table 3 for additional information. LVCMOS/LVTTL interface levels.</td>
</tr>
</tbody>
</table>

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_{PULLUP}</td>
<td>Input Pullup Resistor</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td>k\Omega</td>
</tr>
</tbody>
</table>
Function Tables

Table 3. SEL Function Table

<table>
<thead>
<tr>
<th>nMR</th>
<th>EN</th>
<th>DIVSEL_A</th>
<th>DIVSEL_B</th>
<th>DIVSEL_C</th>
<th>Output Bank A</th>
<th>Output Bank B</th>
<th>Output Bank C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 1A. Reset with Output Enabled

- nMR asynchronously resets the outputs
- Outputs go HIGH simultaneously after 4 complete input clock (IN) periods after nMR is de-asserted
Figure 1B. Enabled Timing

Outputs go HIGH simultaneously after EN is asserted. The number of IN clock cycles after EN is asserted before the outputs go HIGH varies from 2 to 6 cycles (4 cycles shown).
Outputs go LOW in output sequence after EN is de-asserted.
The +4, +2 and +1 outputs go LOW in that order.
The number of IN clock cycles after EN is de-asserted
varies from 2 to 6 cycles (4 cycles shown).

Figure 1C. Disabled Timing
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, \(V_{DD} = 2.5V \pm 5\% \), \(T_A = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Positive Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4B. LVCMOS/LVTTL DC Characteristics, \(V_{DD} = 2.5V \pm 5\% \), \(T_A = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input High Voltage</td>
<td>(V_{DD} = V_{IN} = 2.625V)</td>
<td>1.7</td>
<td>(V_{DD} + 0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input Low Voltage</td>
<td>(V_{DD} = 2.625V, V_{IN} = 0V)</td>
<td>-0.3</td>
<td>0.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>Input High Current</td>
<td>(V_{DD} = V_{IN} = 2.625V)</td>
<td>-125</td>
<td>20</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input Low Current</td>
<td>(V_{DD} = 2.625V, V_{IN} = 0V)</td>
<td></td>
<td>-300</td>
<td>(\mu A)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4C. Differential DC Characteristics, \(V_{DD} = 2.5V \pm 5\% \), \(T_A = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{IN})</td>
<td>Input Resistance</td>
<td>IN, nIN to VT</td>
<td>50</td>
<td></td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Input High Voltage</td>
<td>IN, nIN to VT</td>
<td>0.15</td>
<td>(V_{DD} + 0.3)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input Low Voltage</td>
<td>IN, nIN to VT</td>
<td>0</td>
<td>(V_{DD} - 0.15)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>Input Voltage Swing</td>
<td>IN, nIN to VT</td>
<td>0.15</td>
<td>1.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{DIFF,IN})</td>
<td>Differential Input Voltage Swing</td>
<td>IN, nIN to VT</td>
<td>0.3</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{REF,AC})</td>
<td>Bias Voltage</td>
<td>(V_{DD} - 1.34)</td>
<td>(V_{DD} - 1.3)</td>
<td>(V_{DD} - 1.18)</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
Table 4D. LVDS DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OD}</td>
<td>Differential Output Voltage</td>
<td></td>
<td>312</td>
<td>375</td>
<td>483</td>
<td>mV</td>
</tr>
<tr>
<td>ΔV_{OD}</td>
<td>VOD Magnitude Change</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Offset Voltage</td>
<td></td>
<td>1.14</td>
<td>1.25</td>
<td>1.40</td>
<td>V</td>
</tr>
<tr>
<td>ΔV_{OS}</td>
<td>VOS Magnitude Change</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>mV</td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

Table 5. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{OUT}</td>
<td>Output Frequency</td>
<td>f_{IN} Input Frequency</td>
<td>f_{OUT} Output Frequency</td>
<td>f_{IN} Input Frequency</td>
<td>f_{PD} Propagation Delay; NOTE 1</td>
<td>f_{IN} to Q_x</td>
</tr>
<tr>
<td>$t_{sk(b)}$</td>
<td>Bank to Bank Skew; NOTE 2, 3</td>
<td>Same divide setting</td>
<td>10</td>
<td>55</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>$t_{sk(w)}$</td>
<td>Bank to Bank Skew; NOTE 2, 3</td>
<td>Different divide setting</td>
<td>80</td>
<td>150</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>$t_{sk(o)}$</td>
<td>Within-Bank Skew; NOTE 2, 4</td>
<td>Within same fanout bank</td>
<td>4</td>
<td>25</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>$t_{sk(pp)}$</td>
<td>Part-to-Part Skew; NOTE 2, 5</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>Δt_jit</td>
<td>Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter section</td>
<td>156.25MHz, Integration Range: 12kHz to 20MHz</td>
<td>0.170</td>
<td>0.214</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>t_{R} / t_{F}</td>
<td>Output Rise/Fall Time</td>
<td>$20%$ to $80%$</td>
<td>80</td>
<td>150</td>
<td>210</td>
<td>ps</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

NOTE 4: Defined as skew within a bank of outputs at the same voltage and with equal load conditions.

NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.
Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the **dBc Phase Noise**. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

Measured using a Rohde & Schwarz SMA100 as the input source.
Parameter Measurement Information

Output Load AC Test Circuit

Input Levels

Propagation Delay

Output Rise/Fall Time

Offset Voltage Setup

Differential Output Voltage Setup
Parameter Measurement Information, continued

Within Bank Skew

Part-to-Part Skew

Bank to Bank Skew (same divide setting)

Bank to Bank (different divide settings)

Single-Ended & Differential Input Swing

Differential Voltage Swing = 2 x Single-ended V_{IN}
Applications Information

2.5V LVPECL Input with Built-In 50Ω Termination Interface

The IN/nIN with built-in 50Ω terminations accept LVDS, LVPECL, CML and other differential signals. Both signals must meet the V_{IN} and V_{IH} input requirements. Figures 2A to 2D show interface examples for the IN/nIN with built-in 50Ω termination input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 2A. IN/nIN Input with Built-In 50Ω Driven by an LVDS Driver

Figure 2B. IN/nIN Input with Built-In 50Ω Driven by an LVPECL Driver

Figure 2C. IN/nIN Input with Built-In 50Ω Driven by a CML Driver

Figure 2D. IN/nIN Input with Built-In 50Ω Driven by a CML Driver with Built-In 50Ω Pullup
LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance (Z_T) is between $90\,\Omega$ and $132\,\Omega$. The actual value should be selected to match the differential impedance (Z_0) of your transmission line. A typical point-to-point LVDS design uses a $100\,\Omega$ parallel resistor at the receiver and a $100\,\Omega$ differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard termination schematic as shown in Figure 3A can be used with either type of output structure. Figure 3B, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately $50\,\text{pF}$. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver’s amplitude and common-mode input range should be verified for compatibility with the output.

![Figure 3A. Standard Termination](image)

![Figure 3B. Optional Termination](image)

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Select Pins

All control pins have internal pullups; additional resistance is not required but can be added for additional protection. A $1k\,\Omega$ resistor can be used.

Outputs:

LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with $100\,\Omega$ across. If they are left floating, we recommend that there is no trace attached.
VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 4. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally /Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)
Power Considerations

This section provides information on power dissipation and junction temperature for the 8S89200. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8S89200 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for \(V_{DD} = 2.5V + 5% = 2.625V \), which gives worst case results.

The maximum current at 85°C is as follows:

\[
I_{DD,MAX} = 281mA
\]

- Power (core)\(_{MAX} = V_{DD,MAX} \times I_{DD,MAX} = 2.625V \times 311mA = 816.375mW
- Power Dissipation for internal termination \(R_T \)
 \[
 Power (R_T)_{MAX} = \frac{(V_{IN,MAX})^2}{R_T_{MIN}} = \frac{(1.2V)^2}{80\Omega} = 18mW
 \]

Total Power\(_{MAX} = (2.625V, \text{with all outputs switching}) = 816.375mW + 18mW = 816.393mW

2. Junction Temperature.

Junction temperature, \(T_j \), is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, \(T_j \), to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for \(T_j \) is as follows:

\[
T_j = \theta_{JA} \times P_{d_total} + T_A
\]

\(\theta_{JA} = \text{Junction-to-Ambient Thermal Resistance} \)

\(P_{d_total} = \text{Total Device Power Dissipation (example calculation is in section 1 above)} \)

\(T_A = \text{Ambient Temperature} \)

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance \(\theta_{JA} \) must be used. Assuming no air flow and a multi-layer board, the appropriate value is 42.7°C/W per Table 6 below.

Therefore, \(T_j \) for an ambient temperature of 85°C with all outputs switching is:

\[
85°C + 0.166W \times 42.7°C/W = 120°C.
\]

This is below the limit of 125°C.

This calculation is only an example. \(T_j \) will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance \(\theta_{JA} \) for 32 Lead VFQFN, Forced Convection

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>42.7°C/W</td>
<td>37.3°C/W</td>
<td>33.5°C/W</td>
</tr>
</tbody>
</table>
Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 32 Lead VFQFN

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>42.7°C/W</td>
<td>37.3°C/W</td>
<td>33.5°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for 8S89200: 689
32 Lead VFQFN Package Outline and Package Dimensions

Package Outline - K Suffix for 32 Lead VFQFN

There are 2 methods of indicating pin 1 corner at the back of the VFQFN package:
1. Type A: Chamfer on the paddle (near pin 1)
2. Type C: Mouse bite on the paddle (near pin 1)

Table 8. Package Dimensions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.80</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>0.25 Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.18</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>N & N</td>
<td>0.18</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>D & E</td>
<td>5.00 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2 & E2</td>
<td>3.0</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0.50 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.30</td>
<td>0.40</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MO-220

Note: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pin-out are shown on the front page. The package dimensions are in Table 8.
Ordering Information

Table 9. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>8S89200BKILF</td>
<td>ICS89200BIL</td>
<td>32 Lead VFQFN, Lead-Free</td>
<td>Tray</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>8S89200BKILFT</td>
<td>ICS89200BIL</td>
<td>32 Lead VFQFN, Lead-Free</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>8S89200BKILF/W</td>
<td>ICS89200BIL</td>
<td>32 Lead VFQFN, Lead-Free</td>
<td>Tape & Reel Pin 1</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orientation: EIA-481-D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Pin 1 Orientation in Tape and Reel Packaging

<table>
<thead>
<tr>
<th>Part Number Suffix</th>
<th>Pin 1 Orientation</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFT</td>
<td>Quadrant 1 (EIA-481-C)</td>
<td>![Illustration of Pin 1 Orientation LFT]</td>
</tr>
<tr>
<td>LF/W</td>
<td>Quadrant 2 (EIA-481-D)</td>
<td>![Illustration of Pin 1 Orientation LF/W]</td>
</tr>
</tbody>
</table>
Revision History Sheet

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>T9</td>
<td>18</td>
<td>Ordering information Table - added additional row.</td>
<td>06/08/15</td>
</tr>
<tr>
<td></td>
<td>T10</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Added Pin 1 Orientation in Tape & Reel Packaging Table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated header/footer throughout the data sheet.</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>T9</td>
<td>18</td>
<td>Ordering Information - removed LF note below table.</td>
<td>2/8/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated header and footer.</td>
<td></td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.